
fpls-12-690806 June 11, 2021 Time: 17:30 # 1

REVIEW
published: 17 June 2021

doi: 10.3389/fpls.2021.690806

Edited by:
Joel Torra,

Universitat de Lleida, Spain

Reviewed by:
Mauro Guida Santos,

Federal University of Pernambuco,
Brazil

Nuria Pistón,
Federal University of Rio de Janeiro,

Brazil

*Correspondence:
Bhagirath S. Chauhan
b.chauhan@uq.edu.au

Specialty section:
This article was submitted to

Functional Plant Ecology,
a section of the journal

Frontiers in Plant Science

Received: 04 April 2021
Accepted: 24 May 2021

Published: 17 June 2021

Citation:
Kaur A, Batish DR, Kaur S and

Chauhan BS (2021) An Overview
of the Characteristics and Potential

of Calotropis procera From Botanical,
Ecological, and Economic

Perspectives.
Front. Plant Sci. 12:690806.

doi: 10.3389/fpls.2021.690806

An Overview of the Characteristics
and Potential of Calotropis procera
From Botanical, Ecological, and
Economic Perspectives
Amarpreet Kaur1, Daizy R. Batish1, Shalinder Kaur1 and Bhagirath S. Chauhan2*

1 Department of Botany, Panjab University, Chandigarh, India, 2 Queensland Alliance for Agriculture and Food Innovation
(QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, QLD, Australia

Calotropis procera (Aiton) Dryand. (commonly known as the apple of sodom, calotrope,
and giant milkweed) is an evergreen, perennial shrub of the family Apocynaceae, mainly
found in arid and semi-arid regions. It is a multipurpose plant, which can be utilized
for medicine, fodder, and fuel purposes, timber and fiber production, phytoremediation,
and synthesis of nanoparticles. It has been widely used in traditional medicinal systems
across North Africa, Middle East Asia, and South-East Asia. At present, it is being
extensively explored for its potential pharmacological applications. Several reports also
suggest its prospects in the food, textile, and paper industries. Besides, C. procera has
also been acknowledged as an ornamental species. High pharmacological potential and
socio-economic value have led to the pantropical introduction of the plant. Morpho-
physiological adaptations and the ability to tolerate various abiotic stresses enabled
its naturalization beyond the introduced areas. Now, it is recognized as an obnoxious
environmental weed in several parts of the world. Its unnatural expansion has been
witnessed in the regions of South America, the Caribbean Islands, Australia, the
Hawaiian Islands, Mexico, Seychelles, and several Pacific Islands. In Australia, nearly
3.7 million hectares of drier areas, including rangelands and Savannahs, have been
invaded by the plant. In this review, multiple aspects of C. procera have been discussed
including its general characteristics, current and potential uses, and invasive tendencies.
The objectives of this review are a) to compile the information available in the literature
on C. procera, to make it accessible for future research, b) to enlist together its potential
applications being investigated in different fields, and c) to acknowledge C. procera as
an emerging invasive species of arid and semi-arid regions.

Keywords: apple of sodom, calotrope, giant milkweed, physiological adaptations, phytochemistry,
ethnomedicinal value, emerging invasive species

INTRODUCTION

Calotropis procera (Aiton) Dryand. is a soft-wooded, perennial shrub of the family Apocynaceae
and subfamily Asclepiadaceae (the milkweed family). It is an evergreen xerophytic plant, generally
found in arid and semi-arid habitats (Al-Rowaily et al., 2020). The word “Calotropis” is derived from
Greek, meaning “beautiful,” which refers to its flowers; whereas “procera” is a Latin word referring
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to the cuticular wax present on its leaves and stem (Hassan
et al., 2015). It is known by various common names such as
apple of sodom, calotrope, giant milkweed, Indian milkweed,
wild cotton, rubber tree, ushar, etc., in different parts of the world.
Its subspecies, C. procera subsp. procera and C. procera subsp.
hamiltonii, vary from each other in fruit morphology (Dhileepan,
2014). It also shares a close homology with its con-generic plant
C. gigantea (CABI, 2021).

Calotropis procera is a multipurpose plant, which provides
a wide range of provisioning ecosystem services. It has
been widely used in traditional medicinal systems in North
Africa, Middle East Asia, South Asia, and South-East Asia
(Al Sulaibi et al., 2020). It has also been utilized for fiber,
fuel, fodder, and timber purposes since antiquity (Batool
et al., 2020). Owing to its socio-economic importance, it
has been introduced in several parts of the world outside
its native range (Asia and Africa). Morpho-physiological
adaptations and the ability to tolerate a wide range of
environmental conditions enabled its naturalization in the
introduced habitats. Consequently, the plant has also been
reported as an invasive weed of wastelands, overgrazed pastures,
and poorly managed agricultural fields in several regions
(CABI, 2021).

There is a plethora of literature available that demonstrates
the pharmacological applications and economic importance of
C. procera. However, very few studies have focused on general
ecological and biological characteristics of the plant and its
survival strategies under arid and semi-arid environments.
Even fewer studies have addressed it as an invasive species
and provided insights into its invasive abilities, potential
distribution, and management options. In this review, multiple
aspects of C. procera have been discussed to bring together
the information available on the plant in the literature,
identify its potential applications, acknowledge it as an
emerging invasive species, and emphasize the knowledge gaps in
ongoing research.

