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Recognizing plant diseases is a major challenge in agriculture, and recent works based 
on deep learning have shown high efficiency in addressing problems directly related to 
this area. Nonetheless, weak performance has been observed when a model trained on 
a particular dataset is evaluated in new greenhouse environments. Therefore, in this work, 
we take a step towards these issues and present a strategy to improve model accuracy 
by applying techniques that can help refine the model’s generalization capability to deal 
with complex changes in new greenhouse environments. We propose a paradigm called 
“control to target classes.” The core of our approach is to train and validate a deep 
learning-based detector using target and control classes on images collected in various 
greenhouses. Then, we apply the generated features for testing the inference of the system 
on data from new greenhouse conditions where the goal is to detect target classes 
exclusively. Therefore, by having explicit control over inter- and intra-class variations, our 
model can distinguish data variations that make the system more robust when applied 
to new scenarios. Experiments demonstrate the effectiveness and efficiency of the 
proposed approach on our extended tomato plant diseases dataset with 14 classes, from 
which 5 are target classes and the rest are control classes. Our detector achieves a 
recognition rate of target classes of 93.37% mean average precision on the inference 
dataset. Finally, we believe that our study offers valuable guidelines for researchers working 
in plant disease recognition with complex input data.

Keywords: deep learning, control classes, explicit control, target classes, tomato diseases and pests

INTRODUCTION

Plant diseases and physiological disorders concern farmers and researchers as it directly impacts 
food security and, therefore, human well-being (Stewart and Roberts, 2012). Quantifying the 
impact of plant diseases on crops represents one of the most challenging problems in agriculture 
(Food and Agriculture Organization, 2006). Once a plant is infected, the damage can be  easily 
propagated to the entire crop, causing several production and economic losses. Traditionally, 
crop monitoring is conducted by specialists in the field, which requires a higher level of expertise 

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.682230&domain=pdf&date_stamp=2021-12-16
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.682230
https://creativecommons.org/licenses/by/4.0/
mailto:dspark@jbnu.ac.kr
mailto:syoon@mokpo.ac.kr
https://doi.org/10.3389/fpls.2021.682230
https://www.frontiersin.org/articles/10.3389/fpls.2021.682230/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.682230/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.682230/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.682230/full


Fuentes et al. Plant Diseases Recognition With Control Classes

Frontiers in Plant Science | www.frontiersin.org 2 December 2021 | Volume 12 | Article 682230

to understand the complexity of plants and their interactions 
with factors that cause plant anomalies. However, this task is 
often considered time-consuming, laborious, and prone to error 
since it involves human knowledge (Barbedo, 2018a). Therefore, 
earlier and automatic identification of plant diseases is required 
to support human labor as an efficient tool to monitor plants.

Following the success of deep neural networks (DNNs), 
mainly on large-scale image classification (Russakovsky et  al., 
2015) and object recognition tasks (Lin et  al., 2014), over the 
last few years, several works have presented solutions to the 
problem of plant disease recognition in various crops. This 
technology has shown the potential to reduce negative impacts 
to the crop by promptly estimating the damage using 
non-intrusive sensors such as RGB cameras. Classification 
methods based on convolutional neural networks (CNNs) is 
the notation of convolutional neural networks. It should be 
separated from the reference (Mohanty et  al., 2016) predict 
the type of disease using the features of the whole input image, 
and detection methods such as region-based recognition estimate 
both localization and classification using bounding boxes and 
confidence score respectively (Fuentes et  al., 2020). In this 
line of research, our early work (Fuentes et al., 2017b) introduced 
a detector based on deep learning that automatically performs 
localization and diagnosis of 10 types of tomato plant diseases. 
Consecutively, we improved the recognition rate by introducing 
a refinement filter bank (Fuentes et  al., 2018) to address the 
problem of false positives caused by the detector.

Encouraged by the results achieved by our previous works, 
we  seek further improvements, especially to make the system 
more adaptable to new real-world greenhouse conditions 
(Barbedo, 2018b; Ferentinos, 2018). We are particularly interested 
in addressing the performance decay observed when a model 
is evaluated in new scenarios than those utilized for training. 
We  believe, therefore, that there is still room to improve in 
this particular application and have identified the following 
causes: (1) The model is unable to generalize well in the 
presence of new data. For instance, when a system is exposed 
to limited information provided by datasets that are practically 
inadequate to cover the large variety of features. (2) Many of 
this information is new to the system and is often associated 
with one of the trained categories, leading to wrong predictions 
during inference. (3) Training data are hard to obtain and 
scarce. Still, it can also be  severely affected by different visual 
appearances determined by the types of disease and infection 
stages, illumination, sizes, and background conditions.

In this research, we take a step towards the issues mentioned 
above and present an approach to improve model accuracy 
by applying a strategy that can help refine the model’s 
generalization capability. More specifically, we  investigate the 
interaction between anomalies and their inter- and intra-class 
variations from the perspective of two categories: target classes 
and control classes. Based on that concept, our strategy works 
as follows: First, we  utilize the target and control classes to 
train and validate a detector on images collected on a set of 
greenhouses (known data). Then, we apply the generated features 
for testing the system’s performance on an inference dataset 
(new data) where the goal is to specifically detect the target 

classes. Finally, our model becomes more robust during inference 
in new environments by explicitly controlling inter- and intra-
class variations of the data utilized during training.

The contributions of our work are summarized as follows:

 – We propose and explore a paradigm called “control to target 
classes” to improve the performance of our deep learning-
based detector to deal with changes of new greenhouse 
conditions using target and control classes.

 – Experimental results on our tomato plant diseases dataset 
show the efficiency of the proposed framework. We work on 
a more extended dataset than (Fuentes et al., 2017b, 2018) 
that includes more classes and samples and obtain a 
recognition rate of target classes of 93.37% mean average 
precision (mAP) during inference.

 – From an information-theory perspective, we  analyze the 
distribution of samples in the feature space using the t-SNE 
distribution (Maaten and Hinton, 2008) and confirm that our 
strategy can improve the generalization of target classes.

 – We believe that our study can offer valuable guidelines for 
researchers working in domains of plant disease recognition 
with complex input data. Also, the potential of this technology 
aims to help farmers and non-expert people find problems 
associated with plant anomalies and diseases that affect crops.

The remainder of this paper is organized as follows: Section 
“Related Works” presents a review of related works and techniques 
for plant diseases recognition; Section “Materials and Methods” 
describes our proposed method; Section “Experimental Results 
and Discussion” shows the experiments and results; and finally, 
Section “Conclusion” concludes the paper and presents a 
discussion and guidelines for future works in the field.

RELATED WORKS

In this section, we describe recent works related to our research. 
We  introduce some baseline approaches on deep learning for 
image classification and object detection. Then, we review some 
techniques for plant disease recognition.

Deep Learning Architectures
The massive accessibility of media and hardware technology 
has brought new opportunities for the application of deep 
learning into various research areas (Schmidhuber, 2015; 
Voulodimos et  al., 2018). CNNs have become the leading 
method for feature extraction in the image classification task 
(Krizhevsky et  al., 2012). State-of-the-Art CNNs include for 
instance, VGGNet (Simonyan and Zisserman, 2015), ResNet 
(He et  al., 2016), and feature pyramid network (FPN; Lin 
et al., 2017). In contrast, object-based recognition focuses more 
on the individual regions containing objects than the whole 
image’s context (Szegedy et  al., 2013). It addresses the problem 
by localizing and classifying multiple image regions containing 
objects using bounding boxes and confidence scores, respectively. 
In this regard, Faster R-CNN (FRCNN; Ren et  al., 2016), SSD 
(Liu et al., 2016), and YOLO (Redmon et al., 2015) are commonly 
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chosen as baseline meta-architectures for object detection due 
to their robustness and applicability. Furthermore, recent works 
have also focused on designing methods to improve the 
performance of DNNs using techniques such as data 
augmentation (Shorten and Khoshgoftaar, 2019), optimization 
(Le et  al., 2011), normalization (Ioffe and Szegedy, 2015), 
transfer learning (Yosinski et  al., 2014), network complexity 
(Livni et  al., 2014), real-time processing (Choi et  al., 2019), 
and training data (Johnson and Khoshgoftaar, 2019).

Techniques for Plant Disease Recognition
In recent years, deep learning techniques have shown great 
efficiency in recognizing diseases and pests that affect plants. 
Thus, through its implementation, deep learning-based systems 
have become the leading technology to fulfill this task. Depending 
on the processing strategy, these methods can be  divided into 
two categories: image-based disease classification and region-
based disease recognition.

Image-Based Disease Classification
A breakthrough in the area is the work presented in Mohanty 
et  al. (2016), where the authors used CNN architectures such as 
AlexNet (Krizhevsky et al., 2012) and GooogleNet (Szegedy et al., 
2015) to categorize 26 diseases of 14 crop species. Although this 
method efficiently classified images containing diseases, its 
application is limited to using images collected in the laboratory 
with a single label and homogenous background. Similarly, Sladojevic 
et  al. (2016) identified 13 types of diseases and healthy leaves 
using an AlexNet architecture with an average accuracy of 96.3%. 
They further applied various techniques such as data augmentation 
to increase the size of the dataset and fine-tuning with pre-trained 
networks on large-scale datasets to increase efficiency while training. 
In the same context, recent works extended the application to 
various types of crops such as tomato (Fuentes et  al., 2017a; Liu 
and Wang, 2020), cassava (Ramcharan et  al., 2017), grapes (Liu 
et  al., 2020), and walnut (Anagnostis et  al., 2020).

Region-Based Disease Recognition
In this category, our previous work (Fuentes et  al., 2017b) on 
tomato plant disease recognition presented a robust and effective 
solution to provide more objective information such as the 
bounding box and confidence score. Consequently, to improve 
the results, we proposed a new technique (Fuentes et al., 2018), 
based on a refinement filter bank that mainly copes with the 
problems related to class imbalance and false positives. 
We  exploited the detector’s capabilities to generate the 
corresponding regions of interest (ROIs) that contain the location 
and type of diseases and then used a CNN filter bank for 
verification of misclassified samples. We obtained a recognition 
rate of 96% through that implementation, which improved 
13% over the results in Fuentes et  al. (2017b).

