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Kengyilia is a group of allohexaploid species that arose from two hybridization events
followed by genome doubling of three ancestral diploid species with different genomes
St, Y, and P in the Triticeae. Estimating the phylogenetic relationship in resolution of
the maternal lineages has been difficult, owing to the extremely low rate of sequence
divergence. Here, phylogenetic reconstructions based on the plastome sequences were
used to explore the role of maternal progenitors in the establishment of Kengyilia
polyploid species. The plastome sequences of 11 Kengyilia species were analyzed
together with 12 tetraploid species (PP, StP, and StY) and 33 diploid taxa representing
20 basic genomes in the Triticeae. Phylogenomic analysis and genetic divergence
patterns suggested that (1) Kengyilia is closely related to Roegneria, Pseudoroegneria,
Agropyron, Lophopyrum, Thinopyrum, and Dasypyrum; (2) both the StY genome
Roegneria tetraploids and the PP genome Agropyron tetraploids served as the maternal
donors during the speciation of Kengyilia species; (3) the different Kengyilia species
derived their StY genome from different Roegneria species. Multiple origins of species
via independent polyploidization events have occurred in the genus Kengyilia, resulting
in a maternal haplotype polymorphism. This helps explain the rich diversity and wide
adaptation of polyploid species in the genus Kengyilia.

Keywords: polyploid, Triticeae, Kengyilia, multiple origins, maternal donor

INTRODUCTION

Polyploidy, defined as the possession of two or more sets of homologous chromosomes following
whole-genome duplication, is a major mechanism in plant evolution and speciation (Otto, 2007;
Spoelhof et al., 2017). Recent studies even suggested that multiple origins (including independent
origin) of polyploid species are the rule rather than the exception (Soltis and Soltis, 2000; Symonds
et al., 2010; Fan et al., 2013; Sha et al., 2017a). Polyploidy promotes variability through the change
in the chromosomal number per se, increased genetic diversity, and genomic reorganization,
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leading to benefits in new phenotypes and evolutionary
innovation in physiological and ecological flexibility (Ramsey
and Ramsey, 2014; Sha et al., 2017b). However, a clear and
appropriate identification of phylogenetic relationships among
taxa and genomes is needed (Fan et al., 2013).

Kengyilia Yen et J. L. Yang, a polyploid perennial genus in
the wheat tribe (Poaceae: Triticeae), includes about 22 perennial
species that were distributed in a wide range of natural habitats
over the upper and middle mountain ranges of Central Asia and
the Qinghai-Tibetan Plateau (Yang et al., 1992). Kengyilia was
also often classified in Elymus L. sensu lato, which was the largest
taxon in Triticeae, including Roegneria, Kengyilia, and Elymus
sensu stricto (Löve, 1984). A comparison of the morphological
features among the genera Kengyilia, Roegneria, Elymus, and
Agropyron suggested that species in Kengyilia are intermediate
between the species of Roegneria C. Koch and Agropyron
Gaertn., but with some distinct morphological divergence in
the spikelet characters between Kengyilia and Roegneria and
between Kengyilia and Agropyron (Baum et al., 1995). Kengyilia
species exhibit variation with high (K. grandiglumis) to low
(K. thoroldiana) plants, lax (K. rigidula) to dense (K. hirsuta)
spikes, adnate (K. longilumis) to incohesive (K. stenachyra)
spikelets attached to the rachis, and yellow (K. gobicola) to black
(K. melanthera) anthers.

All the species of Kengyilia are allohexaploids (2n = 6x = 42)
with StYP genomes (Yang et al., 1992; Yen et al., 2006). The St
and P genomes have originated from Pseudoroegneria (Nevski)
Á. Löve and Agropyron Gaertn., respectively (Löve, 1984). It
is unknown where the Y genome originates, although it is a
fundamental Kengyilia genome (Yen et al., 2006; Fan et al., 2013).
Cytogenetic evidence suggested that speciation of the Kengyilia
polyploid was derived from hybridization between tetraploid
Roegneria species (2n = 4x = 28, StY) and diploid Agropyron
species (2n = 2x = 14, P) (Yen et al., 2006; Fan et al., 2013).
Analysis of nuclear single-copy Pgk1 gene sequences suggested
that Kengyilia species from Central Asia and the Qinghai-
Tibetan Plateau have independent origins with geographically
differentiated P genome donors (Fan et al., 2012). Data from
chloroplast trnL-F, matK, rbcL, trnH-psbA, and mitochondrial
CoxII suggested that different species of Kengyilia have derived
their maternal lineages either from the species of Pseudoroegneria
or the species of Agropyron or an unknown donor (Zhang et al.,
2009; Zeng et al., 2010; Luo et al., 2012). Analysis of trnL-F,
matK, and rbcL sequences showed that four species of Kengyilia
(K. kokonorica, K. melanthera, K. mutica, and K. thoroldiana)
were related to species of Agropyron, and the remaining sampled
species were close to species of Pseudoroegneria (Zhang et al.,
2009; Luo et al., 2012). In the trnH-psbA tree, four species
of Kengyilia (K. grandiglumis, K. hirsuta, K. laxiflora, and
K. rigidula) were grouped with Agropyron, which is inconsistent
with the maternal relationship presented by the trnL-F, matK,
and rbcL sequence data (Zhang et al., 2009; Luo et al., 2012).
Moreover, analysis of CoxII suggested that some species of
Kengyilia (e.g., K. batalinii), Agropyron, and Pseudoroegneria
formed a paraphyletic grade with zero-length branches (Zeng
et al., 2010). While these studies added to our understanding
of the phylogenetic relationships of Kengyilia, the molecular

phylogenies based on published chloroplast DNA (trnL-F,
matK, rbcL, and trnH-psbA) and mitochondrial sequences in
resolution of the maternal lineages of Kengyilia species are
still in dispute either due to the unresolved gene tree with
polytomies or incongruence among the cytoplasmic gene data
(Zhang et al., 2009; Zeng et al., 2010; Luo et al., 2012).
Moreover, the processes that have driven polyploid diversification
and speciation, especially with regard to which tetraploid and
diploid species, as maternal progenitors, were involved in the
hexaploid evolution in Kengyilia, remain unclear. Thus, to better
understand the maternal contribution to the evolution of the
species of Kengyilia, it is essential to conduct a good comparative
study of chloroplast genome-wide in Kengyilia and its relatives,
covering nearly all of the genomic combinations in Triticeae.

By integrating 38 newly and 18 previously sequenced
plastomes representing the StYP genomes and its related
tetraploid and diploid genomic types in Triticeae, this study
applies phylogenetic reconstruction methods in combination
with an estimate of the genetic distance among the coding
region to clarify maternal lineage relationships. Our objectives
are to demonstrate a phylogenomic framework for illustrating
the maternal donor of Kengyilia polyploids and to explore
the role of maternal progenitors in the establishment of
Kengyilia polyploids.

MATERIALS AND METHODS

Plant Materials
A total of 23 polyploids, comprising 11 Kengyilia (StYP genomes)
species, eight Agropyron (PP) tetraploids, one Douglasdeweya
(StP genomes) species, and three Roegneria (StY genomes)
species, were analyzed together with 33 diploid taxa representing
20 basic genomes in the Triticeae (Supplementary Table 1).
Brachypodium distachyon was used as an outgroup. The
chloroplast genome sequences of Triticum–Aegilops complex,
Secale, Pseudoroegneria cognata, Pseudoroegneria stipifolia,
Pseudoroegneria strigosa, and Pseudoroegneria tauