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The study of complex biological systems necessitates computational modeling

approaches that are currently underutilized in plant biology. Many plant biologists

have trouble identifying or adopting modeling methods to their research, particularly

mechanistic mathematical modeling. Here we address challenges that limit the use

of computational modeling methods, particularly mechanistic mathematical modeling.

We divide computational modeling techniques into either pattern models (e.g.,

bioinformatics, machine learning, or morphology) or mechanistic mathematical models

(e.g., biochemical reactions, biophysics, or population models), which both contribute

to plant biology research at different scales to answer different research questions. We

present arguments and recommendations for the increased adoption of modeling by

plant biologists interested in incorporating more modeling into their research programs.

As some researchers find math and quantitative methods to be an obstacle to modeling,

we provide suggestions for easy-to-use tools for non-specialists and for collaboration

with specialists. This may especially be the case for mechanistic mathematical modeling,

and we spend some extra time discussing this. Through a more thorough appreciation

and awareness of the power of different kinds of modeling in plant biology, we hope to

facilitate interdisciplinary, transformative research.
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INTRODUCTION

Generating knowledge requires the integration and contextualization of information: “A collection
of facts is no more a science than a heap of stones is a house” (Henri Poincaré). The
increasing availability of data provides opportunities as well as challenges to integrate information
and properly describe complex biological systems. Mathematical modeling is the process of
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describing complex systems in a logically consistent and explicit
manner using a quantitative framework (Nijhout et al., 2015).
Such models can generate testable hypotheses by relating
possible mechanisms and relationships to observable, measurable
phenomena (Bennett et al., 2019). In addition, models are used
to identify non-intuitive relationships, emergent properties, and
the conditions under which phenomena arise. In the first half
of the paper, we address questions that plant biologists may
have about modeling (sections 1–4), followed by challenges to
overcome hurdles (sections 5–9). Here, we begin by dividing
the field of mathematical modeling in plant biology into
two categories: pattern-finding and mechanistic mathematical
models (section 1). We then address how these types of
models are used in different subfields of plant biology, and
how pattern and mechanistic mathematical models complement
each other (section 2) (Bucksch et al., 2017; Passot et al.,
2019). Then we further describe the scientific value of modeling
(section 3). We then specifically focus on modeling approaches
that are under-used in plant biology (section 4). In the
second half, we identify the current challenges and potential
solutions to broadening engagement with models in plant
biology, such as the required expertise and the difficulty finding
modeling collaborators.

REVIEW OF MODELING IN PLANT
BIOLOGY

1. Types of Models
To facilitate communication, we divide computational models
roughly by their utility to plant biology—to study patterns or
mechanisms. Pattern models test hypotheses about spatial,
temporal, or relational patterns between system components
(e.g., individual plants, proteins, genes). The mathematical
representation of these hypotheses is based on assumptions
about the data and statistical properties (such as regulatory
network topology Tyson et al., 2019 or appropriate probability
distributions for phenotypic data Kirkpatrick et al., 2016).
Thus, pattern models are typically more “data-driven,” i.e.,
involving finding patterns from the data. Pattern models draw
from many disciplines such as bioinformatics, statistics, and
machine learning (Zakharova et al., 2019). Many areas of
plant biology are studied with pattern models, including the
development of genome annotations, phenomics, proteomics,
and metabolomics. Big data problems are often addressed
using methods such as dimension reduction (e.g., clustering of
expression data), latent feature extraction, or machine learning
(e.g., neural networks) (Hériché et al., 2019). Spatially-derived
patterns, such as plant anatomical structures, are typically
addressed using topology and geometry (Amézquita et al.,
2020). The identified patterns (e.g., correlation between x
and y in Figure 1) constrain the set of possible hypotheses
about mechanistic relationships that can explain these
observed patterns.

Mechanistic1 mathematical models describe the underlying
chemical, biophysical, and mathematical properties within a
biological system to predict and understand its behavior
mechanistically (Keurentjes et al., 2011). Examples of some
well-knownmechanistic relationships include density-dependent
degradation that produces exponential decay; the law of
mass-action in biochemical kinetics; and logistic population
growth. Mechanistic mathematical models are descriptions
of real systems but must balance realism with parsimony.
Parsimony refers to the simplest but necessary core processes
and components (e.g., Occam’s razor)—itself a knowledge-
generating process. Parsimonious models permit the study of
relationships between the system’s hypothesized structure and
the resulting behavior of the system (gomez and Ginovart, 2009).
Fully realistic models are rarely possible, given the number
of biological unknowns, and present computational challenges.
For pattern models, parsimony is not always an issue. Some
statistical approaches may penalize high-dimensional models,
but other approaches (such as neural nets) may use thousands
of parameters.

