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Common rust is one of the major foliar diseases in maize, leading to significant grain
yield losses and poor grain quality. To dissect the genetic architecture of common
rust resistance, a genome-wide association study (GWAS) panel and a bi-parental
doubled haploid (DH) population, DH1, were used to perform GWAS and linkage
mapping analyses. The GWAS results revealed six single-nucleotide polymorphisms
(SNPs) significantly associated with quantitative resistance of common rust at a very
stringent threshold of P-value 3.70 × 10−6 at bins 1.05, 1.10, 3.04, 3.05, 4.08, and
10.04. Linkage mapping identified five quantitative trait loci (QTL) at bins 1.03, 2.06,
4.08, 7.03, and 9.00. The phenotypic variation explained (PVE) value of each QTL
ranged from 5.40 to 12.45%, accounting for the total PVE value of 40.67%. Joint GWAS
and linkage mapping analyses identified a stable genomic region located at bin 4.08.
Five significant SNPs were only identified by GWAS, and four QTL were only detected
by linkage mapping. The significantly associated SNP of S10_95231291 detected in
the GWAS analysis was first reported. The linkage mapping analysis detected two new
QTL on chromosomes 7 and 10. The major QTL on chromosome 7 in the region
between 144,567,253 and 149,717,562 bp had the largest PVE value of 12.45%.
Four candidate genes of GRMZM2G328500, GRMZM2G162250, GRMZM2G114893,
and GRMZM2G138949 were identified, which played important roles in the response
of stress resilience and the regulation of plant growth and development. Genomic
prediction (GP) accuracies observed in the GWAS panel and DH1 population were 0.61
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and 0.51, respectively. This study provided new insight into the genetic architecture
of quantitative resistance of common rust. In tropical maize, common rust could be
improved by pyramiding the new sources of quantitative resistance through marker-
assisted selection (MAS) or genomic selection (GS), rather than the implementation of
MAS for the single dominant race-specific resistance gene.

Keywords: maize, common rust, quantitative resistance, genome-wide association study, linkage mapping,
genomic prediction

INTRODUCTION

Common rust, caused by Puccinia sorghi, is one of the major foliar
diseases in maize, which can cause up to 49% grain yield loss in
susceptible varieties (Groth et al., 1983). The most sustainable
strategy for controlling common rust is to develop and deploy
resistant maize varieties, which requires the identification of
the new source of resistance to common rust and the further
understanding of the genetic basis and architecture of common
rust resistance (Kibe et al., 2020).

In several recent studies, a broad genetic variation for
common resistance was observed in tropical maize, and a
few tropical maize inbred lines showing good resistance to
common rust were identified (Rossi et al., 2020; Sserumaga
et al., 2020). Among 50 tropical adapted maize breeding lines
developed by International Maize and Wheat Improvement
Center (CIMMYT), 12 lines with broad genetic diversity were
identified as the potential donors of resistance alleles, and these
lines are valuable breeding materials for the development and
deployment of resistant hybrids to control common rust in
tropical maize (Sserumaga et al., 2020). Furthermore, tropical
maize germplasm is also an important source of resistance
for improving common rust in temperate maize, and the six
inbred lines developed by CIMMYT were identified as novel
donors in Argentina for incorporating resistance to the local
germplasm (Rossi et al., 2020). Those studies indicated the
presence of genetic resistance to common rust in tropical maize
germplasm. The donor lines identified in these studies are
valuable donors for improving common rust resistance through
breeding, which also are novel resistance sources for providing
a better understanding of the genetic basis and architecture of
common rust resistance.

Host-plant resistance, including both qualitative and
quantitative resistances, had been identified as the most reliable
and sustainable strategy for controlling common rust in maize
(Zheng et al., 2018; Kibe et al., 2020). Previous efforts to exploit
genetic resistance for common rust have largely been through
dominant resistance (Rp) genes, and more than 26 Rp genes
had been identified on maize chromosomes 3, 4, 6, and 10
(Hooker, 1985; Delaney et al., 1988). The Rp gene is qualitative
and exhibits a high level of resistance to a specific P. sorghi race,
and the resistance allele of Rp genes can be easily fixed into
the breeding materials, but the resistance of Rp genes in some
hybrids could break down due to the emerging P. sorghi race
or multiple races caused infection happened in natural field
condition (Zheng et al., 2018; Kibe et al., 2020). Quantitative

resistance is due to partial or adult plant resistance, which is
non-race-specific and often controlled by several genes to reduce
the rate of fungal development on plant tissues (Olukolu et al.,
2016). A few studies have been carried out on quantitative
resistance to common rust mainly through linkage mapping
(Lübberstedt et al., 1998; Kerns et al., 1999; Brown et al., 2001).
Further studies are required to detect more sources of novel
quantitative resistance alleles and exploit them to develop elite
inbred lines or hybrids having stable and durable host-plant
resistance to common rust.

