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Various rice diseases threaten the growth of rice. It is of great importance to achieve the

rapid and accurate detection of rice diseases for precise disease prevention and control.

Hyperspectral imaging (HSI) was performed to detect rice leaf diseases in four different

varieties of rice. Considering that it costs much time and energy to develop a classifier for

each variety of rice, deep transfer learning was firstly introduced to rice disease detection

across different rice varieties. Three deep transfer learning methods were adapted for 12

transfer tasks, namely, fine-tuning, deep CORrelation ALignment (CORAL), and deep

domain confusion (DDC). A self-designed convolutional neural network (CNN) was set

as the basic network of the deep transfer learning methods. Fine-tuning achieved the

best transferable performance with an accuracy of over 88% for the test set of the target

domain in the majority of transfer tasks. Deep CORAL obtained an accuracy of over

80% in four of all the transfer tasks, which was superior to that of DDC. A multi-task

transfer strategy has been explored with good results, indicating the potential of both

pair-wise, and multi-task transfers. A saliency map was used for the visualization of the

key wavelength range captured by CNN with and without transfer learning. The results

indicated that the wavelength range with and without transfer learning was overlapped

to some extent. Overall, the results suggested that deep transfer learning methods could

perform rice disease detection across different rice varieties. Hyperspectral imaging, in

combination with the deep transfer learning method, is a promising possibility for the

efficient and cost-saving field detection of rice diseases among different rice varieties.

Keywords: rice disease detection, hyperspectral imaging, fine-tuning, deep CORAL, deep domain confusion,

saliency map

INTRODUCTION

Rice is one of the most vital crops for human beings and is critical for maintaining food supply.
However, the growth of rice is subjected to stresses that are biological and abiotic in nature. Diseases
are one of the major threats to rice, causing severe losses in quality and yield (Yang et al., 2019).
There are various diseases threatening rice growth, such as bacterial leaf blight, blast, and sheath
blight, which are the three major diseases of rice (Kumar et al., 2020; Molla et al., 2020). After being
infected with these different diseases, the change in the inner chemical composition of rice varies
from variety to variety, with external symptoms of rice leaf also varying.
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To ensure the growth of rice, it is crucial to develop rapid and
accurate detection methods. For the past decades, numerous rice
disease detectionmethods have been proposed based on the inner
and external changes in infected rice leaves (Awaludin et al., 2020;
Lin et al., 2020; Shrivastava and Pradhan, 2020). Hyperspectral
imaging (HSI) is one of the most studied detection approaches
and is sensitive enough to capture the inner chemical difference
between a healthy plant and an infected one (Abdulridha et al.,
2020; Gao et al., 2020). Therefore, HSI was widely performed for
rice disease detection at an early stage (Liu et al., 2018b; Zhu et al.,
2019; Conrad et al., 2020).

However, there are still some problems in rice disease
detection by HSI. Generally, the dataset of diseased samples is
relatively small, which restricts the abilities of machine learning
and deep learning methods (Zhao et al., 2018). Besides, the
variation in rice varieties makes it challenging to develop
a general model for disease detection. Commonly, a model
established based on a variety of plants fails to obtain satisfactory
results in another variety. In general, an individual model is
constructed for each variety of a plant. In addition to the variation
in variety, it is also hard to apply a model constructed with
plants from a particular period or environmental condition to
the same plants from another growth period or environmental
condition (Conrad et al., 2020). The reason could be that spectral
data of rice from different varieties or different growth periods
have different feature spaces and data distributions. Besides, a
model developed with data collected from a particular piece
of equipment usually fail when applied to another because of
differences in absorbance and wavelength shifts (Chen et al.,
2020). Several methods were proposed to solve the problem,
such as calibration transfer (Li et al., 2015; Liu et al., 2018a;
Chen et al., 2020). Yan et al. applied a model built with a
spectrometer to predict spectra collected from another with a
method based on independent component analysis (Liu et al.,
2018a). However, most research studies on calibration transfer
methods have a requirement of a certain number of standard
samples. Generally, the performance of a calibration transfer has
a positive correlation with the number of standard samples (Chen
et al., 2020). Overall, the problem of different data distribution
(such as variety variation and equipment variation) has restricted
the development of real-world applications.

In computer vision, distribution change or domain shift
always exists because of many factors such as illumination,
pose, background, and image quality (Gong et al., 2012).
Recently, transfer learning methods have been used to solve
this different kind of data distribution problem, which has been
successfully applied to image classification, object detection, face
recognition, semantic segmentation, etc. (Wang andDeng, 2018).
Transfer learning (TL) is a method that tries to transfer the
knowledge learned from one domain (called the source domain)
to another different but related domain (called the target domain)
(Yang, 2010). In general, transfer learning approaches can be
categorized into four classes: instance-based TL, feature-based
TL, parameter-based TL, and relational knowledge TL (Pan and
Yang, 2010). The conception of these four kinds of TL was
discussed in detail in a study by Pan (Pan and Yang, 2010).
From another perspective, TL methods could be categorized into

traditional and deep-learning-based methods (Tan et al., 2018;
Wang and Deng, 2018). Wang et al. reviewed deep-learning-
based TL methods in recent years (Wang and Deng, 2018). Many
methods were proposed and tested on several standard domain
adaption benchmarks in the field of computer vision, such as
Office-31 (Saenko et al., 2010; Mingsheng et al., 2015) and Office-
Caltech 10 (Gong et al., 2012; Mingsheng et al., 2015). Office-31
is the most used benchmark for transfer learning and consists of
4,652 images within 31 categories collected from three distinct
backgrounds: Amazon (A), Webcam (W), and DLSR (D).

