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The membrane attack complex/perforin (MACPF) domain-containing proteins are
involved in the various developmental processes and in responding to diverse abiotic
stress. The function and regulatory network of the MACPF genes are rarely reported in
Gossypium spp. We study the detailed identification and partial functional verification of
the members of the MACPF family. Totally, 100 putative MACPF proteins containing
complete MACPF domain were identified from the four cotton species. They were
classified into three phylogenetic groups and underwent multifold pressure indicating
that selection produced new functional differentiation. Cotton MACPF gene family
members expanded mainly through the whole-genome duplication (WGD)/segmental
followed by the dispersed. Expression and cis-acting elements analysis revealed that
MACPFs play a role in resistance to abiotic stresses, and some selected GhMACPFs
were able to respond to the PEG and cold stresses. Co-expression analysis showed
that GhMACPFs might interact with valine-glutamine (VQ), WRKY, and Apetala 2
(AP2)/ethylene responsive factor (ERF) domain-containing genes under cold stress.
In addition, silencing endogenous GhMACPF26 in cotton by the virus-induced gene
silencing (VIGS) method indicated that GhMACPF26 negatively regulates cold tolerance.
Our data provided a comprehensive phylogenetic evolutionary view of Gossypium
MACPFs. The MACPFs may work together with multiple transcriptional factors and play
roles in acclimation to abiotic stress, especially cold stress in cotton.
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INTRODUCTION

The membrane attack complex/perforin (MACPF) proteins are
pore-forming proteins across the cellular membrane in plants
and other organisms. They have a signature motif, Y/S-G-G/S-H-
X7-G-G, and play important roles in mammalian immunity and
bacterial pathogenesis (Hadders et al., 2007; Wade and Tweten,
2015; Johnson et al., 2017; Moreno-Hagelsieb et al., 2017; Ni and
Gilbert, 2017; Yu et al., 2020). In Arabidopsis, the necrotic spotted
lesion 1 (NSL1) protein, containing a putative MACPF domain,
was involved in the negative regulation of programmed cell death
(PCD) and defense response (Noutoshi et al., 2006). Moreover,
loss function of the MACPF domain could trigger cell death
through activating salicylic acid (SA) signaling in Arabidopsis
(Morita-Yamamuro et al., 2005; Fukunaga et al., 2017).

Environmental stress is a major challenge in agricultural
production, affecting plant photosynthesis efficiency, cell
membrane homeostasis, and plant growth and development
(Hasegawa et al., 2000; Odukoya et al., 2019). Plants have
developed sophisticated physiological and biochemical
adaptation that enables them to survive through the regulation
of multiple hormones including salicylic acid (SA), ethylene, and
abscisic acid (ABA) (Zhu, 2002; Vlot et al., 2009; Hasanuzzaman
et al., 2017; Emamverdian et al., 2020). SA exerts key effects in
disease resistance by modulating host cell death and defense gene
expression (Vlot et al., 2009). An SA-responsive protein is known
as constitutively activated cell death 1 (CAD1) has been found to
have a conservative MACPF domain. The CAD 1 mutant altered
endophytic phyllosphere microbiota and displays leaf tissue
damage in Arabidopsis. CAD1 is important for plant defense and
likely negatively regulates plant immunity (Morita-Yamamuro
et al., 2005; Tsutsui et al., 2006; Chen T. et al., 2020).

In recent years, different transcriptomic data showed that
the MACPF genes were involved in growth, development, and
response to abiotic stresses in sorghum, rice, and maize (Yu
et al., 2020). However, the evolution and function of the MACPF
genes in Gossypium spp. were still unknown. The underlying
interaction among the MACPFs and other genes was also unclear.
The weighted gene co-expression network analysis (WGCNA)
was a useful method to identify the potential network through
the transcriptomic analysis, which had been used to study
development and abiotic stress in many core traits (Chen X. et al.,
2020; Cheng et al., 2021).

