
ORIGINAL RESEARCH
published: 22 July 2021

doi: 10.3389/fpls.2021.692484

Frontiers in Plant Science | www.frontiersin.org 1 July 2021 | Volume 12 | Article 692484

Edited by:

Mashura Shammi,

Jahangirnagar University, Bangladesh

Reviewed by:

Lina Fusaro,

National Research Council (CNR), Italy

Reetika Singh,

Allahabad University, India

Yunfei Xie,

Jiangnan University, China

*Correspondence:

Quanlin Zhong

qlzhong@126.com

Baoyin Li

liby@fjnu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Functional Plant Ecology,

a section of the journal

Frontiers in Plant Science

Received: 08 April 2021

Accepted: 21 June 2021

Published: 22 July 2021

Citation:

Chang Y, Xu C, Yang H, Zhou J,

Hua W, Zhang S, Zhong Q and Li B

(2021) Leaf Structural Traits Vary With

Plant Size in Even-Aged Stands of

Sapindus mukorossi.

Front. Plant Sci. 12:692484.

doi: 10.3389/fpls.2021.692484

Leaf Structural Traits Vary With Plant
Size in Even-Aged Stands of
Sapindus mukorossi

Yunni Chang 1,2†, Chaobin Xu 1,2,3†, Hong Yang 4,5, Junxin Zhou 6, Weiping Hua 7,

Shihe Zhang 1,2, Quanlin Zhong 1,2,3* and Baoyin Li 1,2,3*

1 Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fujian Normal University, Fuzhou, China, 2College of

Geographical Sciences, Fujian Normal University, Fuzhou, China, 3 State Key Laboratory for Subtropical Mountain Ecology of

the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, China, 4College of

Environmental Science and Engineering, Fujian Normal University, Fuzhou, China, 5Department of Geography and

Environmental Science, University of Reading, Reading, United Kingdom, 6Department of Forestry, Fujian Forestry Vocational

Technical College, Nanping, China, 7College of Ecological and Resources Engineering, Wuyi University, Wuyishan, China

Sapindus mukorossi Gaertn., an important oleaginous woody plant, has garnered

increasing research attention owing to its potential as a source of renewable energy

(biodiesel). Leaf structural traits are closely related to plant size, and they affect the fruit

yield and oil quality. However, plant size factors that predominantly contribute to leaf

structural traits remain unknown. Therefore, the purpose of this study was to understand

the associations between leaf structural traits and plant size factors in even-aged stands

of S. mukorossi. Results showed that leaf length (LL) and leaf area (LA) markedly

increased with the increasing diameter at breast height (DBH) and tree height (TH),

although other leaf structural traits did not show noticeable changes. Difference in slopes

also indicated that the degree of effect of plant size factors on leaf structural traits was in

the order of TH > DBH. Leaf structural traits showed no systematic variation with crown

width (CW). LA was significantly positively correlated with LL, leaf width (LW), LL/LW, and

leaf thickness (LT) and was significantly but negatively correlated with leaf tissue density

(LTD) and leaf dry mass content (LDMC). Specific leaf area showed a significantly negative

correlation with LT, LDMC, and LTD. LTD showed a significantly positive correlation with

LDMC, but a negative correlation with LT. The results were critical to understand the

variability of leaf structural traits with plant size, can provide a theoretical foundation for

further study in the relationship between leaf structural traits and fruit yield, and regulate

leaf traits through artificial management measures to promote plant growth and fruit yield.

Keywords: leaf structural traits, plant size, even-aged stands, Sapindus mukorossi, allometric relationships