Recently, region-based frameworks were extended to other 
crops and diseases. For instance, a method (Liu and Wang, 
2020) to detect tomato gray leaf spots using a network based 
on YOLO-v3 (Redmon and Farhadi, 2018). Also, YOLO-v3 
was used to detect goosegrass in strawberries and tomatoes 

(Sharpe et  al., 2020). Another study (Afonso et  al., 2020) 
applied deep learning for tomato fruit detection and counting 
in greenhouses. Furthermore, an application of region-based 
framework with sentence description was designed to characterize 
plant disease recognition using bounding box and text 
information (Fuentes et  al., 2019).

Data Availability for Plant Diseases 
Recognition
The availability of accessible data has also brought the opportunity 
to improve the accuracy of image-based disease classification 
approaches. A significant breakthrough is the Plant Village 
Dataset (Hughes and Salathé, 2015). Recent works used this 
dataset or part of it to validate their experiments (Mohanty 
et  al., 2016). However, although this dataset created new 
opportunities for plant disease recognition, it presents several 
limitations to provide a natural characterization of the problem. 
Images are mainly collected in the laboratory and do not 
include conditions proper of real field scenarios. Also, single 
label images containing single leaves with homogeneous 
backgrounds do not show the actual situation where plants 
could be  affected by multiple diseases not only in the leaves 
but also on other parts such as stems, flowers, and fruits. On 
the other hand, our dataset initially presented in our previous 
study (Fuentes et  al., 2017b) provided a different way to 
overcome the problem by identifying both class and localization 
of diseases on images collected in real greenhouse scenarios, 
including complex background conditions.

The drawbacks of using data collected in the laboratory 
against images collected in the field are analyzed in Ferentinos 
(2018). In that work, the authors evaluated various CNN models 
to classify images of healthy and 58 distinct diseases from 25 
different crops using both types of data, with the best accuracy 
of 99.53% using a VGG network. Although promising results 
showed the method’s utility, the success rate was significantly 
lower when using images collected in the field. Therefore, it 
demonstrated that image-based disease classification under 
actual field conditions is challenging because it includes more 
variations, especially in the background context.

Despite the availability of datasets, data is still scarce and hard 
to collect. Also, the desired performance is challenging to achieve 
uniformly for all classes since a system tends to prioritize classes 
with more samples while minimizing the contribution of the other 
classes. In this regards, a solution to the issues on data imbalance 
proposed to generate synthetic images using generative adversarial 
networks for image-to-image translation (Nazki et  al., 2020). This 
strategy improved the learning process concerning the data 
distribution, reducing the class imbalance issues and shifting the 
decision boundary towards better performance.

MATERIALS AND METHODS

System Overview
Figure  1 presents the workflow of our proposed approach. 
The system operates as follows: First, we  utilize a dataset of 
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target and control classes to train and validate a detector on 
images collected in various greenhouses. Then, we  apply the 
generated features for testing the inference of the system on 
data from other greenhouse environments to detect target 
classes exclusively.

In the following subsections, we  study the conditions and 
strategies to achieve the desired performance through the 
recognition of tomato plant diseases. Each component of the 
system and the selection criteria for the target and control 
classes are described below.

Criteria for Data Collection
Tomato plants, like any crop, are vulnerable to several 
physiological disorders and attacks caused by plant diseases. 
A plant is considered a bio-physiological organism and a 
physical object that is subject to physical laws (Geelen et  al., 
2018). Effective plant growth should be then based on balancing 
factors such as energy, water, and assimilates. A disequilibrium 
of those balances causes severe damages to the crop, for instance, 
due to abiotic disorders from environmental conditions such 
as temperature, humidity, air circulation, light, and plant species. 
In this sense, at indoor crops such as greenhouse cultivation, 
the conditions should be  controlled to protect plants against 
external disturbances. However, the reality is that not all 
greenhouses count with appropriate technology to handle all 
variations. Many of the processes are still performed manually 

and demand the use of the farmers’ empiric knowledge or 
experts to decide a solution against a problem such as plant 
diseases. We  studied those cases, and therefore, collected the 
dataset based on the following conditions:

 - Sensor: We  captured images using different RGB camera 
devices with various resolutions such as smartphones or other 
digital cameras, including DSLR cameras.

 - Images: Our dataset includes images of multiple resolutions 
with various infection stages and locations of the symptom 
(mainly leaves, but also fruits and stems). Also, we collected 
images of healthy leaves and surrounding regions of 
the greenhouse.

 - Greenhouses: We obtained data throughout the year since 
2015–2020 in different seasons and local farms in Korea. The 
selected farms include some for research and commercial 
purposes at different scales. Among them, some utilized 
controlled environments and technology, while in others, 
mainly at a small scale, the process is performed more 
manually. Therefore, plants are more vulnerable to 
disease spread.

 - Diseases: As tomato is a seasonal product, we  visited the 
farms in coordination with local experts to ensure data 
collection of various diseases. The current dataset includes 
images of 12 types of diseases and pests in different amounts 
based on the presence and availability in the farms.