Many mechanistic mathematical models are ordinary
differential equations (ODEs, Figure 1). In essence, these models
specify how components change with respect to time or space,
such as biochemical reactions changing the concentration of
proteins. The reactions between components are controlled by
one or more rate parameters. These parameters represent the
strength and directionality of an interaction or reaction, and
may be estimated from data or literature. In addition to specific
measurements, we can compare model predictions to our
conceptual understanding of how the system works. Different
mathematical formulations can be used to describe different
biological properties, and affect how the inputs influence the
model components.

Mechanistic mathematical models permit the rigorous study
of our hypotheses about phenomena without data. For example,
in Figure 1, a mechanistic mathematical model could predict
what gathered data might look like by simulating the impact
of predator or prey interactions over a suite of possible values
and population sizes. The example in Figure 1 can also predict
the expected data given the experimental sampling times and
variability of the system. Through this mechanistic mathematical
allows for the elimination of possibilities based on current
understanding of the system before data are collected—even
guiding the experimental design (Braniff and Ingalls, 2018).
Mechanistic mathematical models have yet to reach their full
potential in plant biology (Holzheu and Kummer, 2020). This is
at least partly due to the challenges associated with the lack of
quantitative education in biology curriculum (Bialek, 2004) and

1The term “mechanistic” is often used to describe models that incorporate a plant’s

physiological and regulatorymechanisms (Spitters, 1990; Jones et al., 2003; Keating

et al., 2003; Estes et al., 2013). This definition of “mechanistic” is distinct from the

concept of mathematical abstraction discussed in this review. These two usages

of the term are not mutually exclusive, however, as some models use mechanistic

mathematical models related to plant regulatory mechanisms (Roodbarkelari et al.,

2010; Dreyer et al., 2019).
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FIGURE 1 | Pattern and mechanistic models approach the same problem in different ways, producing different inferences. Here, we use the system of a predator and

its prey for illustration. (A) A pattern model’s analysis of data might show that generally the number of prey increase as the number of predators decrease. This result

might be non-intuitive and difficult to interpret on its own. (B) Hypothesized relationships between the predator and prey suggest mechanisms that may be driving the

dynamics. (C) Mechanistic mathematical models represent the interactions driving this process using a system of equations. Simulation of the theoretical system can

help us understand non-intuitive results. (D) The Lotka-Volterra predator-prey model predicts a cyclical feedback pattern between predator and prey. Sampling

randomly from the true relationship (E) produces the data snapshot in (A).

communicating mathematical representations of the models to
biologists (Fawcett and Higginson, 2012).

2. Modeling Approaches in the Plant
Sciences
While pattern and mechanistic mathematical models
complement each other, there are far fewer mechanistic
mathematical models being used in plant biology (with a
few exceptions). Several limitations to their adoption exist
- but before we address these issues, we will establish why
mechanistic mathematical modeling is relevant to you and
your research.

2.1 Gene Expression
Pattern models are widely used in plant science to study genetics
and gene expression. These models exploit statistical detection
of patterns, often through analysis of variability, combined with
computational algorithms that allow their application to large
datasets across genotype and time. Currently, one of the most
abundant types of data is from RNA sequencing (RNA-seq)
approaches. RNA-seq is used to measure transcript abundance at
a genome-wide scale, examine degrading RNAs, RNA structure,
post-transcriptional modifications, and small RNA populations.
Software such as DESeq2 deploy general linearized modeling
approaches, often utilizing a negative binomial distribution, to
identify genes whose expression changes under the influence
of a treatment condition (DESeq2) (Love et al., 2014). Pattern
modeling can integrate molecular (e.g., transcript abundance)
and physiological phenotypes to predict causal genes underlying
a trait of interest through the identification of correlations.
For example, transcriptome-wide association studies (TWAS)

showed that altered transcript abundance explains half of the
variation in a number of metabolic and agricultural traits in
maize (Kremling et al., 2019). In addition, pattern models
have been used to identify genes that influence phenotypes
such as yield through their impact on the metabolome using
metabolomics QTL (mQTL) (Wei et al., 2018). Identifying
functionally correlated transcripts from small populations of
samples, or time series data, are typically performed using pattern
modeling approaches such as weighted gene co-expression
analyses (WGCNA; Langfelder and Horvath, 2008), or circadian
aware statistical models such as JTK_Cycle (Hughes et al., 2010).
In the realm of single-cell informatics, statistical models such as
Seurat or Monocle allow the tracking of cells along development
without a priori knowledge of the specific transcripts that define
those processes.