INTRODUCTION

Leaves are a vital component of the photosynthetic apparatus of a plant and play key roles in long-
term adaptations to environmental changes (Liu et al., 2017; Guo et al., 2018; Song et al., 2018; Cai
et al., 2020). Leaves are also critical for tree productivity due to their fundamental roles in carbon
assimilation through photosynthesis and transpiration (Wright et al., 2004; Lai et al., 2016; Li et al.,
2018). Leaf traits are currently gaining high research priority because they are closely linked to
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many pivotal aspects of growth, reproduction, and ecosystem
functions (Garnier et al., 2001; Xue et al., 2012; Qin et al.,
2019). Plant growth is driven by factors that affect resource
(light, nutrients, and water) gain and utilization (Richards et al.,
2010; Li et al., 2017). Leaf traits reflect both resource uptake
strategies and resource use efficiency and are thus expected to
affect plant growth (Fichtner et al., 2013; Li et al., 2017). Leaf
traits as measurable characteristics represent ecological strategies
and functional adaptations to environmental conditions (Pérez-
harguindeguy et al., 2013; Petter et al., 2016; Qin et al., 2019;
Bergholz et al., 2021). Key leaf structural traits include leaf
length (LL), leaf width (LW), leaf thickness (LT), leaf area (LA),
specific leaf area (SLA), and leaf dry mass content (LDMC), and
others (Liu et al., 2006). Leaf structural traits reflect the resource
acquisition under a long-term influence of external environment
(Xue et al., 2012). LL, LW, and LL/LW are associated with leaf
size and shape. LT responds in some way to the light capture
and changes in the water status of leaf tissue (Seelig et al., 2015;
Griffith et al., 2016). LA is a key variable for physiological studies
involving plant growth, light interception, and photosynthetic
efficiency (Kandiannan et al., 2009; Rouphael et al., 2010). SLA,
as a measure of resource allocation, reflects the potential light
capture per unit LA per unit organic matter content invested
into leaves (Wright and Westoby, 1999). LDMC is a measure
of leaf tissue density (LTD) and reflects the position of a plant
on a resource use axis (Wilson et al., 1999). The associations
among various leaf traits reflect the plant adaptation under a
given constraint or other environmental constraints (Qin et al.,
2019). Increasing evidence indicates that leaf traits are highly
plastic at various growth stages (Thomas and Ickes, 1995). For
example, in Populus euphratica, LT, LA, and LDMC showed a
gradually increasing trend, and the SLA showed a decreasing
trend with plant growth (Huang et al., 2010). In the same species,
LL and LL/LW showed a decreasing trend and the LW showed
an increasing trend with increasing tree age (Wang et al., 2019).
In some evergreen trees, older leaves showed a significantly
greater LA and LDMC but lower SLA than younger leaves
(Huang et al., 2013). In Betula platyphylla, LT, SLA, and LDMC
showed significant differences between adult trees and saplings at
different growth stages (Jin et al., 2018).

Diameter at breast height (DBH) and tree height (TH) are the
commonly used measures of tree growth (Sumida et al., 2013),
and these are important variables used in forest inventories and
management as well as in the forest carbon stock estimation (Li
et al., 2015). Crown width (CW) is commonly used to estimate
the aboveground biomass of forests and is often regarded as an
important indicator of tree growth (Fichtner et al., 2013). These
variables directly reflect the plant size and are used as plant size
factors. Variation in leaf traits with plant size reflects plant life
history and biomass allocation patterns (Huang et al., 2013).
Liu et al. (2010) conducted a basic study of differences in leaf
traits between small (woody plants shorter than 2m) and large
(woody plants taller than 10m) trees based on TH. Their study
indicated that SLA was higher in small trees than that in large
trees (Liu et al., 2010). Along with the DBH growth, the LT, LA,
and LDMC of P. euphratica showed a gradually increasing trend,
while the SLA showed a decreasing trend (Huang et al., 2010).

However, some studies showed that the size and functional traits
of leaves are invariant with plant size (West et al., 1999). Most
leaf functional traits are substantially less variable than plant
size, show little to no systematic variation. However, individual
LA itself increases modestly with plant size (Price et al., 2014).
DBH is closely related to CW and TH (Dai et al., 2009; Li
et al., 2015) because they both serve as general proxies for plant
size. However, less is known regarding the specific associations
between different plant size factors and leaf structural traits in
even-aged forests, although this information may be critical to
understand plant life history patterns (Liu et al., 2010).