A

B

FIGURE 1 | Overall architecture of the proposed method. (A) Training and validation. (B) Inference. Control and target classes are used for training and validation. 
The weights of the model are used during inference but only focusing on the target classes as the recognition goal.
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 - Time: We collected data during the period of 10 am to 3 pm 
with sunlight.

 - Validation: During the whole data collection process, we had 
the support of experts in plant diseases who were in charge 
of selecting and validating the type of diseases and disorders.

Figure  2 shows an example of images and types of plant 
diseases and pests included in our dataset. A detailed description 
of the types of diseases and pests is presented in Fuentes 
et  al. (2016). Hereinafter, we  use the following notations in 
some of the tables and figures to represent the classes included 
in the dataset: canker, Canker; lmold, Leaf mold; powder, 
Powdery mildew; gmold, Gray mold; TYLCV, TYLCV/yculr; 
healthy, Healthy; ToCV, ToCV; plague, Plague; miner, Miner; 
wfly, Whitefly; wflyegg, Whitefly egg; magdef, Magnesium 
deficiency; phydam, Physical damage; back, Background.

Target and Control Classes
Target and control classes are selectable according to the given 
task. Initially, to find this distribution, we  consider that once 
any disease infects a plant, the symptoms could appear in 
various parts such as leaves, stems, flowers, fruits. From the 
perspective of an image captured for recognition, these damages 
contain a universe of features showing several internal variations 
(Figure  3A, left). Also, various external variations, such as the 
lighting and surrounding objects in the greenhouse, can add 
complexity to the model. Some intra-class variations between 
diseases, may also appear, mainly if the infection occurs globally 
(e.g., whole leaf) or locally (e.g., leaf tip, spots). For instance, 
some diseases, especially at an early stage, contain features 
that can cause confusion to the system (Figure  3A, right).

Due to the large variety of data and infection stages in the 
feature domain, it is sometimes difficult for a system to associate 
images as part of the same distribution, resulting in wrong 

predictions and false positives (Figure  3B). For example, a 
leaf affected by powdery mildew can contain some features 
of canker since canker sometimes also appears at later stages 
of powdery mildew. Similarly, powdery mildew can cover some 
features related to leaf mold. Confusion can also be  created 
by even unaffected parts of the leaves that show healthy regions 
or features of other diseases. From this assumption, we  believe 
that by having explicit control over intra- and inter-class variations, 
a deep learning model can become more oriented to learning 
various types of features. Nonetheless, although these variations 
may not be  part of the recognition goal, they still provide 
context information of the real scenarios. The system becomes 
then more robust as we  reduce the chances of confusion.

Based on the above fundament, we considered the following 
conditions for selecting the target and control classes:

 - Target classes: This group includes diseases that are mainly 
difficult to handle and demand a higher priority over the other 
classes. They spread faster and are challenging to be identified, 
especially at the early stage. Therefore, recognizing target 
classes is the main objective of our application. We selected 
five types of diseases as target classes for this study based on 
farms’ data availability and occurrence level. Control classes 
include: leaf mold, canker, gray mold, yellow leaf curl virus 
(TYLCV), and powdery mildew. We support this decision 
from the experience of our previous works and with the 
support of the experts.

 - Control classes: Control classes are those that contain 
particular features that help deploy the system in new 
greenhouse scenarios. By using these classes, we  aim to 
specifically obtain explicit control over intra- and inter-class 
variations by adding additional knowledge to improve the 
model’s generalization capability. Although the model also 
learns these classes, their application directly influences the 

FIGURE 2 | Example of collected images and types of diseases of our dataset.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Fuentes et al. Plant Diseases Recognition With Control Classes

Frontiers in Plant Science | www.frontiersin.org 6 December 2021 | Volume 12 | Article 682230

final prediction of target classes. Control classes are healthy 
leaves, miner, physical damage, magnesium deficiency, 
tomato chlorosis virus (ToCV), plague, whitefly, whitefly egg, 
and background. The background class, in particular, provides 
contextual characteristics such as different illumination 
conditions and surrounding objects of the greenhouse.

Deep Learning Meta-Architecture
Motivated by the above observations, this part elaborates the 
strategy in detail. As shown in Figure 1, the framework consists 
of two main parts: (1) training and validation, (2) inference.

Training/Validation Strategy
Following the promising results of our previous work (Fuentes 
et al., 2017b) with the FRCNN as the meta-architecture, we use 
it as the baseline model for our proposed approach. The FRCNN 
detector consists of a CNN backbone, a region proposal network 
(RPN) to obtain the object proposals, an ROI pooling layer, 

and fully connected layers followed by two branches for 
classification and bounding box regression. The RPN uses the 
features of the input image after being fed into the backbone 
CNN. For every point in the output feature map, the network 
should learn whether an object is included in the input image 
on its corresponding location and estimate its size. Next, the 
proposals from the RPN are used to pool features from the 
backbone feature map. This is done by the ROI pooling layer. 
The ROI pooling layer, in particular, works by taking the region 
corresponding to a proposal from the feature map; dividing 
this region into a fixed number of sub-windows, and performing 
max-pooling over these sub-windows to give a fixed size output. 
After passing these regions through two fully connected layers, 
the features are fed into the classification and bounding box 
regression branches.