As a pioneer crop in the barren land, cotton has a natural
stress resistance through the complex genome structure (Li
et al., 2015). Understanding the potential function of the
MACPFs in cotton will be helpful to the cotton breeding and
functional analysis. In this study, we performed a genome-
wide identification of the MACPF family members in tetraploid
species Gossypium hirsutum (AD1) and Gossypium barbadense
(AD2) and their ancestor diploid Gossypium arboreum (A2)
and Gossypium raimondii (D5) (Paterson et al., 2012; Du et al.,
2018; Hu et al., 2019). The evolutionary relationships of the
MACPFs were investigated and the putative interactions of
the MACPFs with other genes were analyzed by the WGCNA.
In total, 38 GhMACPFs, 33 GbMACPFs, 14 GaMACPFs, and
15 GrMACPFs were identified from the four Gossypium spp.

genomes. Phylogenetic, conserved structural motif, the whole-
genome duplication (WGD), non-synonymous substitution (Ka),
and synonymous substitution (Ks) showed that theMACPFswere
subjected to functional gene selection. Co-expression indicated
that GhMACPFs played an important role in responding to
abiotic stress. and Apetala 2 (AP2)/ethylene responsive factor
(ERF), valine-glutamine (VQ), and WRKY transcription factors
(TFs) were the co-expression genes of GhMACPFs in the
regulation of cold stress response. In addition, silencing of
GhMACPF26 in cotton enhanced the tolerance to cold stress. This
study will lay a solid foundation for further exploration of the
functions of GhMACPFs in cotton.

MATERIALS AND METHODS

Identification and Molecular
Characterization of the MACPF Domain
Family in Multiple Plants
A total of 15 genome databases, which contained Arabidopsis
thaliana (L.) Heynh., Oryza sativa Linn., Solanum lycopersicum
Linn., Vitis vinifera Linn., Ananas comosus (L.) Merr., Amborella
trichopoda Baill., Carica papaya Linn., Theobroma cacao Linn.,
G. hirsutum, G. barbadense, Gossypium arboreum, G. raimondii,
Brassica napus Linn., Brassica oleracea Linnaeus, and Brassica
rapa Linn., were obtained from the CottonGen1 (Yu et al.,
2014), the Joint Genome Institute (JGI) database2 (Goodstein
et al., 2012), and the National Center for Biotechnology
Information (NCBI) database3 (Sayers et al., 2010), respectively.
Four AtMACPF genes, including AtMACPF01 (AT1G14780),
AtMACPF02 (AT1G28380), AtMACPF03 (AT1G29690), and
AtMACPF04 (AT4G24290), were used as query sequences to blast
the selected proteins database via the protein-protein BLAST
(BLASTP) method (E-value = 1 × 10−3). The hidden Markov
model (HMM) profile of the MACPF domain (Pfam01823) was
downloaded from the Pfam web4 (El-Gebali et al., 2019) and
the Hmmsearch (version 3.2.1) software (Eddy, 2011) was used
to scan the 14 genome proteins. In addition, the web of the
SMART database5 (Ivica et al., 2009) and the NCBI conserved
domain database6 (Marchlerbauer et al., 2015) were used to
confirm the conservative MACPF domain. Finally, we identified
the molecular characterization through the Softberry web7 and
the ExPASy website8.

Phylogenetic and Collinearity Analysis of
the MACPF Genes
The Multiple Alignment using Fast Fourier Transform (MAFFT)
(version 7.4.0.7) (Katoh and Standley, 2014), the Gblocks (version

1https://www.cottongen.org/
2https://www.phytozome.net
3https://www.ncbi.nlm.nih.gov/
4https://pfam.xfam.org/
5https://smart.embl-heidelberg.de/
6https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
7https://linux1.softberry.com/berry.phtml
8https://web.expasy.org/translate/
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0.91), and the PhyML9 (Guindon et al., 2005) were used to align
184 MACPF domain-containing proteins, analyze the conserved
site sequences, and construct the maximum likelihood (ML) tree,
respectively. R/ggtree (Yu et al., 2016) was applied to color the
final tree file.

The MCScanX software (Wang et al., 2012) was used
to analyze gene collinearity with default parameter among
in Gossypium spp., which contained G. hirsutum and
G. barbadense; G. arboreum, G. raimondii, and G. hirsutum;
and G. arboreum, G. raimondii, and G. barbadense. The
duplication event was implemented through the commands
of the MCScanX/duplicate_gene_classifier code. To determine
selection pressure, the BLASTP (Mark et al., 2008), the ParaAT
(Zhang et al., 2012), and the KaKs_Calculator (version 2.0)
(Wang et al., 2010) were used to calculate the Ka and Ks values.