In the analysis of gene expression, pattern models typically
look for linear relationships between variation in gene expression
across a putative driver of that variation, such as different
genotypes. However, the underlying processes that drive plant
adaptation and behavior are very nonlinear, and statistical
approaches that focus on correlations are limited in their
discovery ability (Nijhout et al., 2015). Besides, correlation
in pattern models is not causation. Mechanistic mathematical
models then come into focus as useful to understand the
processes that may be driving what we observe. For example,
in a mechanistic mathematical model, developmental timing
stochasticity explains “noise” and patterns of gene expression in
Arabidopsis roots (Greenwood et al., 2019). This work is a nice
example of how patterns andmechanisms inform each other, and
we anticipate many more discoveries of this type thanks to the
interplay between these models in the future.
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2.2 Gene Regulatory Networks
Predicting gene regulatory networks (GRNs) is a core interest in
plant systems biology (Haque et al., 2019). Biological responses
to internal and external signals are mediated by transcription
factors (TFs), some of which regulate the expression of hundreds
of genes (Bilu and Barkai, 2005). The structure and dynamics
of TF-gene and TF-TF interactions control diverse biological
processes ranging from spatial patterning in tissues (Adrian
et al., 2015), to stress responses (Song et al., 2016). Due to the
sheer number of interacting components, TF-gene interactions
are often represented as directed networks (GRNs). The past
decades have seen numerous pattern modeling approaches for
inferring GRNs (GENIE3, etc, best performers of DREAM4)
from a variety of sequencing data (gene expression data from
RNAseq, TF occupancy data such ATACseq, etc). Although
inferred GRNs have significantly improved our understanding
of how plant gene expression is regulated, these GRNs are
static and thus limited in providing mechanistic insight into
the biological process itself. Static networks cannot be used to
explore the temporal dynamics of processes, and fail to capture
the interactions between GRN components.

GRNs have been successfully implemented beyond static
representations through the incorporation of mechanisms.
Mechanistic mathematical models can be generated from data-
focused pattern modeling techniques, and these models in turn
predict patterns that can be validated (Pratapa et al., 2020).
The mechanistic mathematical model represents the GRN as
a dynamic network which can be simulated by altering the
state (Boolean ON or OFF, i.e., bound or not bound) of each
TF in the network—an approach that can accurately capture
TF regulatory mechanisms (Albert et al., 2017; Pratapa et al.,
2020). In this manner, mechanistic networks can provide insight
into various network behaviors and cellular decision-making.
Mechanistic mathematical models can also be expanded to
include metabolomic components of regulatory networks, such
as the Boolean network model of the ABA drought stress
regulatory network (Albert et al., 2017). This approach requires
extensive curation of genetic and metabolomic activity, but
produces a system that predicts a wide variety of mutants on the
network behavior.

2.3 Signal Transduction Pathways
Mechanistic mathematical models are popular in this area of
plant biology. At this scale, plant biologists are more able to
collect temporal data with sufficient time resolution to capture
the dynamics of system components. At larger scales, from in
vivo tissue to organs or whole plants, this may require many
sampling points and data types that push the boundaries of
existing technologies. Pattern models are rarely applied at this
scale of plant biology, often asking questions about spatio-
temporal gene expression or regulation patterns (Geng et al.,
2013), or developmental patterning (Di Mambro et al., 2017).
Models of cellular processes include circadian clock and signaling
(Grima et al., 2018), the cell cycle (Roodbarkelari et al., 2010),
gene expression (Greenwood et al., 2019), development and cell
fate (van Berkel et al., 2013), membrane batteries (Dreyer et al.,

2019), photosynthesis (Brian and Hahn, 1987), and carbon flux
through metabolic pathways (Allen et al., 2009; Orth et al., 2010).

2.4 Physiology
Dynamic processes are the key phenomena of interest in plant
physiology. From how water moves throughout a plant to
how plants grow, plant physiology is concerned with the flow
and change of matter and energy throughout the plant body.
Mathematical modeling is necessary to describe these processes
precisely and in detail, thus modeling is popular in this area of
plant biology.

