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Phenotyping crop performance is critical for line selection and variety development

in plant breeding. Canola (Brassica napus L.) flowers, the bright yellow flowers,

indeterminately increase over a protracted period. Flower production of canola plays

an important role in yield determination. Yellowness of canola petals may be a

critical reflectance signal and a good predictor of pod number and, therefore,

seed yield. However, quantifying flowering based on traditional visual scales is

subjective, time-consuming, and labor-consuming. Recent developments in phenotyping

technologies using Unmanned Aerial Vehicles (UAVs) make it possible to effectively

capture crop information and to predict crop yield via imagery. Our objectives were to

investigate the application of vegetation indices in estimating canola flower numbers and

to develop a descriptive model of canola seed yield. Fifty-six diverse Brassica genotypes,

including 53 B. napus lines, two Brassica carinata lines, and a Brassica juncea variety,

were grown near Saskatoon, SK, Canada from 2016 to 2018 and near Melfort and Scott,

SK, Canada in 2017. Aerial imagery with geometric and radiometric corrections was

collected through the flowering stage using a UAV mounted with a multispectral camera.

We found that the normalized difference yellowness index (NDYI) was a useful vegetation

index for representing canola yellowness, which is related to canola flowering intensity

during the full flowering stage. However, the flowering pixel number estimated by the

thresholding method improved the ability of NDYI to detect yellow flowers with coefficient

of determination (R2) ranging from 0.54 to 0.95. Moreover, compared with using a single

image date, the NDYI-based flowering pixel numbers integrated over time covers more

growth information and can be a good predictor of pod number and thus, canola yield

with R2 up to 0.42. These results indicate that NDYI-based flowering pixel numbers can

perform well in estimating flowering intensity. Integrated flowering intensity extracted from

imagery over time can be a potential phenotype associated with canola seed yield.
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INTRODUCTION

Canola (Brassica napus L.) is the predominant oilseed crop grown
in Canada (Clayton et al., 2000). Canada has the largest area
of canola production in the world (Statistics Canada, 2018).
With the growing global demand for canola, Canada needs to
maintain and improve canola yield and seed quality to meet
the market demands. Yield components of canola consist of the
number of pods, the seeds per pod, and the weight per seed
(Tayo and Morgan, 1975; McGregor, 1981; Diepenbrock, 2000;
Ivanovska et al., 2007; Faraji, 2012). Among these components,
pod number retained at maturity is the most important factor
as it is influenced most by environmental constraints (Tayo and
Morgan, 1975; McGregor, 1981; Diepenbrock, 2000; Ivanovska
et al., 2007; Faraji, 2012; Gan et al., 2016; Kirkegaard et al., 2018).
The flowering stage in canola is important for yield estimation as
flowers produced in the first 2–3 weeks from anthesis contribute
to 75% of the pods at maturation (Tayo and Morgan, 1975).
Additionally, the flowering period can last from 2 to 6 weeks,
which is a major portion of the crop growth cycle (Gan et al.,
2016; Kirkegaard et al., 2018). Thus, flower production is one of
the most important factors in determining final seed yield (Tayo
and Morgan, 1975; Diepenbrock, 2000; Faraji et al., 2008; Faraji,
2012; Fang et al., 2016; Gong et al., 2018; Kirkegaard et al., 2018;
Zhang and Flottmann, 2018).

During the plant breeding process, field-based phenotyping
plays an important role in evaluating plant performance.
It contributes to the selection of ideal genotypes that are
high-yielding by associating genotype with the corresponding
phenotype (Montes et al., 2007; Sankaran et al., 2015). To
select better canola lines and eventually develop better varieties,
breeders need to assess many distinct lines grown in multiple
environments to detect interactions between genotype and
environment (White et al., 2012; Araus and Cairns, 2014).

The quantification of flowering intensity based on traditional
visual scales is subjective, labor-consuming, and is often
destructive (Sulik and Long, 2015; Fang et al., 2016; Wan et al.,
2018). Although ground-based platforms such as Greenseeker,
Crop Circle, or time-lapse RGB imaging can provide adequate
spectral data, these platforms still require a prohibitive amount
of time and labor (Xu et al., 2018; Hassan et al., 2019).
Additionally, data collection using these ground-based platforms
may cause soil compaction and crop canopy damage (Xu et al.,
2018). Therefore, it is necessary to develop an objective, non-
destructive, and efficient method to estimate flower numbers.
With this, one can model seed yield by assessing real-time
radiometric data of the crop canopy, which has the potential
to accelerate breeding methods for yield improvement. Current
improvements in aerial-based platforms and sensors equipped on
aerial platforms make it possible to effectively collect phenotypes
via analyzing digital imagery (Kim et al., 2019). Unmanned
aerial vehicles (UAVs) equipped with various sensors can quickly
provide large quantities of field data enabling plant breeders to
efficiently detect traits of numerous plots in large-scale field trials
(Kefauver et al., 2017).

Spectral reflectance of the crop canopy is strongly correlated
with morphological and physiological traits. Leaf composition

and molecular structure can affect the reflectance of the crop;
thus, ratios or differences of different bands in the visual light,
near IR (NIR), and shortwave IR wavelengths (i.e., vegetation
indices) can be a tool to characterize plant traits (Sankaran et al.,
2015; Wójtowicz et al., 2016). Previous studies have shown that
multispectral reflectance profiles of visible bands (i.e., blue, green,
and red) and NIR bands could estimate canopy features, such as
nitrogen use efficiency (Kefauver et al., 2017; Prey et al., 2020),
leaf area index (Tunca et al., 2018; Blancon et al., 2019), and
flower numbers (Guo et al., 2015; Sulik and Long, 2015, 2016;
Carl et al., 2017; Gong et al., 2018; Wan et al., 2018; Xu et al.,
2018). These plant traits investigated remotely have the potential
to improve yield estimates. Flower numbers, as an important
factor in determining crop yield, have exhibited close correlations
with optical properties in various crops, such as rice (Guo et al.,
2015), cotton (Xu et al., 2018), and canola (Sulik and Long, 2015,
2016; Gong et al., 2018; Wan et al., 2018). Guo et al. (2015)
applied a machine learning model, the support vector machine,
for flowering quantification using RGB images in rice, which
resulted in a good correlation between the actual rice flowering
panicles and identified flowering (correlation coefficients ranging
from 0.64 to 0.82) (Guo et al., 2015). In canola, there are
three different canopy morphologies during the growing season,
namely, the vegetative phase (green canopy dominated by leaves),
the flowering phase (yellow canopy dominated by the yellowness
of flower petals), and the mature phase (green or brown canopy
because of pods and branches) (Sulik and Long, 2016). During
the flowering phase, the yellowness of canola petals is due to
carotenoid absorption of blue and reflectance of a mixture of
green and red wavelengths (Sulik and Long, 2015, 2016), but the
yellow color has little impact on red edge and NIR reflectance
unlike a green vegetative canopy (Shen et al., 2009; Migdall
et al., 2010; Sulik and Long, 2015, 2016). Thus, the contributed
red light decreases the normalized difference vegetation index
(NDVI) values (Equation 1) and adversely impact the ability
of NDVI to monitor crop growth condition and estimate yield
during the flowering phase (Shen et al., 2009, 2010; Sulik and
Long, 2015, 2016). Sulik and Long (2015) found that the ratio
of green and blue was strongly correlated with the actual flower
numbers with a coefficient of determination (R2) of 0.87, and
they proposed the plot-level normalized difference yellowness
index (NDYI) (Equation 2) could be a potential yield predictor
(R2 = 0.76) (Sulik and Long, 2016). d’Andrimont et al. (2020)
and Han et al. (2021) reported that NDYI successfully captured
canola yellowness and detected the peak flowering dates using
Sentinel-2 imagery. Fang et al. (2016) found that reflectance
at 550 nm was the most sensitive band to estimate flowering
coverage with an estimation error below 6% when compared
with wavelengths at 490, 670, 720, 800, and 900 nm. Wan
et al. (2018) and Gong et al. (2018) reported that combining
vegetation index and image classification methods (i.e., k-means
clustering method by CIE L∗a∗b space and pixel-level spectral
mixture analysis) improved the accuracy of flower numbers
and yield estimation in canola with R2 values of 0.89 and
0.75, respectively.

Although several studies have detected canola flowering
number and predicted yield, most of these field experiments were
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TABLE 1 | Summary of canola trials and data collection (imagery acquisition and manual flower count) at Saskatoon, SK, Canada from 2016 to 2018 and at Melfort and

Scott, SK, Canada in 2017.

Site Year Seeding date Number of

lines/cultivars

Flight altitude

(m)

Image acquisition dates Manual flower count

dates

Saskatoon 2016 May 27 56 20 July 14; 19; 26

August 06

July 15; 22; 29

August 05

2017 May 28 56 20 July 07; 11; 15; 19; 22; 26

August 01; 09; 16; 22

July 01;18; 25

August 01

2018 May 21 56 25 June 28

July 06; 09; 16; 20; 24; 27; 30

August 03; 07

July 10; 17; 24; 31

Melfort 2017 May 18 16 15 July 05; 13; 20; 26 July 05; 20; 26

Scott 2017 June 20 16 20 August 09; 16; 29 August 09; 16

conducted with relatively few canola lines and environments,
which may neglect the effect of genotype and environmental
fluctuations on yellowness of flower (Ohmiya, 2011) and petal
size (Jiang and Becker, 2003). In addition, yield estimation
models used in those studies were based on only one image date
(Sulik and Long, 2016; Gong et al., 2018), which ignores the
effect of time and duration of flowering (Tayo andMorgan, 1975).
Thus, the reflectance data of flowering throughout the flowering
period may provide a better estimate of crop yield. Therefore, the
objectives of this study were to use UAV multispectral data to
detect flowers within a wide range of canola lines and to estimate
seed yield in canola using time series imagery collected during the
flowering period.

MATERIALS AND METHODS

Experimental Sites and Plant Materials
The experiment was conducted at the Agriculture and Agri-
Food Canada Research Farm near Saskatoon, SK, Canada from
2016 to 2018 (52◦ 10’ 52.9” N, 106◦ 30’ 10.6” W in 2016; 52◦

10’ 59.3” N, 106◦ 30’ 53.7” W in 2017; and 52◦ 10’ 57.7” N,
106◦ 30’ 01.4” W in 2018), and near Melfort (52◦ 49’ 9.6” N
and 104◦ 35’ 46.9” W) and Scott (52◦ 21’ 55.3” N and 108◦

52’ 32.6” W), SK, Canada in 2017 (Table 1). The soil texture at
Saskatoon was a clay loam with a pH of 7.3 and an organic matter
content of 5.5%. The field plots were set up in a randomized
incomplete block design (rectangular lattice design) with three
replications (Figure 1). A rectangular lattice design was used to
reduce spatial variability within each block. Individual plot size
was 6.0m long × 1.2m wide in 2016 and 2018 and 6.0m long
× 1.5m wide in 2017. Fifty-six genotypes (Saskatoon Research
and Development Center, Agriculture and Agri-Food Canada),
including 53 diverse B. napus lines, two B. carinata lines, and a B.
juncea variety, were selected and planted. Fifty of the diverse lines
were used as founders to develop Nested Association Mapping
(NAM) population by developing population from crossing to a
common reference line (Parkin et al., 2017). This panel, which
represents diverse germplasm resources and the historical basis of
canola breeding programs, differs in geographic origin, pedigree,
phenotypes, and genotype (Parkin et al., 2017). Seeding occurred
on May 27, 28, and 21 in 2016, 2017, and 2018, respectively,

FIGURE 1 | The overview of experimental plot layout at the Agriculture and

Agri-Food Canada Research Farm (52◦ 10’ 52.9” N, 106◦ 30’ 10.6” W) near

Saskatoon, SK, Canada on July 14, 2016.

at a seeding rate of 108 seeds m−2 (Table 1). Out of 56 lines,
16 were selected and planted twice in two adjacent but separate
plots as double plots. The criteria of line selection for the double
plots were based on contrasting seed quality (i.e., seed color, acid
detergent lignin, seed glucosinolates, and seed erucic acid) and
similarity in flowering timing. The reason for setting double plots
was to preserve one plot for imaging without any subsamples
being removed. The 16B. napus lines planted in double plots were
YN04-C1213, NAM-0, 5, 13, 14, 17, 23, 30, 37, 32, 43, 46, 48, 72,
76, and 79.

The selected 16 B. napus lines were planted in a randomized
complete block design with three replications at the Melfort and
Scott locations in 2017. All lines were planted in 5m long ×

1.2m wide plots at Melfort and in 5m long × 1m wide plots at
Scott. Canola was seeded on May 18 at Melfort and June 20 at
Scott at a desired seeding rate of 108 seeds m−2 (Table 1). Edge R©

(ethalfluralin) was applied as a pre-emergence herbicide at a rate
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TABLE 2 | Basic specifications for the multispectral camera (RedEdge) equipped on the unmanned aerial vehicle (UAV) platforms.

GSDa (cm per pixel)

(per band)

Flight altitude

(m)

Sensor resolution per

band (MP)b
Focal length

(mm)

Full width at half

maximum (nm)

Peak wavelength (nm)

1.02

1.36

1.70

15

20

25

1.2c 5.5 Blue: 465–485

Green: 550–570

Red: 663–673

Red edge: 712–722

NIR: 820–860

Blue: 475

Green: 560

Red: 668

Red edge: 717

NIR: 840

aGSD: ground sampling distance.
bMP: megapixel.
c image resolution: 1.2 MP = 1,280 × 960 pixels.

of 19.1 kg ha−1 to control weeds. Any weeds not controlled by the
herbicides were removed by hand.

Image Acquisition
Platform and Sensor
The UAV used in this study was a Draganflyer X4-P model
in 2016 and 2017 (DraganFly Inc., Saskatoon, SK, Canada).
It is a rotary-wing platform with a maximum payload of
800 g. It can semiautomatically depart and land based on GPS
navigation mode and optional Surveyor software. Flight mission
was planned in Surveyor software (DraganFly Inc., Saskatoon,
SK, Canada) by importing ground coordinates of the field
boundaries. The other rotary-wing platform was a Draganflyer
Commander model (DraganFly, Inc., Saskatoon, SK, Canada),
used in 2018, which differs from the X4-P model in its maximum
payload capacity (1,000 g).