ECOLOGY AND BIOLOGY

Geographical Distribution,
Macromorphology, and Reproductive
Biology
Calotropis procera is native to Africa, Arabian Peninsula, Western
Asia, the Indian Subcontinent, and Indo-China (GRIN, 2021).
However, the introduction of the plant outside its native
boundaries has led to its naturalization in parts of Africa,
Australia, and America (GRIN, 2021). The broad native and
exotic geographical range of C. procera is presented in Figure 1.
Calotropis procera is an evergreen shrub that may grow up to
6 m (usually 2.5–4 m) in height and has a deep taproot system
(CABI, 2021; Figure 2). Young stems are grayish-green in color,
smooth, and pubescent, whereas the mature stems have a deeply
fissured bark (Hassan et al., 2015). The leaves are large, pale green,
succulent, arranged in opposite phyllotaxy, and covered with
cuticular wax (Batool et al., 2020; Figure 2). The plant contains

a milky sap, which oozes out of any wound or injury in the
aboveground parts (CABI, 2021; Figure 2).

Reproductive maturity in the plant is attained approximately
190 days after germination (Bebawi et al., 2015). Flowering
takes place throughout the year, and pollination is carried
out by insects, mostly bees and butterflies (Al Sulaibi et al.,
2020; Batool et al., 2020). The inflorescence is dense and
multiflowered umbellate cyme (3–15 flowers in a cluster;
Figure 2), and the flowers are five-petaled, bisexual, sweet-
smelling, and white in appearance with a characteristic purple
tip (Al Sulaibi et al., 2020; Figure 2). Fruiting is limited to
the warm months of the year when pollinators are the most
abundant (Menge et al., 2017a). The fruits are ellipsoid or
ovoid, containing 350–500 seeds with tufts of white, silky
hair or pappus (Al Sulaibi et al., 2020; Figure 3). Seeds are
generally disseminated by wind and water and occasionally,
by birds and animals (Al Sulaibi et al., 2020). Seed longevity
depends on several factors such as rainfall, soil moisture,
seed burial depth, and soil type (Bebawi et al., 2015).
Maximum seed germination (68–100%) occurs at 30◦C and the
maximum emergence (88%) is observed from a depth of 3 cm
(Menge et al., 2016a). The plant also propagates through root
suckers and regenerates through broken/cut stems and roots
(Hassan et al., 2015).

Stress Physiology
Calotropis procera has an exceptional ability to adapt and
maintain productivity in severe arid conditions (Ramadan et al.,
2014). It is a C3 plant that can survive drought, salinity,
extreme temperatures, high vapor pressure deficit, and high
photosynthetic active radiations (Frosi et al., 2013; Rivas et al.,
2020). It can easily thrive in prolonged dry seasons with
rainfall >150 mm per year (Dhileepan, 2014). The plant grows
abundantly in xerophytic conditions on a variety of soils, without
irrigation or application of fertilizers (Hassan et al., 2015). The
plant has a great potential to endure stress caused by roadside
pollutants and contaminated soils (Khalid et al., 2018; Ullah and
Muhammad, 2020).

Plants surviving in the hostile environment of arid/semi-arid
regions have advanced morpho-physiological adaptations and
special defense mechanisms. So is the case of C. procera, in which
multiple processes contribute to the resistance, resilience, and
recovery of individuals growing under abiotic stress conditions
(Rivas et al., 2017). The stems and leaves of C. procera
are characterized by thick cuticle, lactiferous canals, and low
specific leaf area (Tezara et al., 2011; Hassan et al., 2015).
Leaves are found to be narrower and thicker under optimum
moisture conditions, whereas they are broader and thinner under
dry conditions (Pompelli et al., 2019). These factors help in
the conservation of acquired resources and creating a water
permeability barrier, thereby reducing the transpiration rate
(Pompelli et al., 2019).

The plant also shows physiological and biochemical
adaptations in terms of gas exchange and metabolic adjustments
(Frosi et al., 2013). An efficient antioxidative system, leaf
sugar dynamics, and photoprotective mechanisms guard the
photosynthetic machinery of the plant under an extreme
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FIGURE 1 | Worldwide distribution of Calotropis procera.

xerophytic environment (Rivas et al., 2017, 2020). Furthermore,
the plant maintains a high photosynthetic rate despite reduced
stomatal conductance, thus increasing water use efficiency,
which is a fundamental characteristic for survival in arid
and semi-arid ecosystems (Tezara et al., 2011; Frosi et al.,
2013) as well as being able to quickly adjust the aquaporins of
the root system when under salt stress (Coêlho et al., 2021).
A metabolomic study revealed that C. procera rapidly adjusts
the levels of soluble sugars, amino acids, triacylglycerols, and
membrane lipids in response to water availability and water
loss (Ramadan et al., 2014). Myo-inositol signaling is found to
be induced in response to drought and salt stress in C. procera
(Mutwakil et al., 2017).

Endophytic microbes such as Pseudomonas stutzeri and
Virgibacillus koreensis are reported to be associated with C.
procera under salt-stressed conditions, which may facilitate its
survival under harsh conditions (Al-Quwaie, 2020). Similarly,
endophytic fungal species, Phaeoramularia calotropidis,
Guignardia bidwellii, Curvularia hawaiiensis, Cochliobolus
hawaiiensis, Alternaria alternata, Mucor circinelloides, Aspergillus
spp., Penicillium spp., Fusarium spp., Chaetomium spp., and
Candida spp. are isolated from C. procera, which protects the

plant from pests, pathogens, and herbivores (Nascimento et al.,
2015; Rani et al., 2017).