Several groups of researchers have introduced these TL
methods into hyperspectral classification. Qiu et al. utilized
two traditional transfer learning methods for detecting plastic
pollution levels in different soil regions with a near-IR sensor
(Qiu et al., 2020). Zhao et al. developed a multi-source deep
transfer learning framework to classify hyperspectral images
within the datasets of Indian Pines and Botswana (Zhao et al.,
2020). Jiang et al. obtained satisfactory segmentation results of
the hyperspectral image by combining TL and Markov random
fields (Jiang et al., 2020). Compared with hyperspectral image
classification, there were relatively fewer works focusing on
classification based on spectra. In this study, the feasibility of deep
transfer learning was investigated for rice disease classification
with spectral data. Three deep transfer learningmethods, namely,
fine-tuning, deep CORrelation ALignment (deep CORAL) (Sun
and Saenko, 2016), and deep domain confusion (DDC) (Tzeng
et al., 2014), were introduced to address the problem stemming
from the domain shift existing in different varieties of rice. The
main contents of this survey are as follows: (1) a common CNN
architecture was proposed and, respectively, trained with four
different varieties of rice for disease-stressed rice classification;
(2) the CNN trained on a specific variety of rice was directly
applied to another three varieties of rice without fine-tuning
(non-fine-tuning) and with fine-tuning; (3) since there are four
domains (varieties of rice), deep CORALmethods were applied to
all 12 shifts, taking one variety as the source domain and another
variety as the target domain; (4) the DDC was applied to all 12
shifts and the performances of all deep transfer learning methods
were compared; (5) the saliency map was used to intuitively
visualize the key wavelength range captured by the CNNwith and
without transfer learning.

MATERIALS AND METHODS

Sample Preparation
To verify the effectiveness of the deep transfer learning methods
among rice varieties, four varieties of rice were used in this study,
namely, Zhongzheyou1 (which was provided by the China Rice
Research Institute and Zhejiang Bedoknon Seed Co.), Jiuyou418
(which was selected and bred by the Northern Hybrid Japonica
Rice Engineering Technology Center and Xuzhou Institute of
Agricultural Science in Xuzhou, Jiangsu Province), Zhongzao39
(which was provided by the China Rice Research Institute), and
Xiushui134 (which was jointly selected by the Jiaxing Academy of
Agricultural Sciences, Yuyao Seed Management Station, Institute
of Genetics and Developmental Biology, Chinese Academy
of Sciences, and Zhejiang Jiaxing Crop High-Tech Breeding
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TABLE 1 | Rice varieties and their corresponding labels and sample numbers.

Rice variety Zhongzheyou1 Jiuyou418 Zhongzao39 Xiushui134

Encoding 01a 02 03 04

Total numbers 189 204 228 234

The training set 158 171 191 196

The validation set 16 17 19 19

The test set 15 16 18 19

CKb 45 51 60 54

RLBc 42 54 51 75

RBd 42 42 51 45

RSBe 60 57 66 60

a01 represents the rice variety Zhongzheyou1; 02 represents the rice variety Jiuyou418; 03 represents the rice variety Zhongzao39; 04 represents the rice variety Xiushui134.
bCK represents total healthy samples.
cRLB represents total samples inoculated by rice leaf blight.
dRB represents total samples inoculated by rice blast.
eRSB represents total samples inoculated by rice sheath blast.

Center). The four rice varieties are recorded as 01, 02, 03, and 04
for brevity, as shown in Table 1. A month after sowing the seeds
into seed plots, the seedlings were transplanted into a laboratory
greenhouse and fertilized and watered regularly.

To obtain inoculated samples, an in vitro inoculation method
was applied. Rice blast and rice sheath blight are fungal diseases,
while rice leaf blight is a bacterial disease. Therefore, the fungi of
rice blast and rice sheath blight were cultured in a potato dextrose
agar medium, and the bacteria of rice blight were cultured in
conical flasks.

Healthy rice seedlings of the four varieties with similar growth
were selected, washed, and transferred to sterilized plastic flat
plates for disease inoculation. Approximately 20 plants from
each variety of rice in the three- to five-leaf stage are used, and
two to four leaves with visible symptoms per plant were used
for analyses. To prevent the plants from drying, the roots were
covered with distilled water-sterilized wipes. For rice blast and
rice sheath blight inoculation, mycelial pellets were placed on the
upper, middle, and lower parts of the leaves, with about three
pellets per leaf. For rice leaf blight inoculation, a solution of
bacteria was sprayed onto the leaf surface. After inoculation, the
plates were covered with plastic wrap and then placed in a room
with a temperature of about 26–28◦C and a relative humidity
of ∼80%, and healthy leaves were used as control. Leaves with
visible symptoms were collected 4 days later.

Infected leaves cut from the plants were collected for
hyperspectral image acquisition. The number of leaves used in
this study is presented in Table 1. Three leaves were acquired
in an image. In this study, the category value of the healthy
samples (CK) was assigned as 0, and the category values of
the samples inoculated with rice leaf blight (RLB), rice blast
(RB), and rice sheath blight (RSB) were assigned as 1, 2, and
3, respectively. The representative images of healthy and disease
samples are shown in Supplementary Figure 1. Regarding data
splitting, the samples of each category were. randomly selected
into the training set, the validation set and the testing set in a
10:1:1 ratio The number of plants from each rice variety in each
category is listed in Table 1.