A multi-spectral camera (RedEdge, MicaSense Inc., Seattle,
WA, United States) was used to acquire images (12-bit image)
with an image resolution of 1.2 megapixels (1,280 × 960 pixels)
for each of five spectral bands (blue: 475 ± 10 nm; green:
560 ± 10 nm; red: 668 ± 5 nm; red edge: 717 ± 5 nm; and
near-infrared: 840 ± 20 nm) (Table 2). The focal length of the
camera is 5.5mm and the ground sampling distance at 15, 20,
and 25m above ground level was 1.02, 1.36, and 1.70 cm per
pixel, respectively (Table 2). Images of a MicaSense reflectance
panel (RedEdge, MicaSense Inc., Seattle, WA, United States)
were taken before and after each UAV flight for radiometric
calibration. To geo-reference aerial images, six ground control
points (GCPs) were distributed across the experimental area
during the whole crop season in 2016 at Saskatoon. The size
of the GCPs was 60 × 60 cm, which were geolocated by
Trimble GeoExplorer 2008 GPS (Trimble Inc., Westminster,
CO, United States). GCPs were manually placed at the same
location when phenotyping canola by UAV, which provided an
overlay of images taken from various dates and reduced workload
by using the same geolocation information for each GCP. For
the four locations in 2017 and 2018, GCPs were permanently
mounted within guard plots to avoid manually carrying GCPs to
the field.

UAV Flight Schedule
The UAV, equipped with a multispectral camera, captured the
images of the fields taken weekly during the flowering stage at

Saskatoon in 2016 and atMelfort and Scott in 2017 (Table 1). The
imagery was collected semiweekly in 2017 and 2018 at Saskatoon
for the duration of canola flowering (Table 1). For the Saskatoon
location, although weather conditions such as rain, clouds, and
heavy wind limited the flight schedule, image timing interval was
achieved as close to 7 days in 2016 and to 4 days in 2017 and 2018.
For the Melfort and Scott locations in 2017, image collection was
carried out at a 7-day interval.

Image Process and Data Extraction
Image Pre-process
Multispectral images were processed, stitched, and calibrated
in Pix4Dmapper Pro (Pix4D Inc., San Francisco, CA,
United States). Individual images were aligned based on
common points from the overlapped images to generate
a geo-referenced image that matched the overflown study
area. Geometric calibration was done by importing the geo-
location of GCPs to reduce geometric distortion problems of
the camera. A system coordinate, World Geodetic System
1984, was applied to generate geo-referenced images.
The images of the MicaSense reflectance panel were
used in the radiometric calibration to enhance spectral
consistency between different flight dates. Then, the five
generated reflectance maps were exported and used for
further analysis.

Vegetation Index Calculation, Thresholding, and

Integration of Flowering Progress
ArcGIS software version 10.4.1 (ESRI Canada, Toronto, ON,
Canada) was applied for plot segmentation, vegetation indices
calculation, and thresholding. In this study, the middle
three rows for each plot were segmented using polygon
shapes with assigned plot numbers. The polygon shapes were
generated using the “Create Feature” tool. Vegetation index
maps were derived via calculation of the reflectance maps
using the “Rater calculator” tool. Commonly used vegetation
indices, NDVI (Rouse et al., 1974), NDYI (Sulik and Long,
2016), green normalized difference vegetation index (GNDVI)
(Gitelson et al., 1996), and normalized difference red edge
index (NDRE) (Gitelson and Merzlyak, 1997), were calculated
as following equations to compare with the actual flower

Frontiers in Plant Science | www.frontiersin.org 4 June 2021 | Volume 12 | Article 686332

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Phenotyping Canola Flowering and Yield

number counts:

NDVI =

(

RNIR−Rred

RNIR+Rred

)

(1)

NDYI =

(

Rgreen−Rblue

Rgreen+Rblue

)

(2)

GNDVI =

(

RNIR−Rgreen

RNIR+Rgreen

)

(3)

NDRE =

(

RNIR−Rrededge

RNIR+Rrededge

)

(4)

where RNIR, Rred, Rgreen, Rblue, and Rrededge are the
reflectance values at bands centered on 840, 668, 560,
475, and 717 nm, respectively (Table 2). NDVI is the
most commonly used vegetation index to identify crop
growth conditions and yield estimation (Rouse et al.,
1974). NDYI has previously shown a strong correlation
with seed yield (Sulik and Long, 2016). GNDVI (Gitelson
et al., 1996) and NDRE (Gitelson and Merzlyak, 1997)
are related to photosynthesis and have been reported in
previous research.

Canola flowers and leaf organs co-existed within each plot
during flowering; thus, the “Conditional Function” [Con (index
map> threshold value, indexmap, “”)] in the “Raster Calculator”
tool was used to separate flowering pixels from non-flowering
pixels by applying threshold values on vegetation index maps.
Threshold values were manually determined by comparing the
composited RGB images with calculated index maps so that most
flowering pixels could be selected and segmented. All pixels in the
index map that have values larger than the threshold values were
kept in a threshold index map, otherwise, pixels were discarded.
Then, the “Zonal Statistics” tool was used to extract the summary
statistics of the threshold index map, which included the number
of flowering pixels per plot.