The regulation of stomatal aperture is an excellent example
of mechanistic modeling in plant physiology. Stomatal aperture
controls the rate of carbon dioxide assimilation (and therefore
photosynthesis) but also controls the rate of transpiration
(and therefore plant water balance). Since these processes
ultimately determine the productivity and water use in crops
and forests alike, mechanistic quantitative descriptions provided
by mathematical models are necessary for agriculture and
climate forecasting. The regulation of stomatal aperture is also
a microcosm of approaches to plant physiological modeling
(Buckley, 2017), ranging from the phenomenological (e.g., Jarvis,
1976; Ball et al., 1987) to the biochemical/reductionist (Hills et al.,
2012) to teleonomic/non-reductionist (Cowan and Farquhar,
1977; Manzoni et al., 2013; Wolf et al., 2016; Sperry et al., 2017;
Mrad et al., 2019).

A variety of mathematical models for many plant
physiological processes have been proposed such as leaf
and canopy photosynthesis (Hikosaka, 2016), xylem hydraulics
(Mrad et al., 2018), phloem translocation (Stanfield et al., 2019),
growth morphology (Prusinkiewicz and Runions, 2012; Sievänen
et al., 2014; Prusinkiewicz and Barbier de Reuille, 2018), carbon
allocation dynamics (Le Roux et al., 2001; Franklin et al., 2012;
De Kauwe et al., 2014; Merganic̆ova et al., 2019), genotype-to-
phenotype mapping (Diane et al., 2019), and carbon-to-nitrogen
allocation (Chen et al., 1993; Dybzinski et al., 2011; Barillot et al.,
2016). In addition to physiological processes, these examples
range in biological scale, computational complexity, and
mathematical sophistication; while commonalities exist along
each of these axes, general statements are difficult. However, this
diversity suggests a research program aimed at synthesis and
provides an excellent source of ideas for that goal.

2.5 Shape and Morphology
A variety of mathematical techniques from topology and
geometry are used to describe plant shape and exploit the
analytically common or distinguishing characteristics of shapes
as phenotypic traits (Bucksch et al., 2017; Mao et al., 2018).
Technically, morphological modeling is realized through image
processing as a means to extract plant geometry, segmentation or
computer simulation to characterize relations between elements
like connectivity and hierarchy of branches, arrangements of cells
in a space or location of molecules. The field of morphological
modeling seeks to understand how underlying mechanisms,
including gene regulatory networks, cellular signaling, organ
signaling, and biophysical limitations, interact with physical
growth processes, and how this ultimately produces the overall
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size and shape of different plant organs (Chickarmane et al., 2010;
Bucksch et al., 2017; Hong et al., 2018).

Persistent homology is a topological pattern modeling
technique that describes a relation between plant morphology
and a known expanding mathematical function. For example, a
circle that continuously increases its diameter from the center
of mass of a leaf outline can record the diameters at which
serration of the leaf begins (birth) and ends (death) by tracking
the intersections between leaf outline and the circle. In that way,
subtle differences in the regularity of serration can be detected
and potentially linked to genes controlling the serration pattern
(Mao et al., 2018). Similarly, the same technique can be used
to quantify the branching complexity of root systems in 2D
images by recording loops in the skeleton of the 2D projection.
The difference between birth and death diameters allows for
insight into size variation within loops and therefore summarizes
branching frequencies and root density distribution within the
root system in one mathematical construct.

Mechanistic mathematical models can enhance the
information content and prediction of shape development.
For example, the FiberWalk (Bucksch et al., 2017) characterizes
the interaction between elongation and lateral expansion
processes of tip-driven growth of a branch. The model predicts
that tip-driven growth does not result in an equally thick branch
and can not reach all spatial locations, providing mechanistic
interpretation of some of the observed variation in measured
phenotyping data. Both models and segmented images of plant
geometry can be used in mechanistic models of plant functions.
This approach is often utilized in root-soil models where the
geometry of the root systems are hypothesized to play an
important role in the root function (e.g., water and nutrient
acquisition and stability) (Dunbabin et al., 2013). For example,
in the FiberWalk model, branching was found to be a necessary
process to optimize nutrient and water uptake below ground
(Bucksch et al., 2014).

2.6 Root-Soil Models
Understanding the structure and growth of roots is important for
improving plant productivity. However, the difficulty involved in
imaging roots in opaque soil motivatesmechanisticmathematical
modeling of root growth and the resulting root architecture
(Schnepf et al., 2018). These models (often called “root-soil”
models) need both a mechanistic description of plant and soil
processes to understand the function of root systems. Root-soil
models are a good example of mechanistic mathematical models
applied across scales (e.g., root branching and the biophysical
processes involved in water uptake), as well as the seamless
transition from the pattern modeling approach of morphology
to mechanistic mathematical modeling.