Sapindus mukorossi Gaertn. is a deciduous oleaginous woody
tree, which is widely distributed in the tropical and subtropical
regions of Asia (Zhang et al., 2019). Its fruit pericarp contains
saponin, which is an efficient natural surfactants used for
developing high-quality shampoos and detergents (Bahar and
Singh, 2007; Attri et al., 2015; Bhatta et al., 2021). The oil
content of its seeds and kernels is high, and the seed oil meets
the standards for biodiesel production, making it as a source
of bioenergy (Zhao et al., 2014). Therefore, S. mukorossi is
considered a valuable and promising industrial crop owing to
the high content and quality of its seed oil (Zhang et al., 2019).
Previous studies have mainly focused on S. mukorossi breeding,
genetic diversity, biochemical analyses for identifying varieties
that produce high seed oil and saponin yield (Shao et al., 2013;
Diao et al., 2014; Sun et al., 2017), extraction techniques of
saponins and its application in industry (Singh and Sharma,
2019a) and medicine (Huang et al., 2008; Li et al., 2013; Singh
and Kumari, 2015; Singh and Sharma, 2019b; Zhao et al., 2021),
and extraction techniques for seed kernel oil (Liu et al., 2019; Hu
et al., 2021). Leaf size and shape can predict single fruit weight
and other qualitative traits and can therefore be used as indicators
for evaluating fruit quality (Jin et al., 2016; Long et al., 2017;
Rowland et al., 2020). The saponins yield and oil content are
important fruit traits. Studies have shown that the effect of plant
size on the seed oil content of S. mukorossi was in the order of
TH>DBH>CW, and the effect of plant size factor on the saponin
content of S. mukorossi decreased in the order of DBH>TH>CW
(Fan et al., 2013, 2014). The size of an oleaginous tree affects its
fruit yield and oil quality to a certain extent (Wu et al., 2012; Guo
et al., 2014). The inherent association between leaf traits and fruit
characteristics has been explored in some previous studies (Wang
et al., 2014; Zhang et al., 2020a). Therefore, leaf structural traits
may also affect the fruit yield and oil quality of oleaginous trees.
Although previous studies on leaf traits have laid a foundation for
the selection of excellent fruit quality traits, no study has assessed
the leaf structural traits of plants of different sizes in an even-
aged forest in this species. In homogeneous even-aged bioenergy
plantations, the plant size factors directly reflect the plant size
and possibly indicate their effects on fruit yield and oil quality. In
this study, we measured various leaf structural traits and assessed
their associations with three plant size factors in S. mukorossi.
The main objectives are to determine (1) whether there are
notable correlations between leaf structural traits with plant size;
(2) whether DBH, TH, and CW had consistent effects on leaf
structural traits; and (3) which plant size factors directly reflect
more leaf structural traits. By addressing these questions, we were
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able to understand the potentiality and sensibility of S. mukorossi
leaf structural traits responding to plant size. Our findings are of
great significance to provide a basis for studying the associations
of leaf traits with fruit yield and quality, be helpful for predicting
the yield to select superior individuals, and provide a theoretical
basis for regulating plant growth and improving fruit yield
with artificial management measures regulating the leaf traits of
oleaginous trees.

MATERIALS AND METHODS

Study Area
The field experiment was conducted in Nanping city, Yanping
District (26◦29′N, 118◦13′E), northwest Fujian Province,
southeast China. This region is characterized by a subtropical
humid monsoon climate, with a mean annual temperature of
19.3◦C, mean annual precipitation of 1,669mm, and relative
humidity of 82%. Summers are long, hot, and rainy, while
winters are short and moderate. The soil in this zone is classified
as red soil as per the Chinese Soil Taxonomic Classification (Fan
et al., 2015). The initial total soil C, N, and P contents were
17.49, 1.12, and 0.45 g/kg, respectively. The S. mukorossi forest
was established at an altitude of 120m. The planting density
was approximately 1,100 plants per hectare in 2013. Mean TW,
DBH, and CW were 5.05 ± 1.26m, 6.79 ± 2.53 cm, and 3.80 ±

1.04m, respectively.

Experimental Design
This study was performed during the reproductive growth period
during October 2019. Three 25.82 × 25.82m sample plots were
established, with a 10-m-wide buffer zone separating the plots.
DBH (≥2 cm), CW, and TH were measured and recorded for
all the trees. Ten trees were selected in each plot, and the
distribution of plant characteristics was determined in 30 trees.
The selected trees were categorized into individual size factor
classes (DBH, CW, and TH) based on the upper limit exclusion
method (Zhang et al., 2015a). The DBH classes were formed
based on the second (1–2.9 cm), fourth (3–4.9 cm), sixth (5–
6.9 cm), eighth (7–8.9 cm), tenth (9–10.9 cm), and twelfth (11–
12.9 cm)-order diameters. The TH classes were formed based
on the third (2.5–3.4m), fourth (3.5–4.4m), fifth (4.5–5.4m),
sixth (5.5–6.4m), and seventh (6.5–7.4m)-grade heights. The
CW classes were formed based on the values at the 2.75th (<3m),
3.25th (3–3.49m), 3.75th (3.5–3.99m), 4.25th (4–4.49m), 4.75th
(4.5–4.99m), and 5.25th (>5m) CW stages (Zhang et al., 2015a).
The distribution of plant size values of the S. mukorossi forest was
normal (Figure 1).

Sampling and Data Collection
Pinnately compound leaves were collected from the east-, west-,
north-, and south-facing sides of the middle-outer crown of each
selected plant using a lopping machine. Eight fully expanded,
mature, and healthy leaves were selected per plant and were
taken to the laboratory. A single relatively complete, moderate-
sized, and well-grown representative leaflet was selected for each
pinnately compound leaf.

For each sample, leaf fresh weight (LFW, g) was measured
immediately using an electronic balance. The LL (cm, the
maximum value along the midrib), LW (cm, the maximum value
perpendicular to the midrib), and LA (cm2) were measured by
scanning the leaves (Epson Perfection V30) and analyzing the
scans using the ImageJ software (National Institutes of Health,
Bethesda, MD, United States). The LT was measured by using
the Vernier calipers (precision of 0.01mm) at three points on
the upper, middle, and lower sides at an intermediate position
between the leaf margin andmidrib (avoiding themain vein), and
the average LT value of each leaf was calculated. The leaves were
then soaked in deionized water for over 12 h in a ziplock bag,
and the leaf saturated fresh weight (LSFW, g) was measured after
absorbing water from the surface. All leaves were oven-dried at
70◦C for 48 h to a constant mass, and the leaf dry mass (LDM, g)
was measured.

Leaf shape index, SLA, LDMC, LTD, and leaf relative water
content (LRWC) were calculated using the following formulas
(Zhou et al., 2017; Yu et al., 2018):

Leaf shape index = LL/LW (1)

SLA (cm2/g) = LA/LDM (2)

LDMC (g/g) = LDM/LSFW (3)

LTD (g/cm3) = LDM/(LA×LT) (4)

LRWC (%) = (LFW− LDM)/(LSFW− LDM)

× 100% (5)

where LL is the leaf length (cm), LW is the leaf width (cm), LA is
the leaf area (cm2), LDM is the leaf dry mass (g), LSFW is the leaf
saturated fresh weight (g), LFW is the leaf fresh weight (g), and
LT is the leaf thickness (cm).

Statistical Analysis
The relationships between leaf structural traits and plant size
factors (e.g., DBH, TH, and CW) were analyzed by using Model
II Standardized Major Axis (SMA) regression as follows:

y = axb (6)

To linearize the relationship, this formula was log-transformed to
obtain the following equation:

log(y) = log(a)+ blog(x) (7)

where y is the leaf structural traits, x refers to the plant size factor,
a is the normalization constant (the intercept), and b is the scaling
exponent (the slope). When b = 1, the equation describes an
isometric relationship; when b 6= 1, the equation describes an
allometric relationship. Model Type II regression was used to
determine the numerical values of a and b using the package
“smatr” in R.3.6.1 (R Core Team, 2019). When the data among
different groups showed no significant numerical differences for
the scaling exponents (the slope, b), a common scaling exponent
was calculated (Warton et al., 2006, 2012). The common slope
was calculated from a pooled variance/covariance matrix. The
significance level for testing slope heterogeneity was p < 0.05.
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FIGURE 1 | Distribution characteristics of Sapindus mukorossi trees with plant size factors.

In addition, the correlations among key leaf structural traits
were examined by using Pearson’s correlation analysis. Pearson’s
correlation coefficients for all leaf structural traits were calculated
using the “corrplot” package in R.3.6.1.

RESULTS

Leaf Structural Traits and Plant Size
LL and LA were significantly and positively correlated with DBH
(p < 0.05), while there were no significant correlation between
the LW, LL/LW, LT, SLA, LDMC, LTD, and LRWC with DBH
(p > 0.05). LL, LL/LW, and LA showed a modest increase with
TH (p < 0.05), and there were no significant correlation between
LW, LT, SLA, LDMC, LTD, and LRWC with TH (p > 0.05);
these relationships showed low R2 values. The steeper slopes of
the relationships between LL, LL/LW, and LA with TH and with
DBH indicate that LL, LL/LW, and LA increase more rapidly
with TH than those with DBH. All leaf structural traits approach
invariance with CW, indicating that it is not associated noticeably
with leaf structural traits (Table 1 and Figure 2).

Associations Among Leaf Structural Traits
Leaf traits are not independent of each other; therefore,
correlations among leaf structural traits have been observed.
LL was significantly and positively correlated with LW, LL/LW,
LT, and LA and significantly but negatively correlated with
LDMC and LTD. LW was significantly and positively correlated
with LA and LT and significantly but negatively correlated with
LL/LW, LDMC, and LTD. LL/LWwas significantly and positively
correlated with LA and SLA. LA was positively correlated with
LT but negatively correlated with LDMC and LTD. SLA was
significantly but negatively correlated with LT, LDMC, and LTD.
LT was negatively correlated with LTD. LDMC was positively
correlated with LTD (Figure 3).

DISCUSSION

Effects of TH, DBH, and CW on Leaf
Structural Traits
Leaf traits may reflect adaptations to environmental variations
and can thus elucidate the associations between environmental

drivers and ecosystem functions (Guo et al., 2020). Leaf traits
are significantly correlated with plant growth and development.
Previous studies indicated that the pine nut yield had a linear
correlation with plant crown size (Zhang et al., 2015b), and the
inherent association between leaf traits and fruit characteristics
has also been found. Assessing the leaf structure characteristics
of oleaginous trees of different sizes can help to better regulate
leaf traits and improve fruit yield. In general, LL, LW, LL/LW,
and LA can accurately reflect the leaf shape and size, and
changes, which may represent adaptive strategies of plants to the
changing environments. Collectively, our results suggest that LL,
LL/LW, and LA vary as a function of TH or DBH, and this is
consistent with previous evaluations (Fonseca et al., 2000;Wright
et al., 2007; Price et al., 2014). The variability in LL in short
trees reflects the adaptability of leaves to extrinsic micro- and
macroenvironmental factors and stresses (Jensen and Zwieniecki,
2013). Jensen and Zwieniecki (2013) focused only on trees taller
than 20m and proposed that the factors limiting leaf size can
be understood by subjecting the plants to physical constraints
imposed by intrinsic (biological and geometrical) properties of
the carbohydrate transport network. The trees included in our
study were not large enough (shorter than 10m), so without
the restriction of water potential transport, longer sieve tubes of
leaves enable somewhat greater transport efficiency and better
nutrient uptake. Meanwhile, LA can change the photosynthetic
capacity by affecting the optical light interception efficiency, and
plants can increase the total photosynthetic area by increasing
LA to promote plant growth. However, the positive correlation
between leaf size and plant size was reversed in other studies
(Price et al., 2014; Wang et al., 2019). A possible explanation
for the reversed trend may be the greater support and hydraulic
costs of larger leaves (Price et al., 2014). In P. euphratica, LL
and LL/LW decreased with plant growth (Wang et al., 2019),
and changes in leaf shape may be an adaptive strategy to the
desert environments. Another reason for the different result
may be the variation in tree species or habitats. We observed
a decrease in the amount of variance for each functional trait
with DBH than that with TH. Difference in slopes indicated
that the effects of plant size factors on leaf structural traits
were in the order of TH > DBH. As TH increases, the volume
and depth of soil explored by the root system also increase;
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TABLE 1 | Allometric relationships between leaf structural traits and plant size factors.