This study involved 56 diverse lines with a high flowering
density gradient. It is difficult to determine which image date
is proper for yield estimation. For this reason, the area under
the flowering progress curve (AUFPC) was used to calculate the
integration of flowering progress during the flowering season
using the following equation:

AUFPC =

(

F1+F2

2
−F1

)

(t2−t1)+

(

F2+F3

2
−F1

)

(t3−t2)

+ . . . +

(

Fn−1+Fn

2
−F1

)

(tn-tn−1) (5)

where F1, F2, F3, Fn−1, and Fn represent the flowering pixel
numbers at each image date and t1, t2, t3, tn−1, and tn
represent Julian date at each image timing. The AUFPC is
an adjusted integration equation based on the area under the
disease progress curve (AUDPC), which is used in general in
pathology studies for estimating the effect of disease progression
on crop yield (Jeger and Viljanen-Rollinson, 2001; Simko and
Piepho, 2012). Compared with AUDPC, the advantage of the
AUFPC is providing a baseline for each line to adjust flowering
progress, which can reduce the effect of diverse initial flowering

pixel numbers of each line on the calculated area. The AUFPC
equation converted several flowering pixel numbers at a series
of image timings into a single value for reporting. The larger
the AUFPC value is, the further the flowering had progressed.
Figure 2 displays an example of flowering progress over time for
a line (NAM-23). Seven data points on the curve line represent
NDYI-based pixel numbers for each image date. Pictures under
the seven points are corresponding threshold index maps. Then,
the area under the curve line was calculated using the AUFPC
equation (Equation 5) for NAM-23. The same mathematical
method was used to calculate flowering progress for all other lines
across 5 site years.

Ground Reference Data/Field Data
Collection
The first row of each plot was manually sampled to quantify
flowering. Canola flowering typically starts in early July and ends
in early August. Flower numbers on the main stem and branches
of randomly selected plants were counted at a 7-day interval from
July to August. Grain yield was straight combined by a small
plot combine harvester when the crop was mature and dry. This
occurred multiple times due to differing maturity dates of the B.
napus lines. To reduce the edge effect, the middle four rows of
each plot were harvested. All harvested seeds were air-dried to
10% seed moisture. Final yields were weighed after seed cleaning.

Statistical Analysis
The PROC LATTICE procedure of SAS version 9.4 (SAS
Institute, Cary, NC, United States) was used to analyze the data.
The LATTICE procedure reduced variations within blocks. After
data adjustment, PROC REG in SAS version 9.4 was used as the
statistical tool to investigate the simple linear regressions between
ground reference data and imagery. Scatterplots of variables were
observed to determine whether data could be combined for
analysis. In the case where data could not be combined, data were
analyzed within site years.

RESULTS AND DISCUSSION

Regression Between Flowering Pixel
Number and Actual Flower Numbers
These initial results showed that GNDVI and NDRE did not
demonstrate significant correlations with the actual flower count
(P> 0.05, data not shown).Meanwhile, regression results showed
that NDYI had greater coefficients of determination (R2) than
NDVI with actual flower numbers within 3 years of study. An
increased red light from the yellow petals can reduce NDVI
values and affect its ability to detect canola growth conditions.
In addition, there was no strong relationship between plot-level
NDYI and actual flower numbers in 2016 (data not shown).
Noise from soil background and green vegetation within a
plot at the early flowering stage may have resulted in these
weak relationships. For this reason, we used NDYI maps to
extract flowering pixels and remove non-flowering pixels by the
thresholding method. We detected and counted flowering pixels
when pixel values were greater thanNDYI-based threshold levels.
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FIGURE 2 | The growth pattern of flowering progress for a Brassica napus line (NAM-23) during the flowering stage at the Agriculture and Agri-Food Canada

Research Farm (52◦ 10’ 59.3” N, 106◦ 30’ 53.7” W) near Saskatoon, SK, Canada in 2017. The x-axis is the imagery acquisition date (Julian date) in 2017. The y-axis

is normalized difference yellowness index (NDYI)-based pixel number per plot. A solid curve line is the flowering progress trend of NAM-23. Seven points on the

progress curve line represent NDYI-based pixel number per plot at seven imagery acquisition dates. Seven pictures under each point are corresponding false-color

images after thresholding with flowers highlighted in yellow. The region of interest was highlighted in red.

Threshold values were 0.59, 0.52, and 0.45 in 2016, 2017, and
2018, respectively.

Across 5 site years, the R2 values between flowering pixel
numbers and actual flower numbers ranged from 0.54 to 0.95
during flowering duration (Figures 3–7). There were significant
relationships between flowering pixel numbers and actual flower
numbers in 2016 at Saskatoon (Figure 3). Not surprisingly, the
early flowering stage (July 15) had the strongest regression
relationship with actual flower numbers with an R2 of 0.85
(Figure 3A). Developing flowers were on the upper part of
a plant at the early flowering stage so sensors could easily
detect these early-blooming flowers. Whereas, the late flowering
stages (August 05) showed the weakest regression (R2 = 0.54)
(Figure 3D), which may be a result of the lower sensitivity of
NDYI to differentiate yellow flowers and dark green pods. Dark
green pods impart more green reflectance, which can make
NDYI less sensitive to yellow flowers, as yellow is a composite
color of green and red (Yates and Steven, 1987; Sulik and Long,
2015, 2016). Additionally, the potential reason why it had the
smallest R2 value is that many flowers growing on the lower
branches adversely affected the ability of the sensor to detect the
late-developing flowers.