Several linkage mapping analyses had been conducted
in different genetic backgrounds to detect quantitative trait
loci (QTL) associated with partial resistance to common
rust (Lübberstedt et al., 1998; Kerns et al., 1999; Brown
et al., 2001). These studies emphasized QTL detection in
temperate maize germplasm, and QTL associated with partial
resistance to common rust were distributed over all 10
chromosomes, without preference to chromosomes 3, 4, 6,
and 10, which harbor qualitative Rp genes. Some QTL
were overlapped in different studies and were consistent
in different genetic backgrounds. These results suggest that
major QTL associated with partial resistance from various
elite backgrounds are possible to be pyramided for improving
common rust resistance in temperate maize germplasm, and
selection for multiple partial resistance alleles seems to be
more promising than the marker-assisted selection (MAS)
of the Rp genes.

Genome-wide association study (GWAS) is a useful tool
for identifying molecular markers significantly associated with
the target trait and exploring the underlying candidate genes
(Yan et al., 2011; Wang et al., 2019). In a collection of 274
temperate maize inbred lines, the GWAS analysis was conducted
to identify the SNPs significantly associated with common rust
resistance; three loci significantly associated with common rust
resistance were identified; and they were on chromosomes 2,
3, and 8. Candidate genes at these loci had predicted roles in
cell wall modification and in regulating the accumulation of
reactive oxygen species (Olukolu et al., 2016). The combined use
of GWAS and linkage mapping can complement the strengths
and weaknesses of each approach, and this approach has been
successfully used in maize to dissect the genetic basis and
architecture of complex traits (Li et al., 2016; Cao et al., 2017).
In tropical maize germplasm, the combined use of GWAS and
linkage mapping approach was applied to dissect the genetic basis
of partial resistance to common rust recently (Zheng et al., 2018;
Kibe et al., 2020). The results of these studies provide valuable
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information on understanding the genetic basis of common rust
resistance; the common stable QTL regions identified by both
GWAS and linkage mapping, and the major QTL identified by
GWAS or linkage mapping individually need to be explored
further for developing functional molecular markers for MAS.

Genomic selection (GS), also known as genomic prediction
(GP), is an extension of MAS that uses genome-wide markers to
predict the genomic estimated breeding values (GEBVs) of the
unphenotyped lines for selection (Meuwissen et al., 2001; Crossa
et al., 2014). GP can greatly accelerate the genetic gain per unit
time and the cost in plant breeding programs for complex traits,
and it has been reported in many studies (Gowda et al., 2015;
Zhang et al., 2015; Beyene et al., 2019; Wang et al., 2020a). To
our knowledge, only one study has been reported evaluating the
potential of GS and GP for improving common rust resistance
in maize, where the GP accuracies ranged from 0.19 to 0.51 in
different populations (Kibe et al., 2020).

In this study, a GWAS panel and a bi-parental DH population
were used to perform GWAS, linkage mapping, and GP
analyses, where both populations were phenotyped in multi-
environment trials to evaluate their responses to common rust
and genotyped with genotyping-by-sequencing (GBS) single-
nucleotide polymorphisms (SNPs). The main objectives of this
study were to: (1) detect the significantly associated SNPs,
major QTL, and putative candidate genes conferring common
rust resistance in tropical maize by the combined use of
GWAS and linkage mapping; (2) explore the potential of
GS and GP for improving common rust resistance; and (3)
estimate the GP accuracies under different factors affecting the
accuracy estimation.

MATERIALS AND METHODS

Plant Materials
A GWAS panel of 282 genetically diverse inbred lines was used
for the GWAS and GP analyses in this study (Supplementary
Table 1). The GWAS panel, Drought Tolerant Maize for
Africa (DTMA), was collected by the Global Maize Program
of CIMMYT. Based on the geographic information and
environmental adaptation, the DTMA panel can be classified
into nine subsets: (1) breeding lines from the lowland tropical
maize breeding program in Mexico, (2) breeding lines from
the highland tropical maize breeding program in Mexico, (3)
breeding lines from the subtropical maize breeding program in
Mexico; (4) inbred lines from the maize physiology breeding
program in Mexico, (5) inbred lines from the maize entomology
breeding program in Mexico, (6) breeding lines from the
lowland tropical maize breeding program in Colombia, (7)
breeding lines from the mid-altitude maize breeding program in
Zimbabwe, (8) breeding lines from the highland tropical maize
breeding program in Ethiopia, and (9) breeding lines from the
maize breeding program of International Institute of Tropical
Agriculture in Nigeria (Cairns et al., 2013; Yuan et al., 2019). A bi-
parental DH population, DH1, was used for the linkage mapping
and GP analyses. This DH population consisted of 189 DH lines,
which were derived from the F1 cross formed with two elite

inbred lines of CML495 and La Posta Sequia C7 F64-2-6-2-2-B-B-
B, CML495 shows good resistance to common rust, and La Posta
Sequia C7 F64-2-6-2-2-B-B-B is susceptible to common rust.

Experimental Design
Both populations were evaluated for response to common
rust under consistently high natural disease pressure at several
locations in Mexico. The DTMA panel was evaluated at Agua
Fria in the state of Puebla (110 masl; mega-environment:
lowland tropical) in 2008, 2009, 2010, and 2012. Two tropical
maize inbred lines (B.T.Z.T.R.L.BA90 12-1-1P-1P-1-1-1-1P-1-
B/BTZTVCPR92A 27-7P-1-1P-1P-4P-B-B)-B-60TL-1-1-B-B-B-
B and CML139 were used in all the trials as the resistant and
susceptible checks, respectively. The population of DH1 was
evaluated in two locations in 2013 at El Batan in the state
of Mexico (2,249 masl; mega-environment: highland tropical)
and Santa Catarina in the state of Nuevo Leon (680 masl;
mega-environment: subtropical), respectively. For the DH1
population, the parental lines were used as the resistant and
susceptible checks. A randomized complete block design with
three replications was used for all trials. Each plot consisted of
11 plants in a 2 m row with a width of 0.75 m.

Disease Evaluation
Plants were visually evaluated for common rust three times at 7-
day intervals, beginning 2 weeks after flowering. Disease severity
was evaluated on a 1–5 scale based on the percentage of leaf
area covered by lesions. A rating scale of 1 corresponds to high
resistance covering 0–10% of the leaf surface, 2 corresponds to
weak to moderate infection covering 10–25% of the leaf surface,
3 corresponds to moderate infection covering 25–50% of the leaf
surface, 4 corresponds to moderate-to-severe infection covering
50–75% of the leaf surface, and 5 corresponds to severe infection
covering > 75% of the leaf surface. For each plot, the final highest
score was used for further analysis. In both the DTMA panel and
the DH1 population, the resistant and susceptible checks were
used as controls to check for adequate levels of disease infection.

Phenotypic Data Analysis
The multi-environment trial analysis was conducted using
META-R Version 6.04 (Alvarado et al., 2020). A mixed linear
model was used to calculate the best linear unbiased predictors
(BLUPs), variance components, and broad-sense heritability. The
model used for data analysis was as follows:

Yijk = µ + Gk + Ei + Rj(i) + EGik + εijk (1)

where Yijk is the observation of the kth genotype in the ith
environment in the jth replicate, µ is the overall mean, Gk
is the effect of the kth genotype, Ei is the effect of the ith
environment, Rj(i) is the effect of the jth replication nested
on the ith environment, EGik is the effect of the interaction
between the ith environment and kth genotype, and εijk is the
effect of experimental error. BLUPs across all environments were
used for GWAS, linkage mapping, and GP analyses. Broad-sense
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heritability across all environments was calculated as follows:

h2
=

σ2
g

σ2
g +

σ2
ge
/
i+ σ2

e
/
ij

(2)

where σ2
g is the genotypic variance, σ2

ge is the
genotype × environment interaction variance, σ2

e is the
error variance, i is the number of environments, and j is the
number of replications in each environment. All of the factors
were set as random effects when calculating heritability.

Genotyping and Genotypic Data Analysis
Young leaves of all the inbred lines and the parental lines were
sampled for both populations. DNA extraction was performed
using a CTAB method (CIMMYT, 2005). Genotypic data was
generated using the GBS method at the Cornell University
Biotechnology Resource Center (Ithaca, NY, United States). DNA
sequencing was performed on Illumina HiSeq2000. TASSEL
GBS Pipeline was used for SNP calling to align reads to maize
B73 reference genome v2 (ZmB73_RefGen_v2). Imputation was
carried out with the FILLIN method in TASSEL V5.0 (Bradbury
et al., 2007; Swarts et al., 2014). The imputed GBS dataset was
used for the GWAS and GP analyses, while the unimputed GBS
dataset was used for the linkage mapping analysis (Wang et al.,
2020b). A total of 955,690 SNPs were obtained for each inbred
line, and 570 of them could not be mapped to any of the 10 maize
chromosomes. The number of SNPs on each chromosome ranged
from 148,752 on chromosome 1 to 67,126 on chromosome 10.
SNPs with the missing rate (MR) of >20%, the heterozygosity
rate of >5%, and the minor allele frequency (MAF) of <0.05 were
excluded using the filter function in TASSEL V5.0.