Hyperspectral Image Acquisition and
Spectra Extraction
A visible/near-IR hyperspectral imaging system covering the
spectral range of 379–1,024 nmwas used to acquire hyperspectral
images of healthy and infected leaves. The hyperspectral imaging
system (as shown in Supplementary Figure 2) is formed by
an imaging spectrograph (ImSpector V10E; Spectral Imaging
Ltd., Oulu, Finland), a highly sensitive 8484-05G CCD camera
(Hamamatsu, Hamamatsu City, Japan), and a long camera lens
(OLES23; Specim, Spectral Imaging Ltd., Oulu, Finland). The
illumination of the system is provided by 150-W tungsten
halogen lamps (2,900 Lightsource; Illumination Technologies
Inc., Liverpool, NY, United States). This hyperspectral imaging
system conducts line scanning, and a moving plate driven by a
stepper motor (Isuzu Optics Corp., Taiwan, China) is used to
move the samples.

To acquire clear and non-deformable images, the distance
between the camera lens and the moving plate, the exposure
time of the camera, and the moving speed of the moving plate
were adjusted to 13.7 cm, 0.17 s, and 0.7 ms/s, respectively.
The acquired hyperspectral images were then corrected using
the white reference image (acquired using a piece of pure
white Teflon board with nearly 100% reflectance) and the
dark reference image (acquired by covering the lens with a
black lens cap with nearly 0% reflectance) according to the
following equation:

IC =
IR − ID

IW − ID
(1)

where IC is the corrected image, IR is the raw image, IW is the
white reference image, and ID is the dark reference image.

After image correction, each leaf was defined as a region
of interest (ROI), and a wavelet transform (wavelet function:
Daubechies 10; decomposition level: 3) was used to de-noise
the pixel-wise spectra. The average spectrum of each leaf was
calculated as a sample spectrum. The head and the tail of the
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FIGURE 1 | The architecture of CNN.

spectra contained obvious noises and were then dropped, and the
full spectra in the range of 448–947 nm (393 wavelengths in total)
were used for analysis.

Model Establishment, Evaluation, and
Software
A self-designed CNN architecture was developed for the
classification task, as shown in Figure 1. The CNN consisted
of three convolution layers, two fully connected layers, and an
output layer. The structure (number of convolution layers/fully
connected layers and kernel size) of the CNN in this manuscript
was designed using a trial-and-error method. This one-
dimensional CNN with different kernels performs convolution
operations on the input data, thereby obtaining the global
features of the data, while the pooling operation contributed to
down-sampling the extracted features and reducing the amount
of calculation (Zhong et al., 2021). The CNN could obtain
different levels of features because of its stacked convolution
layers. If the stride is less than or equal to the size of the
convolution kernel, all spectral variables will participate in the
convolution operation without losing some information. The
stride was set to 1 so that the size of the output feature map of
each convolution layer was consistent with the spectral variables.
Spectral variables have rich information, and the extracted
features are extremely subtle. The shallow semantics generated
by the first two convolution layers should retain enough details,
and the size of the convolution kernel should be appropriately

small and be selected as 3. A large convolution kernel can retain
more information in down-sampling. After down-sampling, the
convolution kernel size increment was set to 11 (Cai et al.,
2018). With the deepening of the CNN, the possibility of feature
permutations and combinations increases, that is, the description
of each key attribute should be more specific. Therefore, the
number of channels should be increased to make the CNN
more expressive and cover as many key attributes as possible. In
this manuscript, the number of channels continued to double.
The rectified linear unit (ReLU) was used as the activation
function. The output of the CNN was followed by the softmax
function to obtain the probabilities assigned to each class. Cross-
entropy loss was used for the classification task. The function of
“SoftmaxCrossEntropyLoss” provided by MXNET was used for
the softmax operation and loss calculation. The last output layer
of the CNN gave a four-value matrix for each sample; then, the
prediction category (0, 1, 2, or 3, representing CK, RLB, RB, and
RSB, respectively) was obtained according to the four values.

Before being fed into the CNN, the full spectra (393
wavelengths in total) of each class were further implemented with
the standardization process. This standardization preprocessing
method standardized each sample of the training set by
removing the mean and scaling to unit variance, with the same
standardization being performed on the test set by a utility class
scale in scikit-learn. After standardization preprocessing, the
shape of data was (number of samples, number of wavelengths).
In order to feed into CNN, the shape of data needs to be reshaped
to be (number of samples, 1, number of wavelengths).

To conduct fine-tuning, the CNN was trained on each variety
of rice to obtain a decent discriminative performance. Next, the
pre-trained parameters of the first three convolution blocks were
fronzen and transferred to the CNN to predict another varietry
of rice. Fine-tuning assumes that the pre-trained parameters
contain the knowledge learned from the source domain and that
this knowledge will be equally applicable to the target domain.
Since there were four rice varieties, we conducted experiments
on all the 12 shifts: 01→02, 01→03, 01→04, 02→01, 02→03,
02→04, 03→01, 03→02, 03→04, 04→01, 04→02, and 04→03.

The spectra extraction of HSI was conducted on Matlab
R2019b (MathWorks, Natick, MA, United States). To evaluate
the performance of the model, classification accuracy was used,
which was the ratio of the correctly classified number of samples
to the total sample number. Deep learning was conducted using
Python 3 with an MXNET framework (Amazon; Seattle, WA,
United States) with GPU acceleration. A computer with an
Intel core-i7 8700k CPU, 16 GB of RAM, an NVidia GeForce a
GTX1660 GPU (8GB RAM, CUDA cores 1408, CUDA version
9.2.148), and a 256 GB SSD was used for calculation.

Transfer Learning Methods
Fine-Tuning
Fine-tuning is a common technique in transfer learning that is
widely used in computer vision and natural language processes.
It can migrate the knowledge of a pre-trained network based
on the source dataset to the target dataset (Oquab et al., 2014).
Considerable publications underline the benefits of pre-training
deep networks on large datasets (Käding et al., 2016; Zhang
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FIGURE 2 | Diagram of the fine-tuning method.

et al., 2019). To conduct fine-tuning, the network is first trained
on the source dataset, and then, pre-trained parameters are
transferred to the target task and kept fixed, with only a few
layers (commonly the last few layers) trained on the target dataset
(Oquab et al., 2014). In this study, the number of the frozen layers
was determined using the “trial and error” method. All layers of
the pre-trained CNN are frozen, except for the last three fully
connected layers, as shown in Figure 2.