Both target T = {1, 2, 3, …, t} and control classes C = {1, 
2, 3, …, c} are used to build the weights of the baseline 
model. t  and c  represent the number of categories, respectively. 
Although the detection of controlled classes is not the priority 
of the system, they provide features and information of potential 

A

B

FIGURE 3 | General overview of the context of the problem addressed by our proposed approach. (A) Intra-and inter class variations at plant-based and target 
class-based models. An explicit control of these variations can make a deep learning model become more oriented to learning various types of features. (B) Feature 
association in the space and feature domains. Similarities between diseases can affect the final prediction.
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cases that could appear in greenhouse scenarios. On the other 
hand, target classes include those which are part of the recognition 
goal. Both groups are used during training/validation and 
testing on data collected in the seen farms.

Training the network end-to-end aims to reduce the final 
loss function in Equation (1), which adds the classification 
and regression losses. The objective is to reduce the loss between 
the predicted results and the ground truth, as well as to 
minimize the presence of false positives in the final results.

L p t
N

L p p
N

p L t ti i
cls i

cls i i
reg i

i reg i i{ } { }( ) = ( ) + ( )å å* * *, , ,1 1 1l ( ))

where pi  and pi*  are the predicted probability of anchor i  
being an object and ground-truth label of whether i  is an 
object, respectively, ti  and ti*  are the predicted and ground-
truth box coordinates, l  is a balancing hyperparameter. Ncls  
and Nreg  represent normalization factors for classification and 
regression, respectively. Figure 1A shows the strategy for training 
and validation.

Inference
Once trained on data from seen farms, the model contains 
features from both target and control classes. Then, we  use 
the generated weights to evaluate the adaptation capability 
of the model to new environments and its generalization 
to new data. This inference dataset includes samples of 
target classes collected in greenhouse environments other 
than those used for training. Control classes are omitted 
for recognition but still contribute the necessary weights 
to avoid class confusion and misclassification. Figure  1B 
shows the inference process.

Evaluation Metric
Our system uses a single input image and generates a set of 
regions with bounding boxes and class confidence of plant 
diseases. We  evaluate the performance of the detector using 
the following metrics:
 - Intersection-over-Union: This metric evaluates the detector’s 

capacity to precisely localize the ROIs concerning the ground 
truth using the intersection over union (IoU) operation with 
a threshold value. We utilized a threshold of 50%.

IoU A B
A B

=
Ç
È  

(2)

where A and B represent the ground-truth and predicted 
box, respectively.

 - Mean Average Precision: mAP is the area under the 
precision–recall curve calculated for all classes.

mAP P r
r

interp= ( )
Î ¼[ ]
å1

11 0 0 1 1, . , ,   
(3)

P r p rinterp
r r r

( ) = ( )
³

max
: 



 (4)

where, P rinterp ( )  is the maximum precision for any recall 
values greater than r, and p r( )  is the measured precision at 
recall r .

EXPERIMENTAL RESULTS AND 
DISCUSSION

In this section, we validate the performance of our proposed 
framework using target and control classes. We  use the 
training/validation dataset to build the core features of the 
detector. Then, we  evaluate the inference of the model with 
another set of target data from new greenhouses to perform 
recognition of target classes. Also, we  further analyze the 
influence of control and target classes. Qualitative results 
show some examples of the output images of the detector 
evaluated in different scenarios. Finally, we  demonstrate the 
impact of the use of target classes by representing features 
in the spatial domain.

TABLE 1 | Training/validation dataset of tomato plant diseases with target and 
control classes.

No. Category Class
Number of 
annotated 
samples*

Number of 
samples after 

data 
augmentation*

1 Target classes Leaf mold 7,178 35,890
2 Gray mold 523 2,615
3 Canker 618 3,090
4 Powdery mildew 6,277 31,385
5 TYLCV 12,918 64,590
6 Control classes Healthy 12,252 61,260
7 ToCV 4,190 20,950
8 Plague 598 2,990
9 Miner 2,328 11,640
10 Whitefly 1,701 8,505
11 Whitefly egg 6,314 31,570

12
Magnesium 
deficiency

584
2,920

13 Physical damage 1,767 5,835
14 Background 2,469 12,345

Total 59,717 295,585

*Number of annotated bounding boxes obtained from approximately 10,000 images. In 
some cases, multiple diseases can be found in the same sample, therefore, we present 
the number of annotated boxes instead of the number of images for each class.

TABLE 2 | Inference dataset of target diseases.

Class No. images

TYLCV 134
Canker 487
Leaf mold 786
Gray mold 295
Powdery mildew 279
Total 1981

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Fuentes et al. Plant Diseases Recognition With Control Classes

Frontiers in Plant Science | www.frontiersin.org 8 December 2021 | Volume 12 | Article 682230

TABLE 3 | Experimental results of training/validating the model on the baseline dataset with and without using control classes.