PHYTOCHEMISTRY

Metabolic Profile
Several researchers have reported the presence of metabolites
such as flavonoids, tannins, terpenoids, saponins, alkaloids,
steroids, and cardiac glycosides in various parts of the plant
(Mossa et al., 1991; Moustafa et al., 2010; Al-Rowaily et al., 2020).
A list of secondary metabolites reported from the plant has been
provided in Table 1.

The major phytochemical groups reported in the leaf
extracts of C. procera are fatty acid ethyl esters (21.4%),
palmitic acid esters (10.2%), linoleic acids (7.4%), and amino
acids (8.1%) (Pattnaik et al., 2017). High-Performance Liquid
Chromatography (HPLC) analysis of the leaves and bark
ascertained the presence of total phenolic content (20.41–100.18
gallic acid equivalent mg g−1 dry weight), total flavonoid content
(IC50 18.33–92.92 catechin equivalent mg g−1 dry weight),
sinapic acid (17.3± 2.11 to 9586.44± 0.78 mg kg−1), vanillic acid
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FIGURE 2 | Calotropis procera: flowering plant (A); phyllotaxy (B); reproductive buds (C); inflorescence (D); individual flower (E); and latex oozing out of the
wounded stem (F).

(9.43± 0.21 to 5051.7± 18.47 mg kg−1) and protocatechuic acid
(2.46 ± 0.40 to 139.05 ± 1.37 mg kg−1) (Mehmood et al., 2020).
The ratio of phenolic compounds and terpenoids was higher in
leaves and lower in the case of root-bark of the plant (Kinda
et al., 2020). Cardenolide-type terpenoids are mainly responsible
for the phytotherapeutic abilities of the root-bark of C. procera
(Kinda et al., 2020).

A total of 80% of the laticifer fluid of C. procera corresponds
to rubber and the rest 20% is rich in basic proteins (anti-oxidant
enzymes, cysteine proteases, tryptophan, etc.) with molecular
masses in the range of 5–95 kilodaltons (Freitas et al., 2007;
Das et al., 2011). A recent study deduced amino acid sequences
of five previously identified cysteine peptidases from the latex
of C. procera (procerain, procerain B, CpCP1, CpCP2, and
CpCP3) (Freitas et al., 2020). These possess similar biochemical
characteristics and high sequence homology with several other
papain-like cysteine peptidases (Freitas et al., 2020). The presence
of nearly 15 chitinase isoforms has also been reported in the latex
of C. procera (Freitas et al., 2016).

The chemical profile of the essential oil of C. procera procured
from Saudi Arabia and Egypt showed the presence of 90
compounds, of which terpenes (sesquiterpenes and diterpenes)
were the main constituents along with hydrocarbons, aromatics,
and carotenoids (Al-Rowaily et al., 2020). Hinesol, trans-
chrysanthenyl acetate, 1,4-trans-1,7-cis-acorenone, phytol,

myristicin, n-docosane, linoleic acid, n-pentacosane, and
bicyclogermacrene represented the main compounds of essential
oil (Al-Rowaily et al., 2020).

Cytotoxicity and Phytotoxicity
Calotropis procera causes acute toxicity in various plant and
animal cells, including human beings. Different plant parts,
particularly the latex, are therefore tested against various
cancer cell lines (Ibrahim et al., 2015; Viana et al., 2017; Al-
Qahtani et al., 2020). Similarly, antibacterial and antihelminitic
potential of the plant is being utilized in pharmacology (details
provided in section “Pharmacological Applications”). However,
the toxicity-bioactivity relationship of C. procera is still not well
investigated. A few studies suggested that the plant induces acute
cardiotoxicity and hepatotoxicity (de Lima et al., 2011). On the
other hand, a safety evaluation study by Mossa et al. (1991)
revealed that the use of C. procera extract in single high doses
(up to 3 g kg−1) is not toxic for guinea pigs until the treatment
of >90 days is provided. In another study, latex proteins of the
plant when administrated orally, had no adverse immunological
reactions in mice even at 5,000 mg kg−1; but their intraperitoneal
administration caused death after 1 h in response to a dose of
150 mg kg−1 (Bezerra et al., 2017). These toxic aspects are not
extensively researched and more studies are required to validate
the medicinal prospects of C. procera.
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FIGURE 3 | Fruit characteristics of Calotropis procera: immature fruits (A); mature fruits (B); dehisized fruits (C,D); seeds with pappus (E); seeds without pappus (F).

Apart from that, extracts of the plant also possess significant
pesticidal and fungicidal properties. It has been observed that life-
history traits of Sitophilus oryzae L. (Coleoptera: Curculionidae)
and Rhyzopertha dominica Fabricius (Coleoptera: Bostrichidae)
were modulated by leaf extracts, latex proteins, and flavonoids
isolated from C. procera (Nenaah, 2013a). Whole-plant extracts
of the plant caused mortality of larva, reduced the number of
eggs, and inhibited the oviposition of Rhipicephalus microplus
Canestrini (Ixodida: Ixodidae) (Khan et al., 2019). Cysteine
peptidases and osmotin purified from the latex of C. procera
promoted membrane permeability, leakage of cellular content,
and induction of reactive oxygen species in Fusarium spp. (de
Freitas et al., 2011; Freitas et al., 2020). Such studies implicate
that plant has a potential to be utilized as bioinsecticide and
biofungicide in agricultural and industrial practices.