The Saskatoon location in 2017 and 2018 had similar
regression patterns between flowering pixel numbers and
actual flower numbers (Figures 4, 5). There were very strong
relationships at the early flowering stages (July 10, 2017 and July
17, 2018) (Figures 4, 5). Similar to 2016, the relationships became
weaker with the late flowering stages (August 01, 2017 and July

31, 2018) (Figures 4, 5). Although the late flowering stages had
weaker regressions compared with the early flowering timing, the
regressions at the peak flowering dates (July 25, 2017 and July 24,
2018) were relatively strong (Figures 4, 5).

For the Melfort location in 2017, the first image date (July 05)
had the weakest regression (R2 = 0.71) (Figure 6A). Variability
from subsampling plants can be a potential reason for decreased
regressions at the early flowering stage. However, the peak
flowering time (July 20) and late flowering stage (July 26)
showed strong relationships with the value of R2 of up to 0.91
(Figures 6B,C). The potential reason why this site year had a
greater R2 at the late flowering stage is that flight altitude (15m)
at Melfort in 2017 was lower than the other site years (Table 1).
The high resolution may have increased the ability of the sensor
to detect flowers growing lower in the canopy. Although the
flight altitude was relatively low compared with other locations,
there was no significant canopy movement due to the UAV
platform. The seeding date at Scott was June 22, 2017. Flowering
started relatively late with a shorter duration compared with
other site years. There was no imagery collected at the end of the
flowering stage, and thus, those relationships are unknown. At
Scott, the R2 values for the regressions between flowering pixel
numbers and actual flower numbers followed similar patterns as
the Saskatoon location. The early flowering stage (August 09)
and the peak flowering time (August 16) had strong relationships
(Figures 7A,B).

In this study, we used a zero-intercept linear regression
model in the regression analysis as there was no flowering
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FIGURE 3 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK,

Canada in 2016. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation

for July 15, 2016: y = 1.60x, R2 = 0.85. (B) Regression equation for July 22, 2016: y = 2.20x, R2 = 0.77. (C) Regression equation for July 29, 2016: y = 2.24x, R2 =

0.79. (D) Regression equation for August 05, 2016: y = 1.18x, R2 = 0.54.

pixel prior to the commencement of flowering. Furthermore, the
fitted intercept values were close to zero in most cases. For the
Saskatoon location over 3 years, slopes were relatively consistent
at the early flowering stages (Figures 3–5). Slope values became
smaller with the delayed flowering stage. There was a smaller
slope value at the late flowering stage (slope = 1.18) compared
with the peak flowering time (slope= 2.20) at Saskatoon in 2016.
The Saskatoon location in 2017 and 2018 had similar patterns
(Figures 4, 5). The Melfort location had similar patterns with
a smaller slope at the late flowering stage (Figure 6), but the

slope of the first image date (slope = 3.70) was greater than the
other image dates. This indicated that early flowering imagery
overestimated the actual flower numbers. Experimental plots at
this location showed non-uniform flowering with fewer flowers
at the front of each plot, which may be caused by the edge
effect. Thus, manual flower count based on subsampling plants
at the front row of a plot may not accurately represent the
average flower numbers. In 2017, at Scott, slopes were consistent
at the early and the peak flowering times (Figure 7). The slope
values at this location were smaller than the other site years. A
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FIGURE 4 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK,

Canada in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation

for July 10, 2017: y = 2.41x, R2 = 0.95. (B) Regression equation for July 18, 2017: y = 1.83x, R2 = 0.91. (C) Regression equation for July 25, 2017: y = 2.23x, R2 =

0.82. (D) Regression equation for August 01, 2017: y = 0.78x, R2 = 0.67.

potential reason for this underestimation of flower numbers is
that the plots had a more condensed canopy and there were more
branches at this site year than other site years (data not shown)
due to poor emergence percentage. Thus, for the Scott location,
there were more flowers produced on the lower branches which
could not be detected by the sensor. As mentioned above, there
was no available data collected at the end of flowering; thus, the
relationship at this stage is unknown.

In general, although the linear regression slopes varied across
site years, the high R2 values indicated that the flowering pixel

numbers extracted from the threshold NDYI map performed
well to predict actual flower numbers at the early and peak
flowering stages in canola (R2 up to 0.95). These results were
consistent with that reported by Sulik and Long (2015), wherein
the ratio of blue and green strongly correlated with the yellow
flowers in canola with a significant R2 value of 0.87 at the full
flowering stage. Wan et al. (2018) reported good estimation for
the flowering number of canola using the k-means clustering
method based on the CIE L∗a∗b space model during the full
flowering period. Xu et al. (2018) found that white cotton flowers
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FIGURE 5 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Saskatoon, SK,