Class
VGG-16 (Simonyan and Zisserman, 2015) ResNet-50 (He et al., 2016) ResNet-50 FPN (Lin et al., 2017)

w/o control* w/ control w/o control* w/ control w/o control* w/ control

Canker 0.8501 0.8737 0.8620 0.8951 0.8722 0.9102
Gray mold 0.8656 0.8806 0.8491 0.8700 0.9105 0.9210
Leaf mold 0.8973 0.9156 0.8801 0.9205 0.8904 0.9360
Powdery mildew 0.9083 0.9101 0.9027 0.9210 0.9358 0.9419
TYLCV 0.8317 0.8721 0.8732 0.9030 0.8801 0.9200
Total mAP 0.8706 0.8904 0.8734 0.9019 0.8978 0.9258

*w/o control represents the evaluation using the exact configuration of the baseline model (Fuentes et al., 2017b). Bold values represent the best results for each class.

FIGURE 4 | Performance differences with and without using control classes. A certain gain in mean average precision (mAP) is observed after adding the control 
classes along the target classes during training. Different feature extractors are evaluated in this graph.

Dataset Settings
Training/Validation Dataset
Following our previous work (Fuentes et  al., 2017b), we  use the 
tomato diseases and pest dataset, including annotations for class 
and bounding box information. We apply geometric transformations 
(resizing, crop, rotation, horizontal flipping) and intensity 
transformations (contrast and brightness enhancement, color, noise) 
to augment the number of images in the dataset. Then, we divide 
the dataset into training and validation. The deep learning 
architecture uses the training dataset to obtain features of the 
regions containing diseases, and the validation dataset is used to 
validate the learning process during training. To facilitate our 
explanation, we  will refer to this data as our “baseline dataset” 
and use it to build the core weights for further implementation.

Additionally, since our data come from different sources, 
an appropriate distribution is required to ensure that the system 

learns features adequately. Specifically, we  apply an inner-class 
distribution of samples to capture data from all classes. This 
setup allows independent data from each class to appear during 
training and validation, respectively.

Table  1 shows the list of classes and the number of 
annotated bounding boxes obtained from approximately 
10,000 images before and after data augmentation. This 
dataset includes 12 types of diseases and pests out of healthy 
leaves and an additional class containing background features. 
Five categories correspond to the target classes, and the 
rest are part of the control classes.

Inference Dataset
To further validate the use of target and control classes to 
improve our model’s generalization capability, we  collected an 
inference dataset. We  obtained additional data of target classes 
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from farms other than those used for training. Although these 
sample images belong to the same type of diseases as the baseline 
dataset, their visual characteristics and background conditions 
may vary and contain more features from global and local areas 
of the leaves. In addition, we  also extended the recognition of 
symptoms in other parts of the plants, such as fruits and flowers. 
Table  2 shows the number of images used for inference.

Implementation Details
We conducted experiments on a machine with 4 NVIDIA 
TitanV GPUs, CUDA 9.0, and cuDNN 7.1.2 during the system 
development. We  also implemented the model on a server PC 
equipped with an NVIDIA Tesla V100 GPU for inference 
purposes. For all the cases, we set the batch size to two images 
on a single GPU. We  trained the model end-to-end using a 
pre-trained model on the MS-COCO dataset (Lin et al., 2014).

Performance With/Without Explicit Control
Training/Validation on the Baseline Dataset
We train the model on the baseline dataset (Table  1) and 
evaluate the performance using the mAP. To prove the utility 
of control classes, we  compare the model’s performance on 
two settings, first, training without control classes, and then 
with control classes. We  use the same model in both cases, 
however, training without control classes represents the same 

A

B

C

FIGURE 5 | Example qualitative results from different setups and experiments. (A) Examples of true positives obtained during training/validation with target and 
control classes. (B) Examples of false positives and undetected areas resultant from training the model without control classes. (C) Recognized target samples on 
the inference dataset. Class notations are introduced in Section “Criteria for Data Collection.”

TABLE 4 | Model evaluation of the inference dataset.

Class w/o control w/ control

Canker 0.8350 0.9254
Gray mold 0.8801 0.9300
Leaf mold 0.9087 0.9520
Powdery mildew 0.8532 0.9211
TYLCV 0.8641 0.9402
Total mAP 0.8682 0.9337

Bold values represent the best results for each class.
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A B

FIGURE 6 | Distribution of features of target and control classes in the space domain. (A) Sampling distribution of the model trained without control classes. 
(B) Sampling distribution of the model trained with control classes. Each circle represents one class, and its radio depends on the number of samples and the 
dispersion of features. Solid lines and dashed lines correspond to target classes and control classes, respectively.

A B C

FIGURE 7 | Representation of the tSNE distribution obtained from the model trained without control classes. (A) t-SNE distribution for the whole dataset. 
(B) Powdery mildew (target class) and its corresponding samples in the features space. (C) Plague (target class) and its samples in the space. Each dot represents 
a sample, and the colors identify the class assignation. Lines between dots show the connection of each sample to the center of its corresponding class.