Y-variable X-variable R2 p Slope 95% CI Intercept 95% CI

LL DBH 0.024 0.016 0.391 0.345, 0.443 0.816 0.775, 0.857

LW DBH 0.008 0.158 0.363 0.320, 0.412 0.310 0.271, 0.348

LL/LW DBH 0.014 0.066 0.232 0.204, 0.263 0.344 0.319, 0.368

LT DBH <0.001 0.748 −0.339 −0.339, −0.385 −0.546 −0.582, −0.509

LA DBH 0.021 0.024 0.730 0.644, 0.828 0.999 0.922, 1.076

SLA DBH <0.001 0.853 −0.309 −0.350, −0.272 2.467 2.434. 2.499

LDMC DBH <0.001 0.974 −0.178 −0.202, −0.157 −0.296 −0.315, −0.277

LTD DBH 0.001 0.593 0.311 0.274, 0.353 −0.653 −0.686, −0.620

LRWC DBH 0.002 0.531 0.225 0.198, 0.255 −0.279 −0.303, −0.256

LL TH 0.063 <0.001 0.610 0.539, 0.690 0.708 0.654, 0.761

LW TH 0.012 0.092 0.566 0.499, 0.643 0.209 0.158, 0.260

LL/LW TH 0.063 <0.001 0.362 0.320, 0.409 0.280 0.248, 0311

LT TH 0.002 0.539 0.528 0.465, 0.600 −1.179 −1.226, −1.131

LA TH 0.044 0.001 1.139 1.005, 1.290 0.797 0.697, 0.897

SLA TH <0.001 0.673 −0.481 −0.546, −0.424 2.552 2.509, 2.596

LDMC TH 0.001 0.622 0.278 0.244, 0.315 −0.629 −0.654, −0.604

LTD TH <0.001 0.801 −0.485 −0.550, −0.427 −0.072 −0.116, −0.029

LRWC TH 0.006 0.215 −0.351 −0.398, −0.309 0.141 0.109, 0.172

LL CW 0.015 0.056 0.513 0.452, 0.582 0.840 0.802, 0.879

LW CW 0.005 0.285 0.476 0.419, 0.541 0.332 0.296, 0.368

LL/LW CW <0.001 0.978 1.028 0.905, 1.168 1.320 1.242, 1.399

LT CW 0.002 0.464 −0.444 −0.504, −0.391 −0.566 −0.600, −0.533

LA CW 0.014 0.068 0.957 0.843, 1.086 1.044 0.972, 1.116

SLA CW <0.001 0.918 0.405 0.356, 0.460 1.995 1.964, 2.025

LDMC CW 0.003 0.415 −0.233 −0.265, −0.206 −0.307 −0.325, −0.289

LTD CW 0.002 0.486 0.407 0.359, 0.463 −0.634 −0.665, −0.603

LRWC CW <0.001 0.831 −0.295 −0.335, −0.259 0.064 0.042, 0.087

LL, leaf length; LW, leaf width; LL/LW, leaf length–leaf width ratio; LT, leaf thickness; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry mass content; LTD, leaf tissue density; LRWC,

leaf relative water content; TH, tree height; CW, crown width; DBH, diameter at breast height. Values in bold indicate significance at P < 0.05.

FIGURE 2 | Allometric relationships of LL, LL/LW, and LA with respect to DBH and TH. LL, leaf length; LW, leaf width; LL/LW, leaf length–leaf width ratio; LA, leaf area;

DBH, diameter at breast height; TH, tree height.

therefore, taller trees can take up more nutrients to supply to
their leaves (Liu et al., 2010). Some studies have shown that
the root system of taller plants is more competitive and can

acquire more resources (Thomas and Winner, 2002). They also
showed greater LA to enhance optical radiation absorption,
improve photosynthesis, and increase biomass for survival and
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FIGURE 3 | Correlations among leaf structural traits of Sapindus mukorossi. Correlation coefficients of the blue and red ellipses are positive and negative, respectively.

Darker the color and smaller the area of the ellipse, greater the degree of correlation, and larger the absolute value of correlation coefficient. Variable names are on the

diagonal. **p < 0.01.
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FIGURE 4 | Correlation analysis among plant size indicators of Sapindus mukorossi.