Analyses of Linkage Disequilibrium,
Population Structure, and GWAS
After filtering, 187,409 SNPs were obtained for GWAS in the
DTMA panel. The linkage disequilibrium (LD) analysis was
carried out using TASSEL V5.0 with a sliding window size of
50 SNPs. A squared Pearson correlation coefficient (r2) between
the vectors of SNP alleles was used to assess the level of LD
decay across each chromosome, and r2 = 0.1 was used as a cutoff.
Population structure was conducted using the STRUCTURE
V2.3.4 software (Hubisz et al., 2009) to estimate the number of
subgroups in the DTMA panel, where one SNP per LD block
was selected for the following analysis (Duggal et al., 2008). The
parameters were set as follows: length of burn-in period = 30,000,
number of MCMC reps after burn-in = 30,000, ancestry
model = use admixture model, allele frequency model = allele
frequency correlated, number of populations (K) = 1–10, and
number of iterations = 10. STRUCTURE HARVESTER (Earl
and vonHoldt, 2012) was used to visualize STRUCTURE V2.3.4
output, and deltaK (1K) value was used to determine theK value
of the number of subgroups.

Analysis of GWAS was conducted in the DTMA panel
using the Fixed and random model Circulating Probability
Unification (FarmCPU) method (Liu et al., 2016) in Genome
Association and Prediction Integrated Tool-R (GAPIT) package

(Lipka et al., 2012). The kinship matrix and the first three PCs
were estimated by GAPIT to assess the population structure and
control the false marker-trait association. The P-value of each
SNP was calculated, and the threshold of P-value was determined
at 3.70 × 10−6 by a false discovery rate correction method. The
100 bp source sequences of each significant SNP were used to
do BLAST against the ZmB73_RefGen_v2 genome sequence in
MaizeGDB (Portwood et al., 2019). Within the local LD block of
significant SNPs, the annotated genes that are likely involved in
disease resistance were identified as the putative candidate genes.

Linkage Map Construction and Linkage
Mapping Analysis
A similarity/linkage (SL) method was used for bin map
construction with high-quality unimputed SNPs in the DH1
population, and the details were previously described by Cao
et al. (2017). In brief, 437 bins were constructed by 31,194 SNPs.
Each bin was regarded as a genetic marker to construct the
linkage map. Linkage map construction was conducted by MAP
function in QTL IciMapping V4.2 software (Meng et al., 2015).
The whole length of the linkage map of DH1 was 988.56 cM
with an average marker (bin) density of 2.26 cM. An inclusive
composite interval mapping (ICIM) approach was conducted for
the linkage mapping analysis using the “BIP” function and the
“ADD” mapping method in QTL IciMapping V4.2. A logarithm
of the odds (LOD) score of 3.0 was used to declare the putative
QTL. The additive effect and phenotypic variation explained
(PVE) of each QTL were estimated.

Genomic Prediction Analysis
Genomic prediction analysis was conducted using the ridge
regression best linear unbiased prediction (RRBLUP) model with
the rrBLUP package (Endelman, 2011) within the DTMA panel
and the DH1 population. In the imputed GBS dataset, TASSEL
version 5.0 was used to filter the SNPs with a MAF > 0.05,
a MR < 20%, and a heterozygosity rate < 5%. After filtering,
187,409 and 53,996 SNPs were used for GP in the DTMA panel
and the DH1 population, respectively. In the DH1 population,
437 bins were also used for the GP analysis to estimate the
prediction accuracy and compared it with the prediction accuracy
estimated using all the 53,996 SNPs. To estimate the effect of
marker density on GP accuracy, the number of SNPs varied from
100 to 50,000 (i.e., 10, 50, 100, 300, 500, 1,000, 3,000, 5,000,
10,000, and 50,000) were used to estimate the prediction accuracy
in the DTMA panel and the DH1 population. In each marker
density, SNPs were randomly selected 100 times. A fivefold cross-
validation scheme repeated 100 times was used to estimate the
prediction accuracy, where the prediction accuracy was defined
as the average value of the correlations between the GEBVs and
the observed breeding values. Training population size (TPS),
ranged from 10 to 90% of the total population size, was selected
to assess the effect of TPS on prediction accuracy in each of
the two populations. The training set was randomly sampled
to predict, and the remaining lines were used as the prediction
set. The GP analysis was repeated 100 times in each population
with different TPS.
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TABLE 1 | Descriptive statistics, variance components, and broad-sense heritability (H2) response to common rust in the Drought Tolerant Maize for Africa (DTMA) panel
and the bi-parental doubled haploid (DH1) population.

Population No. of lines Mean Min. Max. Median SDa Variance componentsb h2c

σ2
g σ2

ge σ2
e

DTMA 282 2.32 1.26 4.13 2.30 0.52 0.33** 0.25** 0.24 0.80

DH1 189 2.25 1.73 3.10 2.20 0.23 0.10** 0.08** 0.20 0.57

aSD, standard deviation.
bσ2

g, genotypic variance.