Apart from that, the phytotoxicity of C. procera has also been
tested against several crop and weed species. Aboveground plant
extracts showed inhibition of seed germination and seedling
growth in barley (Hordeum vulgare L.), wheat (Triticum aestivum
L.), cucumber (Cucumis sativus L.), fenugreek (Trigonella
foenum-graecum L.), tomato (Solanum lycopersicum L.), eggplant
(Solanum melongena L.), lettuce (Lactuca sativa L.), Senna
occidentalis (L.) Link, Portulaca oleracea L., Chenopodium murale
L., Pennisetum glaucum (L.) R.Br., Setaria italica (L.) P.Beauv.,
and Brassica rapa L. (syn. B. campestris) (Hassan et al., 2015;
Radwan et al., 2019; Al-Harbi, 2020; Hussain et al., 2020). Leaf,

fruit, and flower extracts of C. procera significantly inhibited
the germination, radicle length, plumule length, biomass
accumulation, and relative water content in Brassica cretica
Lam. (syn. B. oleracea var. botrytis) (Gulzar and Siddiqui,
2017). Similarly, essential oil of C. procera also showed potent
phytotoxicity against Bidens pilosa L. and Dactyloctenium
aegyptium (L.) Willd. (Al-Rowaily et al., 2020). Phytotoxic
properties of C. procera may assist its establishment in non-native
areas by negatively affecting the growth of resident vegetation.
From an economic point of view, the phytotoxic potential of
the weed can be exploited for the production of bioherbicides;
however, more dose-response studies are required in this context.

ECONOMIC IMPORTANCE

Pharmacological Applications
The search for environment-friendly prototypes to replace
chemically synthesized drugs is rapidly increasing. Thus, a lot
of research has been focused on the plant species mentioned
in traditional medicinal systems. The pharmacological activities
of C. procera have been popular in the past to cure several
diseases in human beings such as cold, fever, leprosy, asthma,
rheumatism, eczema, indigestion, diarrhea, elephantiasis, skin
diseases, and dysentery (Al-Rowaily et al., 2020). The decoction
of aboveground parts is being used to treat fever, joint pain,
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TABLE 1 | Metabolic profile of Calotropis procera.

S. No. Compounds Plant parts References

Cardenolides

1. 12β-Hydroxycoroglaucigenin Latex Mohamed et al., 2015

2. 15β-Hydroxy calactin Latex Mohamed et al., 2015

3. 15β-Hydroxy uscharin Latex Mohamed et al., 2015

4. 19-Dihydrocalotropagenin Whole plant Sweidan and Abu Zarga, 2015

5. Afrogenin Latex Mohamed et al., 2015

6. Afroside Latex Mohamed et al., 2015

7. Calactin Latex, Whole plant Mohamed et al., 2015; Sweidan and Abu Zarga, 2015

8. Calactoprocin Latex Mohamed et al., 2015

9. Calotoxin Root, Latex, Whole plant Kakkar et al., 2012; Mohamed et al., 2015; Sweidan
and Abu Zarga, 2015

10. Calotropin Whole plant Sweidan and Abu Zarga, 2015

11. Digitoxigenin Root Kakkar et al., 2012

12. Digitoxin Root Kakkar et al., 2012

13. Digoxigenin Root Kakkar et al., 2012

14. Ischaridin Whole plant Sweidan and Abu Zarga, 2015

15. Ischarin Whole plant Sweidan and Abu Zarga, 2015

16. Procegenin A Latex Mohamed et al., 2015

17. Procegenin B Latex Mohamed et al., 2015

18. Proceragenin Root Kakkar et al., 2012

19. Uscharin Latex, Whole plant Mohamed et al., 2015; Sweidan and Abu Zarga, 2015

20. Uzarigenin Whole plant Sweidan and Abu Zarga, 2015

Steroids

1. 3β,27-Dihydroxy-urs-18-en-13,28-olide Latex Chundattu et al., 2016

2. Calotroposides H–N Root bark Ibrahim et al., 2015

3. Cyclosadol Root Kakkar et al., 2012

4. Multiflorenol Root; Latex Kakkar et al., 2012; Chundattu et al., 2016

5. Procesterol Root Kakkar et al., 2012

6. Stigmasterol Root bark, Root; Latex Ibrahim et al., 2012; Kakkar et al., 2012; Chundattu
et al., 2016

7. Urs-19(29)-en-3-yl acetate Latex Chundattu et al., 2016

8. Urs-19(29)-en-3-β-ol Latex Chundattu et al., 2016

9. β-Sitosterol Latex, Root, Whole plant Kakkar et al., 2012; Sweidan and Abu Zarga, 2015;
Chundattu et al., 2016