Gene Location, Cis Element, and
Conserved Motif Analysis
The MACPF domain-containing gene locations were obtained
from the general feature format (GTF), which contained gene id,
source, feature, start, end, and score via the python script. The
intron/exon structure of the MACPF genes was extracted from
the GTF. The conserved motifs in the MACPF proteins were
obtained by submitting the protein sequences to the MEME web10

(Bailey et al., 2009) with the default of 30 amino acids in length.
Gene structure view of the TBtools software (Chen C. et al., 2020)
was used to integrate the motif and gene structure. Finally, the cis-
elements of the promoter (2 kb) in the Gossypium MACPF genes
were analyzed through the PlantCARE web11 (Lescot et al., 2002).

Expression Profiles and Construction of
Co-expression Network
The transcripts of the MACPF genes in different tissues and
multiabiotic stresses were collected from previous research
(PRJNA490626) (Hu et al., 2019). Transcriptomic analysis was
performed according to the previously described protocols
(Chen P. et al., 2020). Differentially expressed genes (DEGs)
were analyzed by using the R/edgeR package (Robinson et al.,
2010). The R/WGCNA package (Langfelder and Horvath, 2008)
was used to identify the co-expression module and construct the
co-expression networks. In addition, hub genes were identified
via the cytoHubba/Cytoscape software (Shannon et al., 2003;
Chin et al., 2014) and the final network was showed by
the Cytoscape.

Plant Cultivation, RNA Isolation, and
Quantitative Real-Time-PCR Analysis
The Texas Marker-1 (TM-1) cotton seeds were provided by
the Institute of Cotton Research of the Chinese Academy of
Agricultural Sciences and planted in artificial growth conditions
under a photoperiod of 16 h light/8 h darkness at 28/22◦C.
In order to verify the results of the transcriptome, the
cotton plants grown at the three-leaf stage were subjected

9http://phylogeny.lirmm.fr/phylo_cgi/index.cgi
10http://meme-suite.org/
11http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

to stress treatment. For the drought treatment, the seedlings
of TM-1 were irrigated with 400 mM polyethylene glycol
600 (PEG 600) for 0, 1, 6, 12, and 24 h. For the cold
stress, the seedlings were irrigated with continuous cold
stress (4◦C) in a plant incubator/illumination incubator for
0, 2, 4, 6, 8, 12, and 24 h. Leaf samples were collected
from five uniform plants, then quickly frozen in liquid
nitrogen and stored at −80◦C. All the experiments were
repeated three times.

Total RNA was isolated by using the RNAprep Pure
Plant Kit (Polysaccharides and Polyphenolics-rich, DP441)
(TIANGEN, Beijing, China). The Mir-XTM miRNA First-
Strand Synthesis Kit (Takara Biotechnology Corporation
Ltd., Dalian, China), the SYBR Green PCR Supermix Kit
(Bio-Rad Laboratories), and the 7500 Real-Time PCR
System (Applied Biosystems) were used to synthesize
complementary DNA (cDNA) and analyze gene expression
levels, respectively. GhUBQ7 (NCBI accession: DQ116441)
(Tu et al., 2007) was used as an endogenous control.
All the primers designed by Primer 6 were listed in
Supplementary Table 1.

Virus-Induced Gene Silencing and Cold
Stress
To silence GhMACPF26 in cotton, a 300-bp fragment of
the gene was PCR amplified and cloned into a pTRV2
vector; the primers used for implication were listed in
Supplementary Table 1. A specific fragment of GhMACPF26
was amplified from the upland cotton accession of the TM-
1 cDNA library. The constructs were transformed into
Agrobacterium tumefaciens strain LBA4404. The virus-
induced gene silencing (VIGS) method and the growth
condition of the TM-1 cotton seedlings were described
previously by Gu et al. (2018). The VIGS and control plants
were treated at 4◦C for 24 h and the leaves were sampled
for biochemical experimental analysis. Malondialdehyde
(MDA) was measured as the manual of the MDA assay kit
[thiobarbituric acid (TBA) method]. Each experiment was
performed in triplicate.