Canada in 2018. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation

for July 10, 2018: y = 2.21x, R2 = 0.92. (B) Regression equation for July 17, 2018: y = 2.46x, R2 = 0.94. (C) Regression equation for July 24, 2018: y = 2.68x, R2 =

0.92. (D) Regression equation for July 31, 2018: y = 2.03x, R2 = 0.61.

had higher prediction accuracy at the early flowering stage. The
lower classification accuracy at the later growth stage may have
resulted from coverage of leaves which increased misclassified
non-flowers when using a convolutional neural network (Xu
et al., 2018). They recommended that using one raw image might
solve this issue, as more cotton flowers would be detected from
different perspectives. Moreover, the early flowering stages across
5 site years showed greater slope values, as most flowers at this
early stage were visible and had less overlap. In contrast, flowers
growing on lower branches were likely to be underestimated at
the late flowering stages. Subsampling variability may make the

actual flower count non-representative for a plot, which may
reduce the accuracy of flower estimation.

Yield Estimation Using Integrated
Flowering Accumulation During Flowering
Period
Flowering pixel numbers derived from the threshold NDYI
map were able to estimate actual flower numbers across 5
experimental site years. Initially, we did regression analysis
between yield and flowering pixel numbers at each image date.
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FIGURE 6 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Melfort, SK, Canada

in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for July

05, 2017: y = 3.70x, R2 = 0.71. (B) Regression equation for July 20, 2017: y = 1.46x, R2 = 0.90. (C) Regression equation for July 26, 2017: y = 1.29x, R2 = 0.91.

Among the 5 site years, in most cases, there were no significant
relationships until the middle of July when most varieties started
blooming (Table 3). In addition, it is difficult to determine a
single well-defined image time for crop yield estimation because
of various environmental fluctuations and various flowering
timings in large-scale breeding programs, especially involving
many diverse lines. Furthermore, we may miss important
flowering progress information if yield estimation is only based
on the imagery from a single date (Haynes and Weingartner,
2004; Gan et al., 2016). Although flower formation at the later
stage may contribute less than early timing points, they may

still have the potential to increase final grain yield. Therefore,
integrating all aspects of the entire flowering duration using
AUFPC can reflect flowering accumulation progress and improve
the accuracy of crop yield estimation.

We found significant relationships between integrated
flower accumulation and yield during the flowering period
(Figures 8, 9). In 2016, at Saskatoon, integrated flower
accumulation had a moderate relationship with yield (R2

= 0.12, P < 0.05) (Figure 8A). We calculated the flower
accumulation progress by integrating the flowering pixel
numbers over four image dates at a 7-day interval, which missed
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FIGURE 7 | The relationship between actual flower numbers per plot and pixel numbers extracted from aerial images during the flowering stage at Scott, SK, Canada

in 2017. Actual flower numbers per plot were manually measured. Pixel number per plot was detected by the thresholding method. (A) Regression equation for

August 09, 2017: y = 0.81x, R2 = 0.82. (B) Regression equation for August 16, 2017: y = 0.78x, R2 = 0.83.

TABLE 3 | The coefficient of determination (R2) between flowering pixel numbers from a single image date and yield at Saskatoon, SK, Canada from 2016 to 2018 and at

Melfort and Scott, SK, Canada in 2017.

Site 2016 R2 2017 R2 2018 R2

Saskatoon July 14 0.04 July 07 0.02 June 28 <0.01

July 19 <0.01 July 11 <0.01 July 06 0.02

July 26 0.02 July 15 0.04 July 09 0.06

August 06 0.04 July 19 0.29*** July 16 0.36***

July 22 0.33*** July 20 0.22***

July 26 0.06 July 24 0.07

August 01 0.06 July 27 <0.01

August 09 0.02 July 30 0.03

August 16 0.05 August 03 0.03

August 22 0.05 August 07 0.02

Melfort July 05 <0.01

July 13 0.23*

July 20 0.02

July 26 0.14

Scott August 09 0.46**

August 16 0.32*

August 29 0.01

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.

***Significant at the 0.001 probability level.

the starting point of the flowering period. There was no adequate
imagery data for the entire flowering period, so it may be the
reason for the low accuracy of yield estimation. In both 2017 and
2018 at Saskatoon, we collected imagery semiweekly (Table 1).
For the 2 site years, the relationships between integrated flower
accumulation and seed yield were relatively stronger compared
to the 1st experimental year (R2 = 0.30, P <0.05 in 2017;
R2 = 0.34, P <0.05 in 2018) (Figures 8B,C). At the Melfort
and Scott locations in 2017, there were more consistent and
stronger regressions (Figure 9) using the integration of flowering
progress, when compared with a single image date (Table 3).

In general, compared with using a single image, applying
the integration of flowering progress to estimate yield includes
more information to provide consistent accuracy (Figures 8, 9).
Although the R2 values for yield estimation are not very high,
our results still demonstrate potential ability of AUFPC to predict
yield, especially for crops producing bright flowers (e.g., canola
and cotton) under different environmental conditions.