σ2
ge, genotype × environment interaction variance.

σ2
e , error variance.

**Significant at P < 0.01.
ch2, broad-sense heritability.

RESULTS

Phenotypic Variations
The descriptive statistics for the response to common rust in the
DTMA panel and the DH1 population are presented in Table 1
and Supplementary Figure 1A. The results indicated that there
were abundant phenotypic variations within each population.
In the DTMA panel, the disease scores ranged from 1.26 to
4.13, with a mean of 2.32. In the DH1 population, the disease
scores ranged from 1.73 to 3.10, with a mean of 2.25. The most
resistant (top 10%) and most susceptible lines (bottom 10%) for
common rust in the DTMA panel and the DH1 populations are
shown in Supplementary Tables 2, 3, respectively. The mixed
model analysis result revealed that the genotypic variance was
statistically highly significant at P < 0.01 in both populations, as
well as the variance of genotype-by-environment interaction. The
estimated broad-sense heritabilities in the DTMA panel and the
DH1 population were 0.80 and 0.57, respectively.

Basic Information of SNPs Before and
After Filtering
The basic information about GBS data before and after filtering
is shown in Supplementary Table 4. The number of SNPs
after filtering decreased from 955,690 to 187,409 in the imputed
dataset of the DTMA panel and from 955,690 to 31,194 in
the unimputed dataset of the DH1 population. The MR after
filtering decreased from 15.79 to 7.33% in the imputed dataset
of the DTMA panel and from 42.53 to 9.73% in the unimputed
dataset of the DH1 population. The heterozygosity rate increased
in both populations after filtering, and the heterozygosity rates
after filtering in the DTMA panel and the DH1 population were
2.83 and 3.17%, respectively. The average MAF after filtering
increased from 0.09 to 0.18 in the DTMA panel and from 0.04
to 0.42 in the DH1 population.

Results of LD Decay Distance and
Population Structure in the DTMA Panel
In the DTMA panel, the average LD decay distance across
all the 10 chromosomes was 8.14 kb at an r2 value of 0.1
(Figure 1A), and it ranged from 4.57 kb in chromosome 10–
15.9 kb in chromosome 8. The population structure analysis

showed that the delta K value reached a peak when the K
value was 4, indicating that the DTMA panel can be divided
into four subgroups (Figures 1B,C). The number of lines in
subgroups 1, 2, 3, and 4 was 219, 13, 10, and 40, respectively.
The different responses to common rust in the four subgroups are
shown in Supplementary Figure 1B. The principal component
analysis also revealed four subgroups, corresponding to the four
subgroups identified by STRUCTURE analysis (Figure 1D).

Significantly Associated SNPs and
Candidate Genes Revealed by GWAS
The GWAS results of the DTMA panel are presented in
Table 2 and Figure 2. At a very stringent threshold of P-
value of 3.70 × 10−6, a total of six SNPs at bins of 1.05, 1.10,
3.04, 3.05, 4.08, and 10.04 were identified to be significantly
associated with common rust resistance in maize. The quantile–
quantile (q–q) plot implied that the population structure and
family relatedness were well controlled in the GWAS using the
FarmCPU method (Figure 2B).

Among all the six SNPs, the two most significantly associated
SNPs were identified on chromosome 1. The most significantly
associated SNP of S1_278132829 was located at the bin of 1.10,
it had the lowest P-value of 7.25 × 10−11, and the MAF of this
SNP was 0.25, with an additive effect of 0.13. The candidate gene
of GRMZM2G328500 (278,126,093–278,132,841 bp), encoding a
UDP-glucose 6-dehydrogenase, contains the most significantly
associated SNP of S1_278132829. The second most significantly
associated SNP of S1_89238026 was located at the bin of 1.05,
it had the second-lowest P-value of 9.81 × 10−10, and the
MAF of this SNP was 0.32, with an additive effect of 0.13.
It neighbored with the candidate gene of GRMZM2G114893
(89,236,681–89,237,918 bp), which encodes a zinc finger (C2H2
type) family protein.

On chromosome 3, two significantly associated SNPs were
identified, i.e., S3_118933375 located at the bin of 3.04
and S3_147594533 located at the bin of 3.05. The SNP of
S3_118933375 had a MAF of 0.10, with an additive effect of
−0.17, and it was 587 bp away from the candidate gene of
GRMZM2G144004 (118,931,829–118,932,788 bp), encoding a
putative uncharacterized protein. The SNP of S3_147594533 had
a MAF of 0.11, with an additive effect of 0.15, and it was
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FIGURE 1 | Analysis of genetic diversity in the genome-wide association study (GWAS) panel. (A) Linkage disequilibrium decay across all 10 maize chromosomes,
(B) the plot of delta K, (C) the estimated probability membership for each inbred line at K = 4, and (D) the principal component analysis plot showing four subgroups
corresponding to the four subgroups by the STRUCTURE analysis.