growth. However, shorter trees usually have shallower roots and
lower trunk runoff; therefore, they cannot acquire sufficient
light and water (Ou and Liu, 2017). The leaf structural traits
that we evaluated showed no systematic variation with CW.
The major reason may be that leaf structural traits were linked

to canopy thickness, permeability of the canopy, and leaf area
index (Lü et al., 2007). Moreover, CW was in close relation
with planting density, indicating that planting density has no
significant influences on leaf structural traits (Gong et al.,
2010).
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The leaf thickness reflects plant resource acquisition and
water conservation. SLA can be used as an indicator of the
carbon acquisition strategy as well as of the ability of the
plant to acquire resources, such as light, and protect itself
under strong light (Zhang et al., 2020b). LDMC can be used
to characterize the ability of the plant to conserve nutrients
and resist physical damage (Zhang et al., 2016). LTD is related
to plant drought tolerance and damage resistance (Guo et al.,
2020). LRWC is closely related to photosynthesis and water
use efficiency, and the photosynthetic rate could be improved
by reducing LRWC (Duan et al., 2017). These traits did not
change significantly with plant size. These trends are contrary
to those reported in other studies (Huang et al., 2010; Zhang
et al., 2020b). For P. euphratica, the LT and LDMC showed a
gradually increasing trend and the SLA showed a decreasing
trend with plant growth (Huang et al., 2010; Wang et al., 2019).
Increases in LT, developed palisade tissue, cuticle thickness,
and a number of mucus cells reduce water loss in plants to a
certain extent by decreasing the transpiration through leaves and
improving the water retention capacity (Huang et al., 2010). In
a previous study in a tropical montane rainforest, the SLA of
127 small individuals (woody plants shorter than 2m) and 47
large trees (woody plants taller than 10m) was measured; SLA
was higher in small individuals than that in large trees (Liu
et al., 2010). A small SLA in large individuals can be attributed
to their responses to the changing light competition and water
conditions. Our results may also be because of the difference in
survival environment; S. mukorossi is distributed in the tropical
and subtropical regions, indicating the absence of water scarcity.
Another possible explanation is the inclusion of different tree
species in various studies.

Overall, there were no definite trends of changes in leaf
structural traits with different plant size factors, except for
the positive correlations of TH and DBH with LL, LL/LW,
and LA. CW also has little explanatory power with respect
to leaf structural traits. Looking at the variance also suggests
that the leaf traits we examined displayed consistently low
variance, with shallow slopes and low R2 values. This may be
explained by several reasons. First, S. mukorossi is a deciduous
tree, and the collected leaves were current-year leaves of even-
aged stands. Studies have found that the leaf shape index
and water content did not differ significantly between the
small and large current-year fruiting twigs in Morus alba L.
(Wang et al., 2014). Moreover, since the leaves were selected
during the same reproductive growth period, the photosynthetic
products were gradually shifted to the reproductive organs to
ensure their growth for normal flowering and fruiting, and
the leaf growth became stagnant (Zhang et al., 2016). In our
study, DBH was significantly and positively correlated with
CW and TH (Figure 4), and an increase in the DBH and TH
increased the total biomass. Some biomass estimation models
based on CW, DBH, and TH have also been established (Xu
et al., 2013; Dong et al., 2015). Therefore, individual biomass
likely increased with plant growth, although leaf traits did
not change significantly with increasing DBH, TH, and CW.
As the leaf biomass increases, LA becomes larger and more
light can be received, and as the light energy utilization

becomes more efficient, more photosynthetic products can
be accumulated.

Correlations Among Leaf Structural Traits
Leaf structural traits do not function independently and are
correlated with one another. The relationships among leaf traits
are closely linked to plant life history patterns. LL, LW, and
LL/LW can accurately reflect the leaf shape. LA represents the
contact area between leaves and the external environment, and
this trait is affected by the balance of gas and energy exchange
between the plants and the atmosphere. In this study, LA was
positively correlated with LL, LW, LL/LW, and LT and negatively
correlated with LTD and LDMC. In general, plants with a
larger LA have thicker leaves, which prevents the heat exchange
between leaves and the surrounding air and slows the diffusion
rates of water vapor and CO2 through the leaves. Many studies
have reported a positive correlation between LA and LT, but
trends of association of LA with LDMC, LTD, and LRWC vary
across studies (Zhang et al., 2016; Duan et al., 2017; Yu et al.,
2018). These results indicate that correlations among leaf traits
vary across research scales, plant species, and habitats.