10. β-Sitosterol glucoside Whole plant Sweidan and Abu Zarga, 2015

Terpenes

1. Calotropenol Root Kakkar et al., 2012

2. Calotropenyl acetate Root; Whole plant Kakkar et al., 2012; Sweidan and Abu Zarga, 2015

3. Calotropfriedelenyl acetate Root bark Ansari and Ali, 2001

4. Calotroprocerol A Root bark Ibrahim et al., 2012

5. Calotroprocerone A Root bark Ibrahim et al., 2012

6. Calotroproceryl acetate A Root bark Ibrahim et al., 2012

7. Calotroproceryl acetate B Root bark Ibrahim et al., 2012

8. Calotropursenyl acetate Root bark Ansari and Ali, 2001; Ibrahim et al., 2012

9. Dihydrophytoyl tetraglucoside Root Mittal and Ali, 2015

10. Phytyl iso-octyl ether Root Mittal and Ali, 2015

11. Procerasesterterpenoyl triglucoside Root Mittal and Ali, 2015

12. Pseudo-taraxasterol acetate Root bark Ibrahim et al., 2012

13. Taraxasterol Root bark Ibrahim et al., 2012

14. β-Sitostenone Root Kakkar et al., 2012

Proteins and Enzymes

1. CpCP-1 Latex Ramos et al., 2013

2. CpCP-2 Latex Ramos et al., 2013

(Continued)
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TABLE 1 | Continued

S. No. Compounds Plant parts References

3. CpCP-3 Latex Ramos et al., 2013

4. CpGLP1 Latex Freitas et al., 2017

5. CpGLP2 Latex Freitas et al., 2017

6. Procerain Latex Ramos et al., 2013

7. Procerain B Latex Ramos et al., 2013

Flavonoids

1. 3′-O-Methyl quercetin-3-O-rutinoside Whole plant Sweidan and Abu Zarga, 2015

2. 5-Hydroxy-3,7-dimethoxyflavone-4′-O-
β-Glucopyranoside

Leaves Nenaah, 2013b

3. Isorhamnetin Leaves Nenaah, 2013b

4. Kaempferol Leaves Nenaah, 2013b

5. Rutin Leaves Nenaah, 2013b

Lignans

1. (+)-Pinoresinol 4-O-[6′′-O-
protocatechuoyl]-β-D-glucopyranoside

Latex Abdel-Mageed et al., 2016

2. (+)-Pinoresinol 4-O-[6′′-O-vanillyl]-β-D-
glucopyranoside

Latex Abdel-Mageed et al., 2016

3. (+)-Pinoresinol
4-O-β-D-glucopyranoside

Latex Abdel-Mageed et al., 2016

4. 7′-Methoxy-3′-O-demethyl-tanegool-9-
O-βD-glucopyranoside

Flower Al-Taweel et al., 2017

5. Eucommin A Latex Abdel-Mageed et al., 2016

6. Pinoresinol-4′-O-[6′′-O-(E)-feruloyl]-β-
D-glucopyranoside

Latex Abdel-Mageed et al., 2016

Esters

1. Calotropterpenyl ester Root bark Ansari and Ali, 2001

2. Tridecyl ester Leaves Rani et al., 2019

Volatiles

1. 1-Hexadecanol-2-methyl Essential oil Okiei et al., 2009

2. 1-Docosanol Essential oil Okiei et al., 2009

3. 1-Hexacosene Leaves Rani et al., 2019

4. 1-Nonadecene Essential oil Okiei et al., 2009

5. 2-Butanone-4,2,6,6-trimethyl-1-
cyclohexen-1-yl

Essential oil Okiei et al., 2009

6. 3,7,11,15-Tetramethyl-2-hexadecene-
1-ol

Essential oil Okiei et al., 2009

7. 3-Buten-2-one-4,2,6,6-trimethyl-1-
cyclohexen-1-yl

Essential oil Okiei et al., 2009

8. 4,8,12,16-Tetramethylheptadecan-4-
olide

Essential oil Okiei et al., 2009

9. 5,9,13-Pentadecatriene-2-one,6,10,14-
trimethyl
(E,E)

Essential oil Okiei et al., 2009

10. 6,10,14-Trimethyl-2-pentadecanone Essential oil Okiei et al., 2009

11. 9,12-Octadecadienoyl chloride Essential oil Okiei et al., 2009

12. 9,17-Octadecadienal (Z) Essential oil Okiei et al., 2009

13. 9-Nonadecene Essential oil Okiei et al., 2009

14. Hexadecanal Essential oil Okiei et al., 2009

15. Isophytol Essential oil Okiei et al., 2009

16. Mannosamine Leaves Rani et al., 2019

17. Pentatriacontane Leaves Rani et al., 2019

18. Phytol Essential oil Okiei et al., 2009

19. R-Limonene Leaves Rani et al., 2019

20. Tetradecanal Essential oil Okiei et al., 2009

21. Tridecane Leaves Rani et al., 2019

22. Z-5-Nonadecene Essential oil Okiei et al., 2009
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muscular spasm, and constipation in Saudi Arabia (Mossa et al.,
1991). The plant is also used to treat neuropsychiatric disorders in
Burkina Faso (Kinda et al., 2020). The medicinal attributes of C.
procera can be credited to secondary metabolites and cardiotonic
substances present in the plant (Hagaggi and Mohamed, 2020;
Mehmood et al., 2020).