TABLE 2 | Significantly associated single-nucleotide polymorphisms (SNPs) and candidate genes revealed by the genome-wide association study analysis.

SNPa P-value Alleleb MAFc SNP effectd Putative candidate gene Annotation of candidate genes

S1_89238026 9.81 × 10−10 A/G 0.32 0.13 GRMZM2G114893 Zinc finger (C2H2 type) family protein

S1_278132829 7.25 × 10−11 A/T 0.25 0.13 GRMZM2G328500 UDP-glucose 6-dehydrogenase

S3_118933375 1.00 × 10−6 C/T 0.10 −0.17 GRMZM2G144004 Unknown

S3_147594533 1.11 × 10−7 A/T 0.11 0.15 GRMZM2G162250 Zea mays ARGOS6

S4_183913302 2.98 × 10−7 G/C 0.17 0.13 GRMZM2G138949 BTB/POZ domain-containing protein

S10_95231291 1.32 × 10−7 C/A 0.10 −0.16 GRMZM2G131536 Unknown

aSNP name, chromosome_position, for example, S1_89238026 represents that the SNP is on chromosome 1, and the physical position is 89238026 bp.
bLetters to the left and right of the “/” refer to major allele and minor allele, respectively.
cMAF, minor allele frequency.
dPositive values indicate that the major allele is a resistance allele, and the negative values indicate that the minor allele is a resistance allele.

located at the candidate gene ofGRMZM2G162250 (147,591,043–
147,598,482 bp), which encodes a Zea mays ARGOS6 (auxin-
regulated gene involved in organ size) protein.

On chromosome 4, the significantly associated SNP of
S4_183913302 was located at the bin of 4.08, it had a
MAF of 0.17, with an additive effect of 0.13, and this
SNP was close to the candidate gene of GRMZM2G138949

(183,909,192–183,910,514 bp), encoding a BTB/POZ
domain-containing protein. On chromosome 10, the
significantly associated SNP of S10_95231291 was located
at the bin of 10.04, it had a MAF of 0.10, with an
additive effect of −0.16, and this SNP was closely
linked with the candidate gene of GRMZM2G131536
(95,230,282–95,231,024 bp).
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FIGURE 2 | Genome-wide association study Manhattan and quantile–quantile (q–q) plots for common rust resistance in the Drought Tolerant Maize for Africa (DTMA)
panel. (A) Manhattan plot, the dashed line corresponds to the threshold level defined at P = 3.70 × 10−6 by a false discovery rate correction method; (B) q–q plot.

TABLE 3 | Quantitative trait loci detected from the linkage mapping analysis in the doubled haploid (DH1) population.

Chromosome Position (cM) Bin Left markera Right marker LODb PVE(%)c Additive effect

1 28 1.03 S1_31252133 S1_34315390 6.77 10.34 −0.08

2 47 2.06 S2_183941772 S2_188133361 3.49 5.69 0.06

4 74 4.08 S4_184936775 S4_186039203 4.62 6.79 0.06

7 67 7.03 S7_144567253 S7_149717562 7.82 12.45 0.09

9 0 9.00 S9_1260192 S9_2825523 3.70 5.40 −0.06

aMarker name, chromosome_position.
bLOD, logarithm of the odds.
cPVE, phenotypic variation explained.

Quantitative Trait Loci Detected From
Linkage Mapping Analysis
The linkage mapping results of the DH1 population are presented
in Table 3. In total, five QTL located at bins 1.03, 2.06, 4.08,
7.03, and 9.00 were detected at the threshold of a LOD score
of 3.0. The PVE value of the individual QTL ranged from 5.40
to 12.45%, and the total PVE value for all the five QTL was
40.67%. The QTL on chromosome 7 had the highest LOD score
of 7.82 and the largest PVE value of 12.45%, indicating that
it is a major QTL conferring the common rust resistance in
maize. The common rust resistance alleles were derived from the
resistant inbred line CML495 except for the two QTL located on
chromosomes 1 and 9.

The significantly associated SNP of S4_183913302 identified
by GWAS was closely linked with the QTL detected in DH1 on
chromosome 4, it was flanked by the markers S4_184936775 and
S4_186039203, and this QTL had a LOD score of 4.62 and a
PVE value of 6.79%. However, the most significantly associated
SNP of S1_278132829 identified by GWAS was not validated by
the linkage mapping analysis. The major QTL on chromosome 7
detected from linkage mapping analysis was also not validated by
the GWAS result.