A B

FIGURE  8 | Class confusion rates concerning the use of target and control classes. (A) Using control classes can effectively reduce the false positive 
and false negative rates in most target classes. (B) Also, the effect is extended to reduce confusion with data of control classes mainly. The impact 
appears to be  more effective in classes with more similar features to the target ones. Class notations are introduced in Section “Criteria for Data 
Collection.”
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configuration utilized in our previous work (Fuentes et  al., 
2017b). Moreover, we  applied different feature extractors to 
find the most suitable for our approach.

Table  3 presents the results of this experiment. Using the 
exact configuration of our previous work (Fuentes et al., 2017b), 
with FRCNN as the meta-architecture and VGG-16 network 
as the feature extractor, without applying control classes reports 
a mAP of 87.06% for the validation on the target classes. 
Then, by adding the control classes to the training set, the 
performance improved by about 1.98%. Posteriorly, we replaced 
the backbone network with ResNet-50 and obtained a gain of 
1.15% mAP using control classes. By further adding a FPN-based 
structure to ResNet-50, we improved the results at about 92.58% 
mAP, representing a gain of 2.8% to the results of the same 
model without control classes. In all cases, ResNet-50 FPN 
outperforms the other networks.

The use of control classes for training the model represents 
a valuable performance improvement for all the evaluated 
feature extractors. However, the results suggest that using an 
FPN-based architecture satisfactorily contributes to addressing 
the recognition problem of our approach. We  believe that the 
reason is that FPN uses features obtained from different levels 
of the backbone and thus influences the recognition of objects 
at multiple scales. Figure  4 shows a representation of the 
performance differences after evaluating the model with and 
without control classes. Moreover, Figure  5A shows some 
qualitative examples of true positive results on images from 
the baseline dataset, and Figure  5B presents some examples 
of false-positives when training the model without control classes.

Inference on New Data
To measure the model’s capacity to deal with features of target 
classes, we  further evaluate the trained model on the inference 
dataset using the best model of Table  3 (FRCNN ResNet-50 

FPN). As shown in Table  4, despite the complexity of the 
inference data, our system can satisfactorily recognize an average 
of 93.37% mAP of target diseases. This result represents a 
difference of about 6.5% to the model trained without control 
classes. During inference, the system associates these features 
with the information obtained during training to improve the 
recognition capabilities of target classes. Therefore, we  find 
that, by having explicit control over the intra- and inter-class 
variations, control data plays a crucial role in providing the 
required features to improve the recognition of target classes.

It is also essential to notice that the inference results show 
the potential characteristics of the proposed approach to deal 
with new conditions of target diseases. Specifically, healthy 
leaves and background classes support the model’s adaptation 
to new environments, while the other control classes add more 
context information. Figure 5C shows some qualitative example 
results of target disease recognition on the inference data.

Discussion
Target Classes Over Control Classes
In this part, we  study the inter-and intra-class variations that 
potentially help determine the correlations between target and 
control classes. Moreover, we  evaluate the capabilities of the 
detector by studying the spatial distribution of features to 
demonstrate the contributions of our approach.

First, to show the importance of using control classes, we use 
the model trained on the baseline dataset (Table  1), applying 
only the target classes. We  explore the features through the 
t-SNE distribution for all samples and visualize the relationship 
between classes. Then, we  obtain the coordinates of the spatial 
location of each sample to generate Figure  6A for all classes 
in the dataset. Based on the information provided by this 
figure and using the criterion of region overlapping, we  find 
that classes with a higher level of complexity are located mainly 

A B

FIGURE 9 | Representation of the tSNE distribution obtained from the model trained using control classes. (A) t-SNE distribution and class association. (B) Control 
classes provide sufficient information to assign samples to their respective category. Each dot represents a sample, and the colors identify the class assignation. 
Lines between dots show the connection of each sample to the center of its corresponding class. Class notations are introduced in Section “Criteria for Data 
Collection.”
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TABLE 5 | Confusion matrix of target classes without using control classes for training.

Target classes* Control classes* Amount of 
confusion 
(target w/o 

control)
lmold gmold canker powder TYLCV healthy ToCV plague miner wfly wflyegg magdef phydam back

lmold 90.0% 1.0% 2.0% 1.0% 4.5% 1.0% 0.5% 7.0%
gmold 2.0% 85.0% 2.5% 2.0% 0.5% 5.0% 3.0% 10.5%
canker 1.0% 0.5% 87.3% 6.6% 0.4% 4.2% 11.2%
powder 1.5% 1.0% 92.0% 3.0% 2.0% 0.5% 2.5%
TYLC V 89.0% 5.0% 3.0% 2.0% 1.0% 11.0%
Total confusion 42.2%

*Class notations are introduced in Section Criteria for Data Collection.

TABLE 6 | Confusion matrix of target classes using control classes for training.