Several studies have reported similar results (Sulik and Long,
2016; Gong et al., 2018; Xu et al., 2018; Hassan et al., 2019). Sulik
and Long (2016) reported that the plot-level NDYI values during
flowering had high accordance with field yield observations (R2
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FIGURE 8 | The relationship between seed yield and integrated flower accumulation at Saskatoon, SK, Canada from 2016 to 2018. The integrated flower

accumulation was calculated using the area under the flowering progress curve function. (A) Regression for the Saskatoon location in 2016: y = 0.0014x + 1558.72,

R2 = 0.12. (B) Regression for the Saskatoon location in 2017: y = 0.0026x + 1384.70, R2 = 0.30. (C) Regression for the Saskatoon location in 2018: y = 0.0095x +

1535.88, R2 = 0.34.

= 0.72), which showed a better correlation with seed yield than
NDVI at the peak flowering time in canola. Gong et al. (2018)
found that NDVI multiplied by leaf-related canopy fraction had
the strongest relationship with canola yield with low estimation
errors (coefficient of variation < 13%) at the early flowering
stages. Some research also investigated yield estimation using
canopy reflectance data in other crops including cotton and
wheat (Xu et al., 2018; Hassan et al., 2019). Xu et al. (2018)
reported that the estimated cotton flower numbers derived from
aerial images using a convolutional neural network significantly

correlated with cotton yield (R2 = 0.36). Hassan et al. (2019)
reported that UAV-based NDVI measured at the grain filling
stage could be a promising tool for wheat yield prediction with
R2 ranging from 0.83 to 0.89 in field conditions.

Our regression results had smaller R2 values compared with
the previous studies. This is probably associated with many
diverse lines (i.e., 56 diverse lines) estimated in this study. Most
previous research only planted one or few lines. The stability of
pigments in rapeseed flowers for each line may change under
different developmental stages (Ohmiya, 2011). These factors can
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FIGURE 9 | The relationship between seed yield and integrated flower accumulation at Melfort and Scott, SK, Canada in 2017. The integrated flower accumulation

was calculated using the area under the flowering progress curve function. (A) Regression for the Melfort location in 2017: y = 0.0044x + 1400.80, R2 = 0.28. (B)

Regression for the Scott location in 2017: y = 0.0062x + 692.73, R2 = 0.42.

impact yellow to some degree (Ohmiya, 2011). The inconsistent
yellowness may explain that the more varieties included in
regression analysis, the less model variation could be explained
by integrated flower accumulation. Furthermore, flowering pixels
extracted based on threshold values may not be highly consistent
over the flowering stage, as each threshold value was determined
manually. In addition, canola yield components include plant
density, pod number per plant, seed number per pod, and seed
weight. Although pod number per plant is highly correlated with
seed yield (Tayo and Morgan, 1975; McGregor, 1981; Ivanovska
et al., 2007), only 45% of flowers produce pods (McGregor, 1981).
Seed weight per pod and thousand seed weight also significantly
correlated with seed yield (Ivanovska et al., 2007). The simple
regression analysis of flower numbers could not fully explain
yield variation. Additional yield components considered in the
yield estimation model would improve the accuracy of seed yield
estimation. Finally, flower abortion and poor pod formation can
happen under drought and heat stress during the crop season
(Faraji et al., 2008). Flowering progress only reveals part of crop
growth stages, so some varieties even with high AUFPC may end
up with low yield under stress, which may result in a weaker
relationship between integrated flower accumulation and seed
yield. Combining UAV-based reflectance data at both flowering
and pod stages may enhance yield estimation accuracy.

Usually, breeding programs need to assess a large number
of varieties or breeding lines across multiple environmental
conditions. Therefore, from a practical perspective, these
results revealed a more realistic yield estimation trend for
large-scale breeding programs. Moreover, most previous
research used one image date or selected the largest
reflectance index value for each plot across all sampling
dates to estimate crop yield. In fact, it is difficult to
determine the best image date for yield estimation using
multiple crop varieties grown in differing environmental
conditions. Fluctuating environments can influence flowering
progress; therefore, integrated flower accumulation is a

promising and predictable variable in the descriptive
yield model.

CONCLUSIONS

In this study, we proposed a simple and effective approach to
estimate relative flower numbers and model seed yield based
on the integrated flowering pixel. This study results showed
that flowering pixel numbers estimated by the thresholding
method regressed strongly with manual flower count during
the flowering stage with an R2 value of up to 0.95, indicating
that flowering pixel numbers can be used as a good indicator
of flowering intensity in the field. Additionally, the integrating
flowering progress from consecutive images via AUFPC math
function was more consistently and strongly related to yield
compared with using a single image date because integrated
flowering pixel over time utilizes more growth information.
Therefore, the integrated flower accumulation can be a good
indicator for yield estimation. These tools do not require extra
coding or strong computer science background, can be used
for calculating thresholding and vegetation indices, and is a
convenient tool for agronomists and breeders. Future studies
need to consider and test a multivariate model including multiple
vegetation indices related to other yield components and more
reflectance information from the pod stage to improve yield
estimation accuracy.
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