The extracts of aboveground plant parts of C. procera
exhibited strong antipyretic, analgesic, antidepressant,
and neuromuscular blocking activity (Mossa et al., 1991;
Garabadu et al., 2019). Extracts from bark and leaves showed
notable antibacterial potential against Klebsiella pneumoniae,
Pseudomonas aeruginosa, Bacillus subtilis, and Escherichia coli
(Mehmood et al., 2020). A broad antibacterial spectrum has
been shown by extracts of both aerial parts of C. procera and its
endophytic bacteria, Bacillus siamensis (Hagaggi and Mohamed,
2020). Leaf extracts of C. procera also reduce blood glucose
to a significant level, thereby indicating its antihyperglycemic
potential (Nadeem et al., 2019).

Latex of C. procera contains cardiac glycosides, which inhibit
the proliferation of MCF-7 cells through cytotoxicity, apoptosis,
and autophagy (Al-Qahtani et al., 2020). Chitinase isoforms
present in the latex are also cytotoxic to tumor cell lines and
are capable of reducing inflammation by iNOs-derived NO
mechanism (Viana et al., 2017). Crude latex also possessed
antioxidant and antiapoptotic activities against the toxicity of
4-Nonylphenol (Sayed et al., 2016). It has shown anthelmintic
effects against Haemonchus contortus by damaging its cuticle and
causing ultrastructural changes (Cavalcante et al., 2020). Latex
of C. procera is also a promising phytotherapeutic option for
treating inflammatory conditions of the colon (Kumar et al.,
2019). The protein fraction of the latex has the potential to
relieve inflammation and pain associated with arthritis (Kumar
et al., 2011). Oral mucositis, an intense inflammatory reaction
that can lead to tissue damage and ulceration, was found to
be curable using PII-IAA, a homogenous cocktail of laticifer
proteins of C. procera (Ramos et al., 2020). Similarly, intestinal
mucositis is observed to be abolished by latex proteins of C.
procera (de Alencar et al., 2017).

In addition to that, anti-inflammatory and gastromucosal
protective effect of the stem bark of C. procera has also
been observed (Tour and Talele, 2011). Root bark also
consists of oxypregnane oligoglycosides, which has cytotoxic
potential against U373 glioblastoma and PC-3 prostate cancer
cell lines (Ibrahim et al., 2015). An earlier retrieval of
sensorimotor activities, reduced ROS, increased total antioxidant
activity (particularly, the enhanced activities of arylesterase and
paraoxonase), suggested a positive impact of roots of C. procera
on functional recovery upon a nerve injury (Zafar et al., 2020).

Phytoremediation
Calotropis procera is a phytoaccumulator of several heavy
metals such as manganese, lead, chromium, iron, copper, nickel,
cobalt, strontium, and cadmium (D’Souza et al., 2010; Almehdi
et al., 2019; Ullah and Muhammad, 2020). As determined from
biophysical measurements, roots and leaves of C. procera are
also tolerant against aluminum toxicity (Hussain et al., 2018).
C. procera can also be used as a phytomonitoring tool to

assess metals in the environment (Gajbhiye et al., 2019). A high
accumulation of chromium has been observed in the roots (up to
188.2 mg kg−1) and shoots (up to 68.2 mg kg−1) of C. procera,
which is detoxified by regulation of cellular homeostasis via
redox signaling (Usman et al., 2020). Fruits and leaf powder of
C. procera were also found to adsorb, respectively, Acid red 73
and Congo Red dye, the colorant dyes used in dyeing processes,
which are harmful to aquatic life due to their release in the water
bodies (Kaur and Kaur, 2017; EL-Adawy and Alomari, 2020).
It has also been observed that old leaves of the plant have a
greater ability to accumulate heavy metals compared to any other
plant parts (Almehdi et al., 2019). This suggests that C. procera
uses the metabolically less active leaves as sinks for heavy metals
(Almehdi et al., 2019).

Source of Fiber
Calotropis procera is an emerging source of natural fiber.
Efforts have been put to screen efficient genotypes from its
wild populations, which can be improved through conventional
breeding programs to develop suitable varieties for cultivation
(Majeed et al., 2020). Its fiber is natural, renewable with low
density, high strength, crude oil sorption capacity (about 75
times its weight), and hydrophobic-oleophilic characteristics
(Hilário et al., 2019; dos Anjos et al., 2020; Raghu and Goud,
2020). It is composed of 64.0 weight % cellulose, 19.5 weight %
hemicelluloses, and 9.7 weight % of lignin (Song et al., 2019).
The fibers exhibit thermal stability and can endure a temperature
up to 200◦C (Yoganandam et al., 2019). Alkali treatment may
enhance the tensile strength, modulus, and length of the fiber
(Raghu and Goud, 2020). The chemical polymerization of
polyaniline enhances fiber conductivity (dos Santos et al., 2020).
For increasing the absorption efficiency of organic oils and
solvents, the fiber can be treated with 0.1 M sodium hydroxide or
1% sodium chlorite (dos Anjos et al., 2020). Also, fiber length can
be improved by a cell expansion mechanism derived from plasma
membrane intrinsic proteins (Aslam et al., 2013).