Factors such as water flow in the xylem, transpiration, and
diurnal rhythm often play an important role in root-soil models
(Schnepf et al., 2012; Hayat et al., 2020). For example, if water
is stored throughout the depth of the soil, deeper rooting
growth patterns are preferable; while if the soil has a low
water-retention capacity, dense and shallow rooting is preferable
(Leitner et al., 2014; Tron et al., 2015). Roots can be represented
by the root length/surface density (unit length/surface of root
per unit volume of soil) as a function of soil depth and time

(Ruiz et al., 2020a; Fletcher et al., 2021) or image-resolved
geometries (Ruiz et al., 2020b). The function of root, root hairs
and soil aggregate geometries can be studied using image-based
modeling (a mechanistic approach) using high-resolution 3D
imaging of roots in soil, typically X-ray computed tomography.
For example, an image-based model found that root hairs
and the root contributed equally to phosphorus uptake due
to the larger surface area of the root compared to the root
hairs. Image-based modeling can complement root imaging
studies by solving the mechanistic mathematical model on
the image-derived computational mesh, and comparing model
predictions to morphological measurements of the root structure
(McKay Fletcher et al., 2020). Root systems which had root
tips in close proximity obtained the most additional phosphorus
uptake due to organic-acid exudation. In summary, mechanistic
mathematical models are also powerful vehicles to incorporate
multi-scale processes, heterogeneous data such as soil, and
complex geometries and are a future direction of focus for the
field (Roeder et al., 2011; Bucksch et al., 2017; Hong et al., 2018;
Ruiz et al., 2020b). Additionally, mechanistic models can be
coupled with imaging studies and growthmodels to link observed
plant structure to underlying function.

2.7 Whole Plant and Agronomic Traits
Crop models (CM) attempt to describe the development,
physiology, yield, and agronomic qualities of crop plants, based
on genetics, environment, and management. CMs are used by
geneticists and breeders to understand the impacts of genotype
and environment on traits such as yields, pathogen resistance,
and agronomic quality, or to further the understanding and
experimental direction for a crop plant of interest (Asseng et al.,
2014). CMs often incorporate a variety of inputs, including
nutrient availability, radiation, weather, genetic influences on
growth, influences from pests and pathogens, and/or field
management practices (Jones et al., 2003; Asseng et al., 2014;
Donatelli et al., 2017). To synthesize these complex inputs into
a cogent model, crop modelers utilize both mechanistic and
pattern models.

CM are unique in that they are neither purely patternistic
nor mechanistic, often integrating both. Typically, mechanistic
mathematical models are incorporated as “sub-models” of a
compartment (such as weather patterns or photosynthesis)
within a larger empirical modeling structure, often including
pattern modeling components For example, DSSAT (Decision
Support System for Agrotechnology Transfer) models simulate
crop growth by utilizing mathematical representations of soil
and weather relations alongside empirical findings for specific
crops’ growth habits (Jones et al., 2003). Thinking about CM
may be useful to experimentalists learning about mechanistic
mathematical models as an “exception that clarifies the rule.”
In the future, we expect the field of CM to become increasingly
mechanistic, particularly as computational limitations decrease.
The crops in silico project has begun to visualize and simulate
biological processes, from the molecular to ecosystem-scale
(Marshall-Colon et al., 2017)2. These efforts have the potential
of producing fully mechanistic mathematical models, which

2In Silico Plants. Available online at: https://academic.oup.com/insilicoplants
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could inform further experimentation and research directions.
Since the two types of models we lay out here are a spectrum,
rather than a dichotomy, considering the way that CMs
integrate both areas of modeling may be helpful to clarify the
conceptual differences.

WHY MODELING IS USEFUL

3. How Models Can Contribute to Your
Research
Hopefully you now see some intersection and value in pattern
and mechanistic mathematical models with your research. Even
so, models are extra, potentially new work involving learning
coding, mathematics, and other quantitative theories—what do
they bring to the table in general? We argue that mechanistic
mathematical models are not only the natural next step to pattern
model discoveries widely used already, but also function in a
unique manner to advance plant science for four reasons.