Deep CORAL
CORrelation Alignment is a feature-based transfer learning
method proposed by Sun et al. (2016) that minimizes the distance
between the source domain and the target domain by aligning
the second-order statics of source and target distributions (Sun
et al., 2016). Furthermore, Sun and Saenko (2016) incorporated
CORAL into deep neural networks by constructing a loss
function that minimized the difference between the source and
target correlations, which is named CORAL loss. CORAL loss
is defined as the distance between the second-order statistics
(covariances) of the source and target features, the crucial
formula of which is as follows (Sun and Saenko, 2016):

lCORAL =
1

4d2
‖CS − CT‖

2
F (2)

where ‖•‖2F represents the squared matrix Frobenius norm; CS

and CT represent the feature covariance matrices of the source

domain and the target domain, respectively; d is the feature
dimension in a specific layer in a neural network.

For generalization and simplicity, in this study, we apply
CORAL loss to the fc6 layer of the self-designed CNN, shown
in Figure 3. In the training phase, the batch size was set as 40,
and the base learning rate was 0.0001. The weight of the CORAL
loss (λ) was set to 0.01 at the initial stage and then expanded to
0.1 and 1. Adding CORAL loss was of help to learn the feature
representation that was discriminative and that minimized the
distance between the source and the target domain.

Deep Domain Confusion
Directly training a classifier using only the source data often
leads to inferior performance in the target domain (Tzeng
et al., 2014). Deep domain confusion uses domain confusion
loss based on the maximum mean discrepancy (MMD) to
automatically learn a feature representation jointly trained to
optimize for classification and domain invariance (Tzeng et al.,
2014). Maximum mean discrepancy is a standard distribution
distance between the embeddings of the probability distributions
in a reproducing kernel Hilbert space (Gretton et al., 2012;
Ghifary et al., 2014). The difference and relationship between
CORAL andMMDwere discussed in this study (Sun et al., 2016).
The key point of DDC is to learn the feature representation that
minimizes the distance between domains and is conducive to
training a strong classifier at the same time. The approach tomeet
both these criterias (minimizing distance between domains and
training a strong classifier) is to minimize the loss:

L = LC
(

XS, y
)

+ λMMD2 (XS,XT) (3)

where LC
(

XS, y
)

represents classification loss on the source
domain and MMD2(XS, XT) represents the distance between the
source data, XS, and the target data, XT . The hyperparameter λ

determines the weight of distance loss.
In this study, the same CNN architecture was used in

deep CORAL and DDC. Maximum mean discrepancy loss
was calculated with the features of the last layer (fc6), which
is shown in Figure 4. In the training phase, the batch size
was set to 40, the base learning rate was 0.0001, and the
weight of the MMD loss (λ) was set to 0.001 at the initial
stage. Adding MMD loss into total loss was of help to
learning the feature representation that was discriminative
and minimized the distance between the source and the
target domain.

Furthermore, the relationship between epochs and the
accuracy of the training set of the target domain with deep
CORAL and DDC are provided in Supplementary Figure 3,
which illustrates the change in training accuracy and train loss
as the change in epochs. The training process took about 286.85 s
per 1,000 epochs.

RESULTS

Spectral Profile
To illustrate the difference among rice plants under different
disease stress conditions, the average original spectra were plotted
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FIGURE 3 | Deep CORAL architecture based on a self-designed CNN.

for visualization. In Figures 5A–D present healthy and disease-
stressed leaves of the four rice cultivars, corresponding to rice
varieties 01, 02, 03, and 04, respectively. The change tendency of
these four varieties was similar to the spectral profile of the other
two varieties of rice in the previous study (Feng et al., 2020).

The change tendencies of the rice leaves under different
disease stress conditions were similar. The distinct difference
could be observed in some ranges of wavelengths, including
the range from 450 to 500, 580 to 680, and 720 to 940 nm.
The difference among each class is a foundation for developing
a classifier for rice disease detection. Besides, the distinction
among different cultivars suggested that a discrepancy exists
among different cultivars of rice under the same disease stress
conditions. To perform a quantitative analysis for disease
detection in rice, further processing should be applied to
the spectra.

Classification Models on Each Variety of
Rice
The common CNN architecture was trained on four varieties
of rice. The classification results are shown in Table 2. All

the CNN models obtained an accuracy of over 97% for the
training set and an accuracy of over 93% and over 87% for
the validation set and the test set, respectively. These results
indicated that the self-designed CNN was capable of extracting
the features for discrimination of rice under different disease
stress conditions. This provides the possibility for transferring the
learned knowledge across different varieties.

Results With and Without Fine-Tuning
To verify the effectiveness of fine-tuning, the pre-trained CNN
based on one rice variety was directly used to predict another rice
variety without fine-tuning. The results of the prediction without
fine-tuning are shown in Table 3.

Without fine-tuning, when 01 was the source domain, the
accuracy of the test set of the target domains was lower than 69%,
except for 03. When the CNN based on 02 was used to predict
04, it only obtained an accuracy of no more than 52% on both the
training set and the test set. When 02 was transferred to 01 and
03, it also obtained unsatisfactory classification results. Besides,
deterioration in classification results also occurred when CNNs
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FIGURE 4 | Deep Domain Confusion (DDC) architecture based on a self-designed CNN.

trained on 03 were directly applied to predict 01, 02, and 04. This
situation also happened when the source domain was 04.