Owing to its antimicrobial tendency, the bast fiber from C.
procera can substitute cotton (Gossypium sp.) wool for surgical
or stuffing purposes (Basu, 2020). Stuffing material for mattresses
and pillows can also be prepared from the fiber (Oun and Rhim,
2016). These natural fibers are also promising candidates for
the fabrication of composites (Yoganandam et al., 2020) and the
production of cellulose nanocrystals (Song et al., 2019). Reports
suggest that fiber of C. procera can also be used as a biosorbent for
the removal of contaminants due to oil spill (Hilário et al., 2019;
dos Anjos et al., 2020).

Synthesis of Nanoparticles
Green nanotechnology has become an emerging field for the cost-
effective and eco-friendly production of metallic nanoparticles
(NPs) for multiple industrial applications, and C. procera
has successfully facilitated their fabrication. Cysteine proteases
present in the latex were used to produce copper and gold NPs,
which showed excellent biocompatibility with HeLa, A549, and
BHK21 cell lines (Das et al., 2011; Harne et al., 2012). Silver NPs
prepared using latex of C. procera showed strong antibacterial
and antifungal activities (Mohamed et al., 2014). Cerium oxide
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NPs produced using C. procera flower extract have proved to be
effective against gram-negative bacteria (Muthuvel et al., 2020).
The therapeutic potential of silver NPs containing root extracts
of C. procera was found to be significant against 10 strains
of medically important bacteria and human epidermal primary
keratinocytes cell line due to the metal-phytochemical moiety
(Sagadevan et al., 2020). Similarly, iron NPs prepared in the leaf
extracts are found to be efficient, cost-effective, and eco-friendly
with strong antifungal activity (Ali et al., 2020a).

Miscellaneous
Calotropis procera is used as an alternative for fodder during dry
periods when other plant species are scarce (Frosi et al., 2013).
Its use for fuel, timber, and building purposes dates back to the
nineteenth century (Al Sulaibi et al., 2020; Batool et al., 2020).
The plant has also been acknowledged for its ornamental value
(de Oliveira et al., 2009). The plant yields valuable hydrocarbons
and holds the potential to produce bioenergy and biofuel, which
could be used as diesel substitutes in the future (Kumar, 2018).
Studies also recommend the use of its enzyme extract to tenderize
muscle foods such as pork, beef, and chicken (Rawdkuen et al.,
2013), dehair crude leather (Lopéz et al., 2017), and coagulate
milk for the production of fresh cheese (Abebe and Emire,
2020). C. procera leaves are also a potential source of natural
colorants for textile fabrics (Hussaan et al., 2017). Cuticular wax
derived from the plant is an eco-friendly hydrophobic material,
which can have several industrial applications (Sharma et al.,
2019). Apart from that, C. procera is one of the alternative
raw materials for making excellent varieties of handmade paper
(Aswal et al., 2020).

CALOTROPIS PROCERA AS AN
INVASIVE SPECIES

Calotropis procera is a native of Asia and Africa but widely
naturalized throughout the arid and semi-arid parts of the
world (as described in section “Geographical Distribution”).
Owing to its spread in new and larger areas, and adverse effects
on the native ecosystems, C. procera has been declared as an
invasive species in several regions of the world. It is a serious
environmental weed of South America, the Caribbean Islands,
Australia, the Hawaiian Islands, Mexico, Seychelles, and several
Pacific Islands (Dhileepan, 2014).

In South America, the plant was introduced for ornamental
and forage purposes; however, it has spread beyond the
introduced areas by colonizing habitats with different
environmental characteristics (Rivas et al., 2020). It is said
to be an aggressive invader of the Caatinga ecoregion (Al
Sulaibi et al., 2020) and others regions of northeastern Brazil
where it has been introduced at the beginning of the nineteenth
century (Frosi et al., 2013). The probability of its spread in the
Canga ecoregion of Espinhaço mountain ranges of Brazil has
also been suggested (de Oliveira et al., 2009). Due to its fast
growth and drought tolerant abilities, it has spread extensively
in the Caribbean Islands (Pompelli et al., 2019). Recently, it
has been reported to spread along the coastal dunes of the
Caribbean region of Colombia (Gracia et al., 2019).

In Australia, the plant may have introduced intentionally as an
ornamental or accidentally with the packaging of camel saddles
from India in the early 1900s (Dhileepan, 2014). It was reported
from Katherine, Northern Territory, for the first time in the
1950s and thereafter, it has spread up to 3.7 million ha in drier
parts of Northern Territory, Western Australia, and Queensland
(Dhileepan, 2014). It has invaded the rangelands and Savannahs
of Australia, threatening their biodiversity and productivity
(Campbell et al., 2013, 2020). In the Gulf of Carpentaria region,
its infestations have increased tremendously within the past
few years and it has now approached the Burdekin catchment
(Campbell et al., 2013). C. procera has also colonized in the
rehabilitated Mary Kathleen uranium mine site in Queensland,
Australia (Lottermoser, 2011). Ecological modeling based on
climate change projections suggests that the uninvaded regions of
northern and north-eastern territories of Western Australia and
north-western Queensland are at potential risk of invasion by C.
procera (Menge et al., 2016b).