RESULTS

Membrane Attack Complex/Perforin
Domain Proteins in the Allotetraploid and
Diploid Cotton
All the protein sequences annotated as the MACPF in four
Gossypium and other 11 species were performed. A total of 184
MACPF domain-containing sequences were retained for this
study (Supplementary Table 2). The number of the MACPFs
is approximately similar to the genome size of the evolution
biodiversity (Qiao et al., 2019). Similarly, the number of the
MACPF genes in each allotetraploid is nearly equal to the
sum of those in the two diploids. With the ML method and
the conservative MACPF domain, the phylogenetic tree was
constructed and classified into three branches (clades I–III)
(Figure 1). However, the majority of the MACPF genes in
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FIGURE 1 | A phylogenetic tree of the membrane attack complex/perforin (MACPF ) gene family. All the sequences of the MACPF domain gene in four Gossypium
spp. and 11 other plants were carried out by using the maximum likelihood (ML) method in PhyML and members in the same species belong to the same color.

group III (35 MACPFs) was specific and belonging to the
Malvaceae, indicating that those genes likely experienced a
sequence divergence event during polyploidization.

Basic information of the MACPF genes in Gossypium was
listed in Supplementary Table 3 including genomic length,
transcript length, GC count (%), exon number, molecular weight
(MW), charge, and isoelectric point (PI). The genomic length
of the MACPF genes was ranged from 790 (GhMACPF22) to
9,893 bp (GrMACPF14), the coding sequence (CDS) length
of those range from 348 (GhMACPF22 and GbMACPF21)
to 1,872 bp (GbMACPF19), and the average GC content
of the transcript was 43.13. Moreover, the exon numbers
varied from 2 (GhMACPF15, GbMACPF21, and GhMACPF22)
to 9 (GbMACPF33), and more than half of the MACPFs
containing seven exons. The MW value ranged from 12.884
(GbMACPF21) to 69.677 kDa (GbMACPF19) and the PI values
varied from 6.228 (GhMACPF28) to 9.889 (GbMACPF15)
(Supplementary Table 3).

Conserved Characteristics Analysis in
the Diploid and Allotetraploid Cotton
The 2,000-bp upstream from the initiation codon in the
diploid and allotetraploid cotton was used for the cis-element
analysis of the MACPF genes. Through the PlantCARE
web analysis, 15 cis elements were identified from the
allotetraploid cotton, 14 cis elements in G. arboreum, and
13 cis elements in G. raimondii, respectively. Among those, 13
cis elements were common. Five kinds of hormone-response
cis-elements, including ABA-responsive element (ABRE),
auxin-responsive element (TGA-element), gibberellin (GARE-
motif, P-box, and TATC-box), MeJA-responsive element
(CGTCA-motif, and TGACG-motif), and SA-responsive
element (SARE and TCA-element) were identified in each
gene. Totally, four regulatory elements, which contained the
low temperature responsive element (LTR), MYB-binding
site (MBS), MYB-binding site I (MBSI), and TC-rich
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FIGURE 2 | Motif and gene structure of the MACPF member in the allotetraploid cotton. (A,C) Are the converted motif and (B,D) are the gene structure of the
MACPF member.

repeats, were found to have a certain function in the cold,
drought, and defense response in plants (Supplementary
Figure 1). Furthermore, the RY elements (seed-specific
regulation) and circadian elements (cis-acting regulatory
element involved in circadian control) were also found in
the promoters, indicated that the MACPF gene might be
played a role in plant development. The diversity analysis
of elements determined the response of the MACPFs in
Gossypium spp. to endogenous hormones, abiotic stresses,
and development.

Combining the phylogenetic, motif composition, and
gene structure analysis in Figure 2, the MACPF domain-
contained proteins were divided into three groups. In this
study, with the 30 distinct conserved motifs set through the
MEME program, motif 1 was shared in GhMACPFs and
GbMACPFs with the conserved “(F/Y)GTH(F/Y)-X6-GG”
structure (Supplementary Figure 2). Moreover, motif 20 and
motif 28 were specific in group I and group II and motif
dispersion is variable in group III (Figure 2). Multiple motif
distribution suggested that those genes were conserved and
might have similar functions in the allotetraploid cotton.
Moreover, the gene structure and intronic phase were
exhibited similar to the MEME dispersion in the diploid,
especially in group I and group II (Supplementary Figure 3).
As described, the MACPF members were more likely to

have gene selection and expansion between the diploid and
allotetraploid cotton.