Prediction Accuracies Estimated With
the Different Marker Datasets, Marker
Density, and Training Population Size
The GP accuracies estimated based on GBS SNPs were 0.61 and
0.51 in the DTMA panel and the DH1 population, respectively

(Figure 3A). The GP accuracy based on bin markers was 0.53
in DH1 (Figure 3B). No significant difference in prediction
accuracy was observed between GBS SNPs and bin markers. The
effect of marker density and TPS on the GP accuracy is shown
in Figure 4. In both the DTMA panel and the DH1 population,
the prediction accuracy increased as the number of markers
increased. In the DTMA panel, the prediction accuracy increased
rapidly when the number of markers increased from 10 to 5,000,
and then, the prediction accuracy increased slightly when the
number of markers kept increasing. In the DH1 population, a
sharp increase in the prediction accuracy was observed before
reaching a plateau at about 300 markers, indicating that 300
SNPs were sufficient to achieve good accuracy of common rust
resistance in the DH1 population. Prediction accuracy increased
as the TPS increased in both populations. In the DTMA panel,
the prediction accuracy increased rapidly when the TPS increased
from 10 to 50%, and then, a little improvement in the prediction
accuracy was observed when the TPS kept increasing. When
50% of the total genotypes were used as the training set, a
relatively high prediction accuracy coupled with the smaller
standard error was observed. A similar trend was observed in
the DH1 population.

DISCUSSION

Common rust is a major disease of maize, causing 34% of
the maize area to suffer economic losses (Zheng et al., 2018).
Developing maize varieties with host plant resistance is the
most sustainable strategy for the control of common rust,
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FIGURE 3 | Genomic prediction accuracy of common rust resistance in the DTMA panel and DH1 population. (A) In the DTMA panel and DH1 population estimated
with genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs); (B) in the DH1 panel estimated with GBS SNPs and bins.

which requires further understanding of the genetic basis and
architecture of common rust resistance. Previous efforts to
exploit genetic resistance for common rust have largely been
through Rp genes, but the resistance of Rp genes could break
down easily. Quantitative disease resistance controlled by several
genes has proven to be highly durable, making it a better
choice for long-term common rust resistance breeding. In this
study, GWAS and linkage mapping analyses were applied to
dissect the genetic base of quantitative resistance of common
rust in maize. GWAS revealed six SNPs significantly associated
with quantitative resistance of common rust at a very stringent
threshold of P-value of 3.70 × 10−6. Linkage mapping identified
five QTL accounting for the total PVE value of 40.67%. These
results provided new insight into the quantitative resistance
of common rust, which implied that major QTL associated
with quantitative resistance from various elite backgrounds are
possible to be pyramided for improving common rust resistance,
and the selection for multiple partial resistance alleles seems to
be more promising than the MAS of the Rp genes in tropical
maize germplasm.

In the GWAS, six SNPs distributed in bins 1.05, 1.10,
3.04, 3.05, 4.08, and 10.04 were associated with common rust
resistance. Except for SNP of S10_95231291, all the SNPs
were reported in previous GWAS and linkage mapping studies
(Lübberstedt et al., 1998; Brown et al., 2001; Zheng et al., 2018;
Kibe et al., 2020). The most and the second most significantly
associated SNPs S1_278132829 and S1_89238026 detected in this
study were also detected by linkage mapping in European flint
germplasm (Lübberstedt et al., 1998). SNP S3_118933375 was in
the same region of qCR3-113, a QTL for common rust (Kibe et al.,
2020), and it was also close to SNP PZE-103072633 (115,864,889)
(Zheng et al., 2018). Both qCR3-113 and PZE-103072633 were
detected in tropical maize germplasm. SNPs S3_147594533 and
S4_183913302 were mapped to the QTL intervals associated with
common rust in sweet corn (Brown et al., 2001). QTL detected
for a target trait are usually different due to the use of different
genetic backgrounds and environments (Ren et al., 2020). Those
common loci detected in different studies were stable QTL for
common rust. SNP S10_95231291 was first reported, it had

an additive effect of −0.16, and it was closely linked with the
candidate gene of GRMZM2G131536. However, the function of
the candidate gene of GRMZM2G131536 is still unknown.

In DH1, linkage mapping revealed five QTL distributed in
bins 1.03, 2.06, 4.08, 7.03, and 9.00, respectively. Three of the five
QTL were reported previously (Lübberstedt et al., 1998; Brown
et al., 2001). The loci in bins 1.03 and 2.06 coincided with QTL
identified by Lübberstedt et al. (1998). The locus in bin 4.08 was
detected by both Lübberstedt et al. (1998) and Brown et al. (2001).
The major QTL located on chromosome 7 was reported in this
study for the first time, and it had the highest LOD score of
7.82 and the largest PVE value of 12.45%. It is a new source of
resistance for common rust, which deserves further investigation.