Target classes* Control classes* Amount of 
confusion 
(target w/ 
control)

lmold gmold canker powder TYLCV healthy ToCV plague miner wfly wflyegg magdef phydam back

lmold 95.0% 1.0% 1.5% 2.0% 0.5% 2.5%
gmold 1.0% 92.0% 0.4% 1.5% 0.8% 2.3% 1.5% 0.5% 5.1%
canker 0.6% 93.2% 2.0% 0.5% 1.5% 0.2% 2.0% 4.2%
powder 1.0% 0.5% 94.5% 1.0% 0.5% 1.0% 0.5% 1.0% 3.0%
TYLC V 95.8% 2.1% 1.0% 0.7% 0.4% 4.2%
Total confusion 19.0%

*Class notations are introduced in Section Criteria for Data Collection.
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at the center of the distribution. Among them, we  determine 
the target classes as those with significant inter-class variations 
such as canker, gray mold, and leaf mold. Still, more significantly, 
powdery mildew is a particular case that harms the system’s 
general performance if not treated appropriately. Correspondingly, 
in the case of the TYLCV, where symptoms appear more 
globally in the whole leaf area, the distribution is smoother 
as samples do not present such variations rather than sizes 
and infection stages. Yet, the area is larger, and generally, its 
features cover most of the classes. On the other side, concerning 
control classes, except miner, whitefly, whitefly egg, and 
background, the rest are covered either by other control classes 
or target classes, respectively.

Additionally, to demonstrate the effectiveness of using control 
classes for training, in Figure  6B, we  present the case when 
both target and control classes are used for training. We  can 
see that explicit control over the inter-and intra-class variations 
significantly helps the network avoid class confusion. Samples 
are then recognized as their corresponding categories and tend 
to make distant groups in the space. We extend this comparison 
in the next part.

Quality of Control Data
To support the results presented above, we  evaluate the 
generated models in terms of the number of true positives 
(correct predictions) compared to the false positives and false 
negatives. In this experiment, we  also analyze the capability 
of the system to quantitatively predict target classes and their 
impact on the false positive and false negative rates, using 
two cases:

 – Training without control classes: We train the model on the 
target classes and further evaluate it in the whole dataset. In 
this setting, the system does not receive any features of the 
control classes.

 – Training on both target and control classes: We evaluate 
the impact of adding the control classes to train the model 
along with the target classes. In this case, the system obtains 
features of both groups.

In the first case, as presented in Table  5, target classes are 
effectively identified with slight levels of confusion between 
them. However, when evaluating the model on the rest of the 
dataset, depending on the class, higher levels of confusion 
mainly appear, for instance, with healthy, plague, and in lower 
amount with physical damage. In general, without control data 
used for training, the results evidence a total of 42.2% confusion. 
To support this statement, we  obtain the t-SNE distribution, 
as presented in Figure  7, to find the location and class of 
the evaluated samples in the feature space. This representation 
evidences the model’s generalization problem to deal with new 
data. Testing on new classes generally diminishes the recognition 
of the target classes as they tend to confuse the network. 
We  associate this scenario as an effect of the inter-and intra-
class variations.

In the second case, as shown in Table  6, we  can see a 
general tendency of improvement after adding control classes 

for training. The level of confusion decreased by about half 
to 19%. More importantly, by introducing control data during 
training, the number of true positives for the target classes 
increased, consequently benefiting the model for further 
applications in new farms. Also, it shows a significant 
reduction in the false positive and false-negative rates. 
Figure  8 illustrates the changes in confusion rates for the 
target and control classes.

Figure  9A shows the t-SNE distribution obtained after 
training the model with control classes. The generalization 
capability of the system improved, and samples appear to make 
groups that specifically occupy a region of the space. Furthermore, 
the confusion levels were reduced while the performance of 
target classes increased. Figure  9B shows the case when a set 
of samples are assigned to their corresponding classes. This 
result suggests that teaching the model with additional 
information from intra- and inter-class variations helps improve 
the recognition of target classes while reducing the presence 
of misclassified samples in the final prediction.

Current Limitations
Despite the satisfactory and robust performance that 
we  presented, there is a limitation of the proposed approach. 
The main limitation is the data imbalance. This issue directly 
impacts the selection of the target classes as the recognition 
objective of a system. Data should be  sufficient to capture all 
features that the system can encounter in real-world greenhouse 
scenarios. This fact indicates that while we can achieve satisfactory 
results on the evaluated target classes, the promising model 
still needs more data to improve its robustness against more 
variations. Also, an appropriate selection of samples is essential 
for the success of our approach.

CONCLUSION

In this paper, we  proposed a new paradigm called “control 
to target classes” to refine the generalization capacity of plant 
disease recognition based on deep learning. We  presented a 
strategy to deal with changes in new greenhouse conditions. 
The explicit control over inter-and intra-class variations allowed 
our model to learn more data variations that make the system 
more adaptable and robust when applied to new scenarios. 
Experimental results on our extended tomato plant diseases 
dataset with 5 target classes and 9 control classes validated 
the performance of the proposed framework. We  obtained a 
recognition rate of 93.37% mAP for the target classes during 
inference. From an information-theory perspective, we analyzed 
the distribution of samples in the feature space using the tSNE 
distribution. We confirmed that our methodology using control 
classes improved the recognition of target classes. Finally, our 
study can offer valuable guidelines for researchers working in 
plant disease recognition with complex input data. Also, the 
potential of this technology can help farmers and non-expert 
people find problems associated with plant anomalies and 
diseases that affect crops. Future studies will apply our proposed 
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method to other crops using data collected in more 
greenhouse settings.
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