Orthologous Genes Analyses Between
the Diploid and Allotetraploid Cotton
The chromosomal distribution of the MACPF genes in
diploid cotton showed that 15 GrMACPFs were mapped
to nine chromosomes of the G. raimondii. 14 GaMACPFs
were also mapped to nine chromosomes of the G. arboreum
(Supplementary Figure 4). A total of 38 GhMACPFs and
33 GbMACPFs were mapped to 19 chromosomes in the
allotetraploid cotton, respectively. There was no MACPF gene
located on chromosomes GhA04, GhA07, GhA08, GhA11,
GhD03, GhD08, GhD11, GbA04, GbA07, GbA08, GbA11,
GbD03, GbD08, and GbD11 (Figure 3). Numerous genes
were varied from 1 to 4 on the mapped chromosomes
(Figure 3, Supplementary Figure 4, and Supplementary
Table 3). Duplication event analysis in the MACPF family
indicated that there were 12 WGD/segmental events in Gh_At
(75%), Gh_Dt (54.5%), Gb_At (80%), and Gb_Dt (66.7%); 9
WGD/segmental events (64.3%) in G. arboreum; and 11 events
(73.3%) in G. raimondii, respectively. However, the singleton
and proximal event were few in the MACPF family. It was
suggested that the WGD/segmental was the main reason for
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FIGURE 3 | Duplication event among the MACPF members between G. hirsutum and G. barbadense. The Blue line indicates the homologous genes between the
Gh_At and Gb_At subgenomes and the red line indicates the Gh_Dt and Gb_Dt subgenomes.

the expansion of the MACPF gene family in Gossypium spp.
(Supplementary Table 4).

Orthologous analysis showed 31 MACPF gene pairs in
the two allotetraploid pieces of cotton including 14 gene
pairs in Gh_At and Gb_At subgenomes and 17 pairs in
Gh_Dt and Gb_Dt subgenomes. Meanwhile, 12 paralogous
gene pairs were found in G. hirsutum and 14 paralogous
gene pairs were found in G. barbadense, respectively (Figure 3
and Supplementary Table 5). Subsequently, orthologous genes
were also identified between the two allotetraploid pieces
of cotton and two diploids. A total of 26 GhMACPFs and
26 GbMACPFs were orthologous genes in the two diploid
cottons of which 13 gene pairs showed in G. arboreum,
while 13 gene pairs showed in G. raimondii (Supplementary
Figure 4 and Supplementary Table 5). Furthermore, the
Ka/Ks ratios for the multi-MACPF pairs in Gossypium spp.
were determined in Gb_Dt-Gr, Gh_Dt-Gr, Gb_At-Ga, Gh_At-
Ga, Ga-Gr, Gb_At-Gb-Dt, Gb_At-Gh-At, Gh_At-Gh-Dt, and
Gb_Dt-Gh-Dt. Among the 121 gene pairs, the Ka/Ks ratio
of GbMACPF31-GhMACPF35, GbMACPF12-GaMACPF11, and
GhMACPF12-GaMACPF11 were >1, the other 109 gene pairs

were range from 0 to 0.94, indicating that these genes have
undergone purifying selection (Supplementary Table 6).