Joint GWAS and linkage mapping can complement the
advantages and disadvantages of each method (Li et al., 2016;
Cao et al., 2017). In this study, GWAS and linkage mapping were
implemented stepwise to detect loci associated with quantitative
resistance of common rust. The genomic region located at bin
4.08 was detected by both GWAS and linkage mapping. SNP
S4_183913302 was consistent with the locus identified between
markers S4_184936775 and S4_186039203 in DH1. This locus
was also reported by Lübberstedt et al. (1998) and Brown et al.
(2001). The major QTL located on chromosome 7 identified by
linkage mapping in DH1 was not detected through GWAS in
the DTMA panel. This may be due to the very low frequency
of one of the alleles of the relevant locus in the GWAS
panel or the population structure related to the polymorphism
at this locus (Famoso et al., 2011; Cadic et al., 2013). The
most significantly associated SNP of S1_278132829 identified by
GWAS was also not validated by the linkage mapping analysis.
It may be because there is no genetic variation at this locus
in the DH1 population. The major QTL identified by GWAS
or linkage mapping individually, and the common stable QTL
region identified by both methods need to be explored further
for developing functional molecular markers for MAS.

The candidate gene analysis can lead to a better understanding
of the genetic basis of common rust resistance. According to
the results of GWAS, six candidate genes were identified
in this study, and the function of four candidate genes
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FIGURE 4 | Genomic prediction accuracy of common rust resistance in the DTMA panel and DH1 population, when the number of SNPs varied from 100 to 50,000
and training population size (TPS) ranged from 10 to 90% of the total population size. (A) In the DTMA panel estimated with different marker density, (B) in the DTMA
panel estimated with different TPS, (C) in the DH1 population estimated with different marker density, and (D) in the DH1 population estimated with different TPS.

was annotated. These candidate genes were previously
reported to play important roles in the response of stress
resilience and the regulation of plant growth and development.
GRMZM2G328500 encodes a UDP-glucose 6-dehydrogenase,
which is involved in the nucleotide-sugar interconversion
process (Kost et al., 2020). GRMZM2G162250 encodes a
Zea mays ARGOS6 protein controlling plant growth, organ
size, and grain yield. GRMZM2G114893 encodes a zinc finger
(C2H2 type) family protein, which is mainly involved in
the regulation of plant growth, development, and tolerance
to biotic and abiotic stresses (Kim et al., 2009; Xiao et al.,
2009). GRMZM2G138949 identified in bin 4.08 encodes a
BTB/POZ domain-containing protein, which participates in
a series of physiological and biochemical reactions and also
plays an important role in resistance to plant disease (Cao
et al., 1997; Silva et al., 2015). These results encourage fine-
mapping and cloning of the candidate genes for controlling
common rust in maize.

Genomic prediction and GS have been successfully used in
several crops to accelerate genetic gain in breeding programs for
improving complex traits, including resistance to major maize
diseases (Gowda et al., 2015; Liu et al., 2021). A study on the
potential of GS and GP to improve the common rust resistance
in maize has been reported by Kibe et al. (2020), where the
GP accuracies within populations ranged from 0.19 to 0.51,
and the GP accuracies estimated from a larger population by
combined several individual populations were higher than those
estimated from the individual population with a smaller size. For

implementing GP and GS to improve common rust resistance
in tropical maize, an independent but related training set is
encouraged to be built to predict the related populations not been
phenotyped. These results were confirmed by this study. The GP
accuracies observed in the DTMA panel and the DH1 population
were 0.61 and 0.51, respectively. It indicates that common rust
resistance in tropical maize could be improved by implementing
GP and GS. Moreover, the factors affecting GP accuracy were
also assessed in this study. Ten levels of marker density were
used to assess the effect of marker density on prediction accuracy
in the two populations. The results showed that the increase
in marker density leads to an increase in prediction accuracy.
The prediction accuracy reached a plateau when the marker
density was 5,000 in the DTMA panel and 300 in the DH1
panel, which indicated that more makers are required to achieve
good GP accuracy in populations with higher genetic diversity.
A similar phenomenon was found for several traits in maize
(Zhang et al., 2017; Guo et al., 2020; Liu et al., 2021). There
was no significant difference between the prediction accuracy
estimated based on the GBS SNPs and the bins in the DH1
population, which validated the high quality and accuracy of bins
constructed in the bi-parental population. To assess the effect of
TPS on prediction accuracy, nine levels of TPS were selected. As a
result, increasing TPS leads to an increase in prediction accuracy.
When 50% of the total genotypes were used as the training
set, a relatively high prediction accuracy can be achieved. These
results provide valuable information for improving common
rust resistance in tropical maize by implementing GP and GS.
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