SLA and LDMC are important leaf traits, which can reflect
the survival strategies of plants for adapting to changing
environments. Our study showed that SLA was significantly but
negatively correlated with LT, LDMC, and LTD. These trends
are consistent with previous reports (Huang et al., 2010; Guo
et al., 2020) and indicate that S. mukorossi balances different
leaf functional traits to adapt to the environment. Plants with
a smaller SLA usually possess leaves with a greater LT (Reich
et al., 1998). LT reflects the strategies of the plant for acquiring
and utilizing resources. The thinner the leaves, the faster the
plant growth and the stronger the light interception ability. For
plants with a smaller SLA, a larger part of the materials in
leaves is used to construct a protective structure or increase the
density of mesophyll cells; thus, these plants often possess thicker
leaves (Huang et al., 2010). From the perspectives of survival
strategies and energy required to develop organs, if the plants
use more energy to build the defense structures of the leaves,
there is no additional energy to increase LA (Huang et al., 2010).
Therefore, there was no significant correlation observed between
LA and SLA in this study. However, many studies have reported
a significant positive or negative correlation between LA and
SLA (Zhang et al., 2016; Huang et al., 2020). LDMC reflects
LTD as well as ecological functions and resource acquisition of
plants (Dao et al., 2016). Our data demonstrated that LDMC
was positively correlated with LTD (Cornelissen et al., 2003).
Increased LDMC decreases the leaf water content, which in turn
increases LTD. Increased LTD reduces the light transmission
and decreases the photosynthetic capacity, which further reduces
SLA. These results are consistent with the reports of Wang
et al. (2015). LTD was significantly but negatively correlated
with LT and LA, indicating that increases in LTD decreased LT
and LA, thereby increasing LDMC. LRWC is closely linked to
photosynthesis, and reduced LRWC can improve the water use
efficiency and photosynthesis (Duan et al., 2017). In this study,
the LRWC was not significantly correlated with any leaf traits.
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This may be because S. mukorossi grows in subtropical humid
regions, where water is not a limiting factor.

The study has some potential limitations that should be
addressed in future research. Leaf traits may exhibit considerable
plasticity in response to environmental changes. Waigwa et al.
(2020) found that LT had a positive correlation with soil
phosphorous, and SLA had a strong negative relationship with
soil total nitrogen. Morphological traits of tropical evergreen
oaks were also correlated with the mean annual temperature,
mean annual precipitation sum, and soil pH (Lin et al.,
2021). However, environmental parameters were unavailable
in this study. Meanwhile, leaf nutrient traits are also key
functional traits, and focusing only on leaf structural traits
might provide limited information. Therefore, the relationships
between leaf traits (leaf structural traits and leaf nutrient
traits) and environmental parameters (especially rhizosphere soil
properties, temperature, and precipitation) should receive more
attention in future research. In addition, leaf traits can predict
fruit traits, and therefore, they can be used as indicators for
evaluating fruit quality (Rowland et al., 2020). In hybrid pear, LA
was significantly correlated with fruit vertical diameter and fruit
type (Zhang et al., 2009). In Chinese bayberry, LL, LW, and LT
played important roles in establishing the acid–sugar (AS) ratio
(Liang et al., 2010). Further research is also warranted into the
inherent association between leaf traits and fruit characteristics
of S. mukorossi.

CONCLUSIONS

A key result of our study is that LL, LL/LW, and LA of the
oleaginous deciduous broad-leaved woody tree S. mukorossi
increased with increasing DBH and TH. Furthermore, TH has
more explanatory with respect to leaf traits than DBH. TH was
the key plant size factor affecting the leaf structural traits of
S. mukorossi. All leaf structural traits did not vary significantly
with increasing CW. LA was positively correlated with LL,
LW, LL/LW, and LT and negatively correlated with LDMC
and LTD. SLA showed a significantly negative correlation with
LT, LDMC, and LTD. LDMC was positively correlated with
LTD. The covariation indicated that S. mukorossi adjusted and
balanced the combination of leaf structural traits in response
to environmental changes. Considering that climate, soil, and

topographic variables can influence leaf traits, future progress
requires more research on the effects of environmental factors
on leaf traits. The influence of leaf traits on fruit characteristics
also differs among various species. Further studies are needed to
investigate the inherent association between leaf traits and fruit
characteristics of S. mukorossi to predict and increase fruit yield.
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