1. Abstraction of complex systems to produce tractable

problems We begin with a list of facts and information.
This gets reduced and simplified depending on the research
question. This abstraction process can be helpful to enhance
our understanding of biology, addressing questions such
as the minimum required components to produce a given
phenomenon including feedback, oscillatory behavior, or
spatial patterning. For example, a mechanistic mathematical
model of auxin signaling in the formation of root nodules
predicted ‘signature’ patterns that allow experimental
discrimination between the possible underlying mechanisms
driving the behavior (Deinum et al., 2012).

2. Predicting emergent phenomena The interesting parts of a
system are when you begin to observe unexpected behavior.
Such behavior helps us identify the significance of the roles
of specific components within a system. Theoretical tools can
be applied to mechanistic mathematical models to allow us
to make claims about qualitative and emergent behaviors of a
system. For example, bifurcation analysis predicts previously
unknown protective relationships between pathogens in a
model of disease transmission (Chen et al., 2018) or how
precipitation regimes give rise to distinct landscape vegetation
patterns (Tarnita et al., 2017). Mathematical phenomena like
switches, bi-stability, and attractors (Saadatpour et al., 2016;
Rata et al., 2018) may produce additional emergent behaviors
that otherwise may go unnoticed with standard experimental
exploration of the stimulus space. Additional analytical or
numerical study can predict “breaking point” or “unrealistic”
behavior. If a predicted “breaking point” is not observed
experimentally, the model’s representation needs to be re-
evaluated. This allows us to avoid wondering if “maybe it just
wasn’t enough of a [stimulus]” when designing experiments.

3. Suggesting mechanisms not present in our intuition of a

system After formulation of a model describing a system, we
may notice that it critically disagrees with our observations.
In this case, we may question the suitability of the pattern
model for the data without considering the disagreement
biologically informative. On the other hand, disagreement

between a mechanistic mathematical model and the data
often suggests our understanding of the system may be
wrong. Mechanistic mathematical models are quantitative
representations of our hypotheses. Disagreement between
mechanistic mathematical models and data may also predict
the existence of relationships not previously considered as
critical to producing the phenomena or dynamics of interest,
or the mathematical representation is not appropriate. The
back-and-forth between quantifying our understanding via
mechanistic mathematical models and assessing agreement
with data has the potential to produce new biology, new
mathematics, and new mathematical biology questions to
be pursued.

4. Integrating knowledge and understanding across system

scales Experimentation reveals how a particular component
interacts with other components in the system. Pattern
models can reveal these interactions, while mechanistic
mathematical models can test them. One of the strongest
benefits of mechanistic mathematical modeling is the ability
to incorporate multi-disciplinary concepts, such as chemistry
(Hills et al., 2012; Dale and Kato, 2016), biophysics (Deinum
et al., 2012; Amiri et al., 2019; Dreyer et al., 2019), and multi-
scale processes (Feller et al., 2015). Biological systems are
necessarily controlled by chemical and physical processes, and
in certain cases these effects should not be ignored.

4. Mechanistic Mathematical Modeling Is
Under-Utilized in Plant Biology
The biggest challenge to the wider adoption of mechanistic
mathematical modeling in plant biology is implementation.
Indeed, it is often challenging for non-modelers to specify
a modeling approach, let alone develop the necessary
models. Experience is needed to propose a minimal model
of the system, identify the appropriate experimental design,
choose an appropriate mathematical representation, and carry
out computational and mathematical analysis to study the
resulting model.

Mechanistic mathematical models are usually specific

Pattern models can often be useful as “black-boxes” (e.g.,
an input of data into a pattern model, an output of a p-
value). However, mechanistic mathematical models are typically
very specific. While mechanistic mathematical models excel
at making predictions for a variety of contexts, analysis of a
given data set often requires modifications. Their utility results
from synthesizing biological concepts into a coherent whole
and applying them to specific phenomena or experiments.
Mechanistic model development requires an understanding of
both the biological system and the mathematics; pattern models
can be developed for many applications since correlations in
data exist independent of what the data represent. For example,
an RNA-seq approach could be applied to any species, for any
environmental condition to understand gene expression patterns.
A mechanistic mathematical model would need to be specific to
the TFs and genes of interest; further, environmental stressors
cause changes in different response pathways, necessitating
completely different models.
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Model development requires math (to some extent)

Mechanistic mathematical models require math, which may
be intimidating—whether you are writing one yourself, or
trying to collaborate with a modeler. A good background to
mechanistic mathematical modeling includes understanding the
theoretical basis as well as its practical relevance to plant
biology and their implementation and validation. For example,
ODE modeling uses mathematical biology theory such as mass-
action kinetics or standard mechanistic equations mentioned
earlier in section 1; mathematical concepts from calculus and
differential equations; methods to simulate and solve equations;
and computational methods to estimate parameters, from least-
squares to Bayesian and machine-learning approaches. If you are
a biologist interested in mathematics, a good starting point is
Ledder et al. (2013).