Expression Patterns and Co-expression
of the Homologous MACPF Genes in the
Allotetraploid Cotton
To understand the potential function of GhMACPFs and
GbMACPFs, we analyzed the expression patterns of the
MACPFs in various tissues via the published RNA-seq data
(Supplementary Figure 5 and Supplementary Table 7). Further,
27 GhMACPFs and 23 GbMACPFs were exhibited distinctive
expression patterns in the different tissues. Most of the MACPFs
were highly expressed in the anther, bract, filament, petal,
pistil, and sepal (Supplementary Figures 5A,B). GhMACPFs and
GbMACPFs were also highly expressed in the 5 DPA (day post
anthesis), 10 DPA, and 15 DPA of the ovule, and low expression
in fiber development stages (Supplementary Figures 5C,D).
Different expression profiles of the MACPFs suggested that
they widely participated in the various development stages of
cotton. Furthermore, the expression pattern of the MACPFs in
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FIGURE 4 | Expression profiles of the MACPF member in response to the different abiotic stresses. The expression levels of GhMACPFs and GbMACPFs under salt
stresses (A,E), polyethylene glycol (PEG) stresses (B,F), cold stresses (C,G), and hot stresses (D,H), respectively.

the allotetraploid cotton was regulated by cold, heat, salt, and
drought stresses (Figure 4). Most of the selected GhMACPFs were
predominantly expressed at 24 h under cold treatment, especially
GhMACPF04, GhMACPF13, GhMACPF26, and GhMACPF35.
We further carried out qRT-PCR to confirm the RNA-seq data
after the PEG and cold treatments (Figure 5). The results
suggested that GhMACPFs were involved in response to the cold
and PEG stresses in cotton.

Co-expression analysis was constructed to uncover the
potential interaction of functional genes with the MACPFs
in cotton under cold treatment. Figure 6A displayed
nine GhMACPFs, including GhMACPF06, GhMACPF07,
GhMACPF10, GhMACPF19, GhMACPF26, GhMACPF27,
GhMACPF31, GhMACPF34, and GhMACPF39, which might
be co-expressed with the AP2, GRAS, VQ, WRKY, and
C2H2 TFs, which are widely involved in cold stress response
(Supplementary Table 8). These results were confirmed with
qRT-PCR analysis (Supplementary Figure 6). Moreover,
Figure 6B (GhMACPF01, GhMACPF03, GhMACPF04,
GhMACPF23, and GhMACPF35), Figure 6C (GhMACPF02,
GhMACPF08, and GhMACPF11), and Figure 6D (GhMACPF18
and GhMACPF33) showed the other 10 GhMACPFs that were
also participated in the cold responding interaction networks of

TFs including AP2, p450, C2H2, basic helix-loop-helix protein
(bHLH), and VQ domain-containing genes (Supplementary
Table 8). GhMACPFs might interact with AP2, VQ, and WRKY
TFs to enhance the cold resistance regulation of cotton.

Silencing GhMACPF26 Increased
Tolerance to Cold Stress
To investigate the role of GhMACPF26 in response to cold
stress, we performed a VIGS assay to decrease the GhMACPF26
expression in TM-1 plants. The albino phenotype ensured the
success of the tobacco rattle virus (TRV)::CLA1 in cotton
(Figure 7A) and the comparison of the expression level of
TRV::00 and TRV::GhMACPF26 in cotton indicated that the
gene expression had been successfully silenced (Figures 7B–
D). TRV::GhMACPF26 and TRV::00 plants were subjected to
cold stress for 24 h. The empty control plants (Figure 7B) and
TRV::GhMACPF26 (Figure 7C) were similar before the cold
treatment, but they contained MDA content that was significantly
different based on the t-test analysis (Figure 7E). The phenotypic
difference in the degree of leaf damage was clear between the
TRV::00 (Figure 7F) and TRV::GhMACPF26 (Figure 7G) after
cold treatments for 24 h. The MDA content in TRV::00 plants
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FIGURE 5 | Expression levels of 12 GhMACPF genes in response to the (A) cold and (B) PEG treatment. Gene expression was analyzed by quantitative
real-time-PCR (qRT-PCR). Error bars represent the SD of the three biological replicates.
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FIGURE 6 | The correlation network of 19 GhMACPF members in cold stresses. All the gene networks are constructed by the weighted gene co-expression
network analysis (WGCNA) in which each node represents a gene. (A) (nine GhMACPFs), (B) (five GhMACPFs), (C) (three GhMACPFs), and (D) (two GhMACPFs)
indicate GhMACPFs in the different modules.

was about 1.6 times more than in TRV::GhMACPF26 content
(Figure 7H). Additionally, the MDA content was examined
to the degree of cell damage (Jouve et al., 1993). Our results
preliminarily proved that silencing of the GhMACPF26 gene
improves cold tolerance in cotton.