After fine-tuning, the accuracy of the training set increased to
more than 92%, while the accuracy of the validation set and the
test set, respectively, increased to over 88 and 86%, with 10 out
of the 12 transfer tasks obtaining an accuracy of over 87% on the
test set. Compared with the results of the prediction without fine-
tuning, the accuracy of the training set improved by 23–56.73%,
while that of the test set improved by 18% on 10 out of the 12
transfer tasks. Besides, the accuracy after fine-tuning was close
to the results of the CNN trained on each variety of rice, which
suggested that fine-tuning was capable of transferring the feature
representations learned from one variety of rice to another.

To further verify the effectiveness of fine-tuning, we also
conducted fine-tuning with a smaller dataset of the target
domain. The smaller training set only consisted of 20 samples
of each class, and the validation set and the test set were kept
the same. The training process was the same. As shown in
Table 3, with a smaller dataset, the accuracy of the test set on
nine out of all the transfer tasks is equal to or higher than that
with the bigger dataset. Even though the accuracy of the test

set of three transfer tasks declined, the amplitude of decline did
not exceed 5.56%. The results indicated that fine-tuning could
transfer the knowledge among different domains and that fine-
tuning obtained satisfying results with a relatively small training
set in the target domain.

Results With Deep CORAL and DDC
The results of transfer learning with deep CORAL are listed in
Table 4. Eight transfer tasks have achieved an accuracy of over
75% on the test set of the target domain. Compared with the
results of non-fine-tuning, the accuracy for the test set of the
target domain obtained improvements of over 15% on 8 out
of the 12 transfer tasks. Furthermore, five of all the transfer
tasks obtained an improvement of over 25%. It indicated that
CORAL loss contributed to learning features that work well on
the target domain. As for transfer task 03→ 01, the accuracy
of the validation set and the test set of the target domain was
93.75 and 86.67%, respectively, which was slightly lower than the
accuracy (93.33%) of the fine-tuning method.

Regarding DDC, the overall performance was inferior to the
performance of deep CORAL. However, compared with the
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FIGURE 5 | (A–D) represent the reflectance of rice varieties 01 (Zhongzheyou1), 02 (Jiuyou418), 03 (Zhongzao39), and 04 (Xiushui134).

TABLE 2 | Classification results of the four varieties of rice.

Variety Tra(%) Valb(%) Tec(%)

01 100 93.75 100

02 97.08 94.12 87.5

03 100 94.74 94.44

04 100 100 94.74

aTr is the training set; bVal is the validation set; cTe is the test set.

results with no fine-tuning, the accuracy for the test set of the
target domain was improved by a rate over 10% on 8 out of
12 transfer tasks. Therein, three of the transfer tasks obtained
an improvement of over 30%. The improvements suggested that
MMD loss was of help in reducing the distance between the
source domain and the target domain.

To investigate the choices of the layer, the fc5 layer was
adapted to compute domain loss in both deep CORAL and DDC.
The results are listed in Table 5. Regarding deep CORAL, 4 out
of all the 12 transfer tasks obtained an accuracy of over 75% on
the test set of the target domain. In general, the accuracy of the
target domain of each transfer task was slightly lower than their
corresponding accuracy with the fc6 as the transfer layer. In terms

of DDC, six transfer tasks obtained an accuracy of over 73% on
the test set of the target domain, while there was the case for seven
transfer tasks with the fc6 as the transfer layer. Overall, the fc6
layer was more conducive for transferring the knowledge learned
from one cultivar of rice to another for rice disease detection.

Furthermore, the saliency map was applied to visualize the
most informative wavelengths captured by the CNNmodel.

Saliency mapping is a technique for visualizing class models,

and it is widely studied in computer vision. The method
will numerically generate an image according to a learned

classification network and a class of interest. The generated image

is representative of the class in terms of the class scoring model
(Simonyan et al., 2013). In computer vision, the magnitude of

the class score defines the importance of the corresponding
pixels for the class (Simonyan et al., 2013). We introduced this
method into hyperspectral imaging analysis and the visualization
of key wavelengths captured by a learned classification model.
The interpretation of computing the class saliency using the
class score derivative is that the magnitude of the derivative
indicates which wavelength needs to be changed the least to
affect the class score the most. To realize the visualization of
the critical wavelength range, the class score was first computed
by calculating the derivative (gradient) of the correctly classified
class. Next, the wavelengths of each correctly classified sample
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TABLE 3 | Classification results without and with fine-tuning.

S-Ta Non-fine-tuning Fine-tuning Finetuning with a smaller sete

Trb(%) Valc(%) Ted(%) Tr(%) Val(%) Te(%) Tr(%) Val(%) Te(%)

01–02 60.23 52.94 68.75 98.32 88.24 87.50 96.25 88.24 87.50

01–03 76.44 84.21 88.89 100.00 89.47 88.89 95.00 89.47 88.89

01–04 52.04 73.68 57.89 92.35 89.47 89.47 91.25 89.47 89.47

02–01 62.03 56.25 66.67 99.36 93.75 86.66 96.25 93.75 86.67

02–03 67.02 89.47 61.11 91.62 89.47 88.89 100.00 89.43 83.33

02–04 53.57 42.11 52.63 96.43 94.74 89.47 91.25 89.48 78.95

03–01 70.89 75.00 60.00 94.30 93.75 93.33 95.00 93.75 93.34

03–02 63.74 47.06 50.00 98.83 88.24 87.50 95.00 88.23 87.50

03–04 58.67 78.95 52.63 97.96 100.00 89.47 100.00 94.74 84.21

04–01 51.27 50.00 53.33 97.47 93.75 86.67 98.75 87.50 86.67

04–02 43.27 47.06 37.50 100.00 88.24 87.50 98.75 88.24 87.50

04–03 72.77 57.89 77.78 97.91 100.00 88.89 100.00 94.74 88.89

aS-T means the source domain-the target domain; bTr means the training set of the target domain; cVal means the validation set of the target domain; dTe means the test set of the

target domain; ea small set only consisted of 20 samples of each class; the test set remained the same as in Table 1. The bold values means the accuracy rate of the test set was

beyond 86%.