Collaborating with mathematicians Traditionally,
mathematicians who developed mechanistic mathematical
models were experts in a field of theoretical math. This means
that biologists seeking to develop mechanistic mathematical
models for their research needed a deep understanding of
modeling for a productive collaborative discussion to take place.
Alternatively, biological problems would have to reach the ears
of applied mathematicians, who then sought out biologists.
Fortunately, we now have specialists in computational plant
biology, as well as mathematical modelers working on similar
phenomena in other biological systems. This greatly reduces,
although does not eliminate, collaborative issues.

SOLUTIONS TO COMMON CHALLENGES

5. Modeling When You Don’t Like Math
It’s an old stereotype that people go into the field of biology
because they don’t like math (Wachsmuth et al., 2017). Rest
assured—you can still model without doing math. In some
cases, models can be developed using software for a wide
array of biological systems without an in-depth knowledge in
the underlying mathematics, including biochemical questions
(COPASI3); signaling, cellular, and multicellular questions
(VCell4 and SBML Hucka et al., 2003); (see Figure 2) and spatial
and ecological questions (LANDIS II5). These tools automatically
translate diagrams and rules into equations, with anywhere
from minimal to high levels of coding required. Tools are also
developed to study special systems in plant biology, such as
stomatal regulation (Hills et al., 2012). While research questions
often still require the attention of a modeler, these approaches
would certainly help facilitate conversation with, if not totally
suffice as the model.

6. Finding and Collaborating With Modelers
To facilitate collaboration for those cases where more complex
analysis is required, we recognize the importance of the personal
connection. Collaborative incubators and workshops have
increasingly sprung up to meet this need, such as Finding Your

3http://copasi.org/
4https://vcell.org/
5http://www.landis-ii.org/

Inner Modeler (FYIM), Probability Meets Biology (Probability
meets biology), Quantitative Cell Biology network (QCB
Workshops QCBNet), and NIMBioS workshops6. However,
more work is needed. Math can be scary, and we need
human connection. To partially address this we are developing
a collaborative website, https://www.initmathbio.com. This
website works in conjunction with an open database of
participants at previously held collaborative workshops we have
held. We hope that with this website, you will be able to describe
your problem, obtain feedback from subject matter experts, and
find collaborators to jump-start your modeling. Some aspects
of collaboration are particularly challenging, and we offer the
following suggestions:

1. Don’t assume anything is not important The experimental
assumptions and methods are often just as (if not more)
important than the system itself. Models often have to reflect
the experimental design as well as the biology of interest (Dale
et al., 2016).

2. Specify research questions and their impact Why do you
want to model your system? What is currently unknown,
and what significance does that have to the field? Often
experimental biologists want a model for vague reasons (e.g.,
“surely I have enough data tomodel”). Hopefully, after reading
this paper, you are now aware that modeling comprises a vast
array of approaches; a collaboration will be more efficient if a
model can be contextualized.

3. Be patient The interaction between modelers and
experimentalists is a learning process that involves both
parties. Modelers must develop domain knowledge relevant
to the biological question, while experimentalists need to
get familiar with the abstract thinking (simplification) in the
modeling approach. Many conversations will be required
before model development begins.

7. Appreciating How Pattern and
Mechanistic Mathematical MODELS Fit
Into the Scientific Method
Modeling should be a back and forth between model and
experiment, and an iterative improvement over previous models
in order to answer a question (Figure 3) (Mogilner et al., 2006;
gomez and Ginovart, 2009; Tyson and Novak, 2010). This
integrative process is called the modeling cycle, and mirrors the
scientific method (hypothesis, experiment, evaluation, repeat).
The modeling cycle starts with composing a preliminary
model of the phenomena of interest (“hypothesis”). The model
may be a network of components with interactions based
on scientific theory, existing data, or an existing model.
The model is compared to experimental data, or used to
predict experimental designs where certain outcomes will
occur (“experiment”). The resulting model can then be used
to adjust our experimental designs to fill knowledge gaps
(“evaluation”). The back and forth process between model
predictions, in silico simulations, and experimentation produces

6NIMBioS Investigative Workshops. Available onlie at: http://www.nimbios.org/

workshops/workshop_calendar
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FIGURE 2 | Example of using VCell. A conceptual model of plant mycorrhizal trade is developed (A). A model of this system can be developed in VCell4 through a

graphical interface (B) and text-based descriptions of rules, such as reactions and movement. Reproduced from (Schott et al., 2016). Over 800 published models,

including from Schott et al. (2016), are available to run immediately upon installation of VCell.

gradually improved models and depth of biological inference
that lets the utility of modeling shine (Mogilner et al.,
2006; Tyson, 2007; Keurentjes et al., 2011; Ratushny et al.,
2011; Brodland, 2015; Long, 2019; Holzheu and Kummer,
2020).