Calotropis procera adopts an adult-persistence-population-
survival strategy, characterized by lesser recruitment of
fresh seedlings and relative stability of adult populations
(Farahat et al., 2015). It can grow in a wide range of open
habitats, such as along roadsides, watercourses, riverbeds,
coastal dunes, deserts, semi-deserts, scrublands, overgrazed
pastures, and disturbed areas (Dhileepan, 2014; Hassan et al.,
2015). Being a metallophyte, C. procera invades polluted
areas, contaminated sites, rehabilitated mines, ironstone
rupestrian fields, etc., as pioneer vegetation (de Oliveira
et al., 2009; Lottermoser, 2011). It also has a widespread
persistence near unmanaged crop fields and thus, it may
impose adverse effects on the crops through allelopathy
(Hassan et al., 2015).

A phenological study of C. procera stated that ornamental
and economic value of the plant leads to its distribution across
the globe and functional traits such as large leaves, wind-
dispersed seeds, hermaphrodite flowers, and ability to attract
pollinators have facilitated its invasion process (Sobrinho et al.,
2013). A difference in the reproductive phenology between the
individuals of invaded range and native range has also been
observed, with individuals present in the invaded range having
a longer reproductive window (Sobrinho et al., 2013). Plasticity
in phenological and functional attributes enables it to dominate
the urban ecosystems of South Cairo, Egypt (Farahat et al.,
2015; Pompelli et al., 2019). Disturbance levels in the soil
also affect seed establishment in C. procera, and therefore, its
uncontrolled spread is witnessed in areas subjected to natural and
anthropogenic interference (Menge et al., 2017b). Also, C. procera
is capable of defending itself against herbivores by producing
latex with toxic steroidal cardenolides and releasing irritating
volatiles (Fernandes et al., 2020).

Currently, management options practiced for C. procera
include mechanical removal, chemical control, and management
of invaded or susceptible areas. The plant can be removed
mechanically along with its roots to prevent reproduction via
suckers (Hassan et al., 2015). The use of mechanical equipment
that severs the root system can achieve a mortality rate of
up to 72% in C. procera, but the disturbance often promotes
new seedling recruitments (Campbell et al., 2020). Foliar
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herbicides such as imazapyr, metsulfuron-methyl, 2,4-D butyl
ester, fluroxypyr, triclopyr, and triclopyr plus picloram reported
up to 80% efficacy in controlling the plants when applied to
stump <5 cm in height (Vitelli et al., 2008). C. procera cannot
stand competition with tall weeds, bushes, and grasses, and
therefore, cannot invade intact grasslands (Menge et al., 2017b).
Management is suggested in colder months when pollinator
pressure is low and plants are not reproducing (Menge et al.,
2017a). Because the plant needs nearly 1 year to produce fruits
after emergence, conservation managers can manage its patch in
a given area by constantly targeting new seedlings for 2 years to
exhaust the seed bank (Bebawi et al., 2015).

In its native range, C. procera has several natural enemies
that may act as potential biocontrol agents for the plant.
A total of 65 insect species and five mite species have been
reported to attack C. procera (Dhileepan, 2014). Among the
herbivorous insects, larvae of Danaus spp. were observed to
bypass host defenses, and feed on healthy, rapidly growing C.
procera in the Brazilian Caatinga (Fernandes et al., 2020). The
fruit fly, Dacus persicus Hendel (Diptera: Tephriti7dae) is also
a prospective biological control agent for the plant in Australia
owing to its field host specificity, high reproductive capacity,
and damage potential (up to 100% damage to the immature
seeds and 62% reduction in the biomass of infested fruits) (Ali
et al., 2020b). Dhileepan (2014) suggested three pre-dispersal
seed predators, Paramecops farinosus Schoenherr (Coleoptera:
Curculionidae), D. persicus and Dacus longistylus Wiedemann
(Diptera: Tephritidae) as prospective biocontrol agents of C.
procera. Among the fungal pests, Passalora calotropidis is known
to cause leaf spot disease in C. procera (Kiran et al., 2020). Since
C. procera is an emerging invasive species of arid and semi-arid
regions, suitable management strategies are needed to be devised
and implemented as soon as possible so that spread and impact
of the plant can be timely contained.

CONCLUSIONS AND FUTURE
PROSPECTS

Calotropis procera is a plant with multifaceted biological
characteristics that make it a medicinally and socio-economically
important species on one hand and a potential invasive species
on the other. The present discussion is meant to appraise
its expanding global distribution, significant ecological and
biological traits, applications in traditional and advanced fields,
and infestation as an environmental weed. Also, it is an attempt

to recognize the lesser-explored aspects and knowledge gaps in
ongoing research.

Although pharmacological and industrial applications of
the plant have received due attention, its general biological
and ecological attributes (particularly those focusing on the
adaptations or plasticity) have not been well-investigated. Also,
the toxicity-bioactivity relationship of C. procera, which plays a
key role in validating its medicinal aspects, has not been focused
upon. Evaluating these basic facets may improve its commercial
utilization and pave ways for novel applications. At the same
time, covering these knowledge gaps can help understanding its
invasive behavior and potential environmental or biodiversity
threats that it can pose in the future.

In addition to that, the current and potential spread of
C. procera is required to be mapped to carry out its timely
management or containment, wherever required. The spread of
C. procera can be effectively controlled in the invaded ranges
via mechanical, chemical, or biological methods, followed by
constant monitoring over the next few years to avoid new
plantlets. Recognizing the plant as an important environmental
weed can supplement its management programs at research,
legislative, stakeholder, and local levels. Also, promoting its
utilization at commercial and non-commercial scales can be an
economically viable or better to say, economically beneficial way
of its management.
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