TABLE 4 | Classification results of deep CORrelation ALignment (CORAL) and deep domain confusion (DDC) (fc6a).

S-Tb Deep CORAL DDC

Sc Td S T

Tre(%) Valf(%) Teg(%) Tr(%) Val(%) Te(%) Tr(%) Val(%) Te(%) Tr(%) Val(%) Te(%)

01–02 100.00 87.50 80.00 61.99 58.82 62.50 100.00 87.50 86.67 56.14 58.82 56.25

01–03 100.00 87.50 86.67 80.63 84.21 83.33 100.00 87.50 86.67 80.10 84.21 83.33

01–04 100.00 87.50 86.67 69.90 73.68 73.68 100.00 87.50 80.00 69.90 73.68 73.68

02–01 100.00 82.35 75.00 79.11 87.50 73.33 100.00 82.35 75.00 74.05 81.25 80.00

02–03 100.00 76.47 75.00 79.58 78.95 77.78 100.00 76.47 75.00 75.39 78.95 72.22

02–04 100.00 82.35 81.25 68.88 73.68 68.42 100.00 88.24 75.00 72.96 73.68 52.63

03–01 100.00 94.74 83.33 86.08 87.50 86.67 100.00 89.47 72.22 82.28 87.50 73.33

03–02 100.00 94.74 88.89 77.78 76.47 75.00 100.00 89.47 77.78 76.61 70.59 62.50

03–04 100.00 94.74 88.89 75.51 84.21 84.21 100.00 84.21 83.33 71.43 78.95 73.68

04–01 100.00 94.74 94.74 77.22 81.25 80.00 100.00 94.74 94.74 72.78 68.75 73.33

04–02 100.00 94.74 94.74 73.68 76.47 75.00 100.00 84.21 89.47 69.59 70.59 68.75

04–03 100.00 89.47 100.00 82.72 84.21 77.78 100.00 84.21 94.74 78.01 78.95 77.78

afc6 means that the last fully connected layer of the CNN was used for calculating domain loss (CORAL loss and maximum mean discrepancy, MMD, loss, as shown in Figures 3 and

4); bS-T means the source domain-the target domain; cS means the source domain; dT means the target domain; eTr means the training set of the target domain; fVal means the

validation set of the target domain; gTe means the test set of the target domain. The bold values means the accuracy rate of the test set was beyond 75%.

were sorted by the absolute value of the corresponding gradient
in descending order. Finally, the first 50 critical wavelengths
of each sample of the same class were selected and counted
according to the frequency of wavelengths. After obtaining the
critical wavelengths and their corresponding frequencies, the
wavelength saliency map was plotted for visualization. Here, the
results of 01 were used for visualization. Since there were only 15
samples of the test set of 01, there were too few to visualize the
critical wavelengths. The validation set and the test set of 01 were
concatenated (called the combined set) and used for prediction
with the CNNmodel in Table 2 and the deep CORAL in Table 4.
Then, the results were used for the visualization of the critical

wavelength range. On the one hand, the combined set results
of the CNN model built on the data of 01 alone (the prediction
accuracy of the combined set was 96.77%) were used to visualize
the critical wavelength range without transfer learning. On the
other hand, the combined set results of 01 after achieving the
transfer task 03→ 01 (the prediction accuracy of the combined
set was 90.32%) with deep CORAL were used to visualize the key
wavelengths after transfer learning.

Figure 6 shows the differences and connections between the
spectral profile and the saliency map. In Figures 6A–D represent
the frequencies of the critical wavelengths of classes 0, 1, 2,
and 3, respectively. Without transfer learning, the wavelengths

Frontiers in Plant Science | www.frontiersin.org 9 September 2021 | Volume 12 | Article 693521

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Feng et al. Transfer Learning Detects Rice Disease

TABLE 5 | Classification results of Deep CORAL and DDC (fc5a).

Deep CORAL DDC

S-Tb Sc Td S T

Tre(%) Valf(%) Teg(%) Tr(%) Val(%) Te(%) Tr(%) Val(%) Te(%) Tr(%) Val(%) Te(%)

01–02 100.00 87.50 80.00 58.48 58.24 56.25 100.00 87.50 86.67 60.23 58.82 56.25

01–03 100.00 93.75 86.67 80.63 84.21 83.33 100.00 87.50 86.67 80.10 84.21 83.33

01–04 100.00 87.50 93.34 65.82 73.68 73.68 100.00 81.25 86.67 70.41 73.68 73.68

02–01 100.00 82.35 75.00 75.95 81.25 73.33 92.40 82.35 68.75 71.52 75.00 73.33

02–03 100.00 76.47 75.00 76.44 77.78 78.95 100.00 76.47 75.00 78.53 73.68 72.22

02–04 100.00 82.35 75.00 72.45 68.42 68.42 95.32 82.35 75.00 71.43 73.68 57.89

03–01 100.00 89.47 83.33 82.91 87.50 80.00 100.00 89.47 77.78 82.91 87.50 73.33

03–02 100.00 89.47 83.33 74.85 70.59 68.75 100.00 94.74 83.33 73.68 76.47 62.50

03–04 100.00 94.74 88.89 84.69 89.47 73.68 100.00 94.74 88.89 73.98 78.95 73.68

04–01 100.00 89.47 94.74 71.52 73.33 68.75 100.00 100.00 94.74 69.62 68.75 66.67

04–02 100.00 94.74 94.74 74.85 68.75 58.82 100.00 84.22 94.74 66.08 64.71 62.50

04–03 100.00 89.47 89.47 83.77 84.21 77.78 100.00 100.00 89.47 82.20 78.95 77.78

afc5 means that the penultimate fully connected layer of the convolutional neural network (CNN) was used for calculating domain loss (CORAL loss and MMD loss, as shown in Figures 3