DISCUSSION

Many MACPF domain-containing proteins were involved in
the innate and adaptive immunity against pathogens through

multiple pathways (Esser, 1994; McCormack et al., 2013; Spicer
et al., 2017; Chen T. et al., 2020) and more and more pieces
of evidence showed that the MACPF genes might participate
in plant immune system, development, and abiotic stresses (Yu
et al., 2020). In this study, 184 MACPFs were identified through a
comprehensive analysis among the 15 genomes. Transcriptomic
and co-expression analysis revealed that the MACPF genes
were involved in the cold stresses, while silenced GhMACPF26
enhanced cotton plant tolerance to cold stress. These results
indicated that the MACPF genes might play an important role
in cotton adaptation to abiotic stress.
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FIGURE 7 | Silencing GhMACPF26 via virus-induced gene silencing (VIGS) enhances the cold resistance regulation of cotton. (A) Plant albino phenotypes of
TRV::CLA. (B,C) Phenotypes of TRV::00 and TRV::GhMACPF26 before cold stress. (D) GhMACPF26 expression levels in leaves of TRV::00 and TRV::GhMACPF26
plants. (E) The malondialdehyde (MDA) content of TRV::00 and TRV::GhMACPF26 before cold stress. (F,G) Phenotypes of TRV::00 and TRV::GhMACPF26 after cold
treatment for 24 h. (H) The MDA content of TRV::00 and TRV::GhMACPF26 after cold stress. *p < 0.05, **p < 0.01, and ***p < 0.001 (Student’s one-tailed t test).

Phylogenetic, Duplication, and Structural
Characteristics of the MACPFs in
Gossypium spp.
The WGD or polyploidization is important for genome evolution
due to the neofunctionalization and subfunctionalization of
redundant genes (Blanc and Wolfe, 2004; Jiao et al., 2011;
Qiao et al., 2019). Polyploidy on selection and domestication
among the Gossypium spp. drives parallel gene expression
in the development and abiotic stresses (Hu et al., 2019;
Chen Z.J. et al., 2020). In this study, we found that the
MACPF genes were shared with conserved gene numbers and
similar duplication events by comparing the allotetraploid
and diploid cotton. Totally, 38 GhMACPFs, 33 GbMACPFs,
14 GaMACPFs, and 15 GrMACPFs were identified from
the four Gossypium spp. through a comprehensive gene
family analysis, respectively. The number of the MACPFs
in the allotetraploid cotton was almost two times the
number in diploid cotton. The duplication event analysis
showed that the WGD event was likely leading to the
expansion of the MACPF genes in the allotetraploid cotton.
Meanwhile, 184 MACPF genes were divided into three
groups, of which 4 AtMACPFs and 7 OsMACPFs were
evenly distributed in the Group I and Group II. The results
showed that group I was conserved and belonged to the
mallow (Figure 1). The conserved motif analysis in Gossypium
spp. indicated that the “(F/Y)GTH(F/Y)-X6-GG” motif was
widely distributed in GhMACPFs, GbMACPFs, GrMACPFs,

and GaMACPFs (Figure 2 and Supplementary Figure 3).
Orthologous analysis suggested that the evolution of the
MACPF genes was not balanced between the allotetraploid
and diploid genomes and there were more genes in the
Dt subgenomes (Figure 3 and Supplementary Figure 4).
The imbalance transcript indicated that the donors of
the Dt subgenomes and G. raimondii were important
to the abiotic stresses in the allotetraploid cotton and
in the Brassica napus allotetraploids (Wang et al., 2019;
Meng et al., 2020; Zhang et al., 2020). In addition, Ka/Ks
values showed that most gene pairs have undergone
purification selection during evolution (Supplementary
Table 6) and the purification selection in WRKY and plant
homeodomain (PHD) gene family (Hurst, 2002; Gu et al.,
2018; Wu et al., 2021). These results suggested that the
MACPF genes have been replicated in the ancient genome
duplication events.