Rather than thinking of mathematical models as black
boxes that data is shoved into, plant biologists of the
future need to “move seamlessly between computational and
cell biology” to understand how models predict results,
drive design, and produce hypotheses (Short, 2009). This is
challenging due to social and technical difficulties associated
with quantitative proficiency. Fortunately, it has been shown
that math appreciation increases with its utilization (Marsteller,
2010; Chen et al., 2018). Recent emphasis on integrative and
translational research and large collaborative groups or hiring
clusters facilitate the collaborative, “non-specialized” nature of
modern science and facilitate those transitions.

8. Consulting Modelers Before
Experiments Take Place
One of the most under utilized benefits of models is their ability
to predict interesting behavior based on a preliminary model.
Although this collaborative approach necessitates additional
upfront work, or the willingness of the experimental biologist to
get their hands dirty with math, the outcome is far preferable to
an experiment that won’t let us fully interrogate the patterns or
mechanisms in question.

One approach to implementing this successfully is model-

based experimental design. Designing an experiment that will
facilitate modeling and maximize its inferential power isn’t
always intuitive, and we recommend consulting amodeler during
the design process to ensure the model provides insight to the
research question (Drubin and Oster, 2010; Braniff and Ingalls,
2018). Other considerations of experimental design include how
the existing model can be improved, via its structure, parameter
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FIGURE 3 | Pattern (L) and mechanistic mathematical models (R) have different strengths that fit into the scientific method. Pattern models test predicted patterns

based on biological theory. Observed patterns then allow us to form a more detailed theory on possible mechanisms driving these patterns. Mechanistic mathematical

models allow us to identify ways to discriminate between these possibilities. Once validated, the biological theory is updated further, and new patterns are predicted.

estimates, or assumptions. There are different methods of
evaluating its quality—such as frequentist or Bayesian statistical
approaches (Barnes et al., 2011), control theory (Thomas et al.,
2019), optimization theory (Wang et al., 2010), sensitivity
analyses (Barnes et al., 2011; Heinemann and Raue, 2016) - that
may affect the amount or type of data required.

Models don’t need a ton of data to be useful—but they need
the appropriate data. Sometimes what is a traditional, convenient,
or intuitive design to an experimental biologist is not appropriate
or sufficient for the modeling approach. For example, when
addressing questions of how a range of a stimulus impacts
behavior, it would be better to use a model to determine where
interesting or limiting behavior might occur. It is common for
modelers to be humorously critiqued for asking for impossible
data—communication is required to establish the happy medium
between the two perspectives and maximize our science. If a
model is sufficiently precise it can describe the relationship that
will appear in the data we do have, rather than the data we wish
we had.

9. Beyond Specialization: Plant
Computational Biology as a Discipline
The issue of improperly designed and implemented experiments
is a well-known problem in statistics. Far from being an esoteric
concern, improper experimental design limits statistical power

and depth of inference. Even scientists who are careful with
their analyses may run into problems. If an experiment is
poorly planned or executed, computational analyses (especially
toolboxes or software) will often spit out something. Although
mechanistic mathematical models are rarely applied as black
boxes, they can be misused in other ways. The quality of a
model depends on the practical implications of those flaws
for prediction, inference, or decision making. We need plant
biologists to be able to evaluate the purpose, utility, and basic
practices involved in modeling.

CONCLUSION

Computational thinking is a fundamental skill for plant
biologists (Wing, 2006; Schatz, 2012). It complements
the theoretical nature of biology and how we understand
how things work through the process of abstraction (Wing,
2006). With education and increased access to computational
resources, mathematical and computational methods will
become more common throughout plant biology. The field of
plant computational biology meets this need, where applied
mathematical biologists and computational biologists are experts
in both mathematical and computational tools, and their
applications to plant biology. We urge plant biologists interested
in enhancing their research with computational modeling to
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meet our challenges, appreciate the science and the specialist
nature of modeling, and start collaborative conversations
with patience.
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