and 4); bS-T means the source domain-the target domain; cS means the source domain; dT means the target domain; eTr means the training set of the target domain; fVal means the

validation set of the target domain; gTe means the test set of the target domain. The bold values means the accuracy rate of the test set was beyond 73%.

FIGURE 6 | Saliency map before transfer learning regarding the rice variety 01 (Zhongzheyou1). (A–D) represent the key wavelength ranges captured by CNN to

correctly classify rice diseases with classes 0 (healthy samples, CK), 1 (rice leaf blight, RLB), 2 (rice blast, RB), and 3 (rice sheath blight, RSB), respectively.
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of interest are located in almost the same ranges, including the
range from 448 to 467 nm, the range from 485 to 510 nm, the
range from 660 to 690 nm, and the range from 740 to 940 nm.
Compared with the wavelength range discussed in section
Spectral profile spectral profile, there were several common
wavelength ranges, including the range from 448 to 467 nm, the
range from 485 to 510 nm, and the range from 740 to 940 nm. It
indicated that the result of the saliencymap was largely consistent
with the spectral profile.

In Figure 7, the wavelengths after transfer learning were
located in a similar range as they were without transfer learning,
including the ranges from 450 to 500 nm, the range from 518 to
525 nm, the range from 535 to 540 nm, the range from 600 to
750 nm, and the range from 760 to 910 nm. Overall, the range of
feature wavelengths captured by the CNN with transfer learning
had a significant overlap with the wavelength range captured by
the CNN without transfer learning.

The intersection of the key wavelengths with and without
transfer learning suggested that deep CORAL was able to learn
the features that work well on both the source domain and the
target domain. Furthermore, CORAL loss, as a part of a total
loss, contributed to the reduction in the distance between the
source domain and the target domain. Transfer learning also
had the capability to learn knowledge that could be applied to
a different domain.

DISCUSSION

Transfer learning is able to address the problem that a predictive
model based on specific data cannot work well on another data
source from a related domain but under different distribution
conditions. According to the saliency map shown in Figures 6,
7, it appears that the critical wavelength range is similar in
cases with and without transfer learning. In this study, three
different deep transfer learning methods were applied for disease
detection among different cultivars of rice. The results showed
that deep transfer learning methods could perform disease
detection across different rice cultivars in an efficient manner.
Among the methods used in this study, fine-tuning was an easily
operative and effective transfer learning method, obtaining the
best overall performance after transfer learning. It was easy to
operate and obtain the accuracy for the target domain, which
was equal to or just slightly lower than the accuracy of the CNN
directly built on the corresponding target domain. Besides, deep
CORAL, as a feature-based transfer learning method, has the
ability to learn the feature representation that works well on both
the source domain and the target domain. Overall, compared
with the result of DDC, deep CORAL performed better. In
the study of Sun et al. (2016), the CORAL-based method was
also shown to be superior to the MMD-based method. The
reason could be that CORAL, as an asymmetric transformation,
tries to “bridge” the two domains, while MMD as a symmetric
transformation tries to find a space that ignores the difference
between the source and the target domain (Sun et al., 2016).
Although deep CORAL has achieved good predictions on both
the source domain and the target domain among most of the

transfer tasks, the accuracy was not as good as the results of direct
modeling and fine-tuning. This situation also existed in other
studies. Some traditional transfer learning methods obtained an
average accuracy lower than 60% on the standard Office dataset,
such as geodesic flow kernel (GFK) (Gong et al., 2012) and
subspace alignment (SA) (Fernando et al., 2013). The CORAL
method obtained an accuracy lower than 65% on four of the
transfer tasks and an average of 69.4% for all the six transfer
tasks with the same dataset (Sun et al., 2016). Furthermore, deep
CORAL obtained an average accuracy of 72.1% on the same
dataset. Long et al. improved the average accuracy to 72.9% on
the same dataset with deep adaption networks (Mingsheng et al.,
2015).

To achieve better performance with transfer learning, a
deep network should be carefully designed. The deep network
should obtain good predictions based on the data of the
source domain. Thus, the deep network allows the extraction
of feature representations that are conducive to achieving
classification. Given that the resnet architecture is one of
the most excellent deep neural network architectures, deep
transfer learning based on resnet was carried out for a
comparison with the results based on the customized CNN
architecture. To avoid overfitting, ResNet14 (the architecture
is provided in Supplementary Table 1) was used for transfer
learning, and the global average pooling layer was set as the
transfer layer. The results based on ResNet14 are provided in
Supplementary Table 2. Comparing with the results shown in
Table 4, the results based on ResNet14 were similar or inferior
to the results based on the customized CNN. Therefore, a
well-designed CNN architecture was a prerequisite for a good
transfer effect. In this case, since the spectral data were one-
dimensional, a relatively shallow CNN architecture was suitable
for the classification task.

In addition, the pair-wise transfer was widely studied in
the field of computer vision, and it was shown to be effective
for the classification of rice diseases in the above sections.
Moreover, it was worth investigating whether a multi-task
transfer strategy could achieve better performance. The multi-
task transfer strategy could potentially improve the transfer
performance for this strategy by increasing and enriching the
training data. Considering the large number of transfer tasks,
only the case of joint training of three rice transfers to one rice
variety with deep CORAL was explored. Thus, the multi-task
transfer strategy was implemented based on the self-designed
CNN in section Material and Methods with fc6 as the transfer
layer, which first jointly trained on three rice varieties (e.g.,
02, 03, and 04) and then transferred to the fourth one (e.g.,
variety 01). The results of the multi-task transfer are provided
in Supplementary Table 3. With the deep CORAL method, the
accuracy of the test set of the target domain was improved from
86.67 to 93.33% compared with the result (03–01) shown in
Table 4. In addition, the accuracy of the test set of the target
domain was improved from 83.33 to 88.89% compared with
the result (01–03) of deep CORAL shown in Table 4. A similar
improvement occurred when the target domain was 02 or 04.
Therefore, the multi-task transfer strategy could contribute to
obtaining better performance, which alleviated the challenge of
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FIGURE 7 | Saliency map after transfer learning regarding the rice variety 01 (Zhongzheyou1), which is based on the results of 01 after achieving the transfer task

03→ 01 with deep CORAL. (A–D) Represent the key wavelength ranges captured by CNN to correctly classify rice diseases with classes 0 (healthy samples, CK), 1

(rice leaf blight, RLB), 2 (rice blast, RB), and 3 (rice sheath blight, RSB), respectively.

transfer learning with a limited amount of data. Furthermore,
it is worth studying which varieties are selected and how they
are selected for joint transfer when there are a large number of
varieties of rice. Besides, it contributes to confusing domains by
adding domain loss both in deep CORAL and DDC. According
to some related studies (Tzeng et al., 2014; Sun and Saenko,
2016; Sun et al., 2016), the last few fully connected layers were
usually applied for calculating domain loss. In this study, the
choices for the layer for calculating domain loss were studied.
The results showed that there was a difference in using a different
layer for calculating domain loss. Therefore, this observation
should be taken into account in transfer learning. Generally,
CORAL and MMD are kernel tricks that try to measure the
distance between the source domain and the target domain in
another space. To improve the transferability of transfer learning
in spectral analyses, some kernel tricks could be introduced and
combined into the spectral data metric. In addition, Long et al.
proposed a multiple kernel variant of MMD to realize transfer
learning, which combined with the last three fully connected
layers for domain loss. Thismethodwas beyond discussion in this
study and could be investigated in future studies. Considering the
balance of classification loss and domain loss, the hyperparameter

λ played a key role in this aspect, which also causes difficulty for
training the network in transfer learning to some extent. Some
previous studies on computer vision have tended to set it to 1
according to previous experience (Mingsheng et al., 2015; Sun
and Saenko, 2016), while some set λ to 0.25 (Tzeng et al., 2014).
According to the experience of the authors, the setting ofλ to 0.01
was better at the first stage of training, and then it was expanded
to 0.1 and 1.

Considering practical application, among the previous studies
that focused on rice disease detection with a spectroscopy
technique, it was hard to find a network trained on a specific
variety that could be directly applied to another variety. However,
it will cost much time and energy to build and train a deep
network for each cultivar of rice. Transfer learning is a promising
tool for solving this problem. Transfer learning can learn feature
representations that work well on different but related tasks.
Since deep learning is good at automatically extracting features of
different levels, it is quite desirable for combining deep learning
networks and transfer learning together to realize transferability
across different tasks. This study showed the feasibility of
combining deep transfer learning with spectra data for rice
disease detection. In future studies, more samples need to be

Frontiers in Plant Science | www.frontiersin.org 12 September 2021 | Volume 12 | Article 693521

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Feng et al. Transfer Learning Detects Rice Disease

used to further improve performance. If a high-quality spectral
database like ImageNet could be established and maintained,
it will strongly promote the development of transfer learning
with spectral analyses and contribute to the development of
practical applications.

CONCLUSIONS

In this study, hyperspectral imaging was performed to acquire
the information of four cultivars of rice under different disease
stress conditions. Deep transfer learning was introduced for
the first time to rice disease detection across different rice
cultivars simultaneously. A self-designed CNN architecture was
developed as a classification model and basic network of deep
transfer learning. The transfer learning methods used in this
study were fine-tuning, deep CORAL, and DDC. The results
illustrated that the fine-tuning method was a relatively easy
and efficient solution for rice disease detection across different
rice cultivars. Deep CORAL was capable of transferring the
knowledge learned from a specific variety to another variety and
was superior to DDC in overall performance. In addition, when
jointly training on three varieties of rice and then transferring
to the fourth one, the accuracy of the target domains improved.
This indicated that the multi-task transfer strategy could
improve transfer performance, which increased and enriched the
training data.

Nevertheless, there existed limitations in this study. Rice
leaves were collected and explored from only four different
cultivars. Rice samples of more cultivars were suggested to be
collected to study the universality of deep transfer learning
methods. The number of samples of each cultivar was no more
than 250. The small size of a dataset may restrict the performance
of deep learning methods and transfer learning combined with
deep learning. More samples may lead to the better performance
of deep transfer learning methods. The results of this study
showed that it is feasible to combine spectral data with deep
transfer learning for the classification of rice diseases and that
the inclusion of more samples and the use of emerging transfer

learning methods are worth further study. A relevant standard
database of spectral data, like ImageNet in the field of computer
vision, with different rice diseases could be organized and
developed, which would be a valuable resource for researchers,
educators, and students.

In future studies, transfer learning methods can be extended
to more scenarios, such as different regions and different
equipment. Transfer learning has great potential for rice
disease detection and will contribute to the translation
of relevant researches into practical applications in an
efficient manner.
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