Membrane Attack Complex/Perforins
Play Important Roles in Abiotic Stress
Cis-regulatory elements within the promoter analysis are
important to understand transcriptional regulation, which
contained the development regulation and environmental
responses (Chen et al., 2018; Yan et al., 2019). Cis-acting
elements on the promoter were recruited and bound by TFs
and the expression of the gene was regulated (Liu et al., 2013).
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As the previous results, the ABREs (ABA responsive elements)
induced the expression of genes involved in the ABA signaling
pathway (Hossain et al., 2010), while the GARE motif
functions as a gibberellin-response element, TGA element
acts as an auxin-response element, TGACG motif is the
MeJA-response element (Chen and Qiu, 2020), and LTR
is the low-temperature responsiveness element (Yamaguchi-
Shinozaki and Shinozaki, 1994). ABRE, TGA, GARE- motif,
CGTCA motif, TGACG motif, LTR, MBS, MBSI, and TC-
rich repeats were also found in the MACPF promoters.
These cis elements indicated that they participated in the
different regulatory mechanisms of environmental adaptation
including abiotic stress response (Supplementary Figure 1).
Interestingly, the expression of the GhMACPFs and GbMACPFs
widely responded to various abiotic stresses including the
salt, PEG, cold, and heat treatments (Figure 4). In addition,
most GhMACPFs and GbMACPFs were highly expressed
in various tissues, and the ovule or fiber development,
suggesting that the MACPFs also play an important role in
the differentiation and fiber development of cotton tissue
(Supplementary Figure 5). As reported in rice, maize, and
Arabidopsis (Yu et al., 2020), MACPF genes were widely involved
in abiotic stress response via the complex potential mechanism in
Gossypium spp.

The Co-expression network was constructed to explore
the potential connectivity of the genes involved in the plant
development and abiotic stress response (Zhang and Horvath,
2005; van Dam et al., 2018; Chen P. et al., 2020; Cheng
et al., 2020; Hu et al., 2020; Wang et al., 2020). TFs, including
AP2/ERF, GRAS, VQ, and WRKY families, have recently been
subjected to an intensive investigation because of increasing
evidence of their response to abiotic stress (Mizoi et al.,
2012; Grimplet et al., 2016; Gu et al., 2018; Chen P. et al.,
2020). Constructing expression regulatory networks related
to TFs is important for mining the candidate functional
genes. Several GhMACPFs, including GhMACPF6, GhMACPF7,
GhMACPF10, GhMACPF19, and GhMACPF26, were predicted
to interact with AP2/ERF, WRKY, and VQ TFs (Figure 6
and Supplementary Table 8). The results indicated that the
MACPF genes might act together with these TFs under cold
stress in cotton.

Previous studies have shown that cold stress not only led to
a decrease in growth and development but also affected plant
metabolism and phytohormones (Thakur et al., 2010). Silencing
GhMACPF26 indicated that the VIGS plant enhances the cotton
cold resistance via the measure of the MDA content (Figure 7).
The MDA content in TRV::00 was significantly higher than the
TRV::GhMACPF26 after 24 h cold treatment, indicating that the
plasma membrane damage is more serious in the TRV::00 plant
(Figure 7). The MDA content is usually used to measure the
degree of damage to plant cells and it also acts as the product of
lipid oxidation (Leshem, 1987; Jouve et al., 1993). Transcriptomic
results suggested that GhMACPF was also participating in the
regulation of cotton tissue, ovule, fiber growth, and development.
Moreover, we hypothesized that the MACPF members related to
cotton resistance, especially resistance to cold stress. However, the
underlying molecular mechanism requires further elucidation.

CONCLUSION

In this study, a comprehensive analysis of the MACPF family
was performed in the diploid and allotetraploid cotton via
the phylogenetic, structural, orthologous, and transcriptomic
analysis. Our data revealed that the WGD events might be
the MACPF genes expansion in the allotetraploid cotton and
genes on the Dt subgenome were related to stress resistance.
Cis element, expression, and VIGS results indicated that the
MACPF genes were activated in cotton response to cold stress.
Co-expression analysis predicted that the GhMACPF genes might
interact with AP2/ERF, WRKY, and VQ TFs to enhance the
cold resistance of cotton. Silenced GhMACPF26 increased the
cotton tolerance to cold treatment. This study could provide
new insights into the MACPF gene function in cotton and their
potential interactions with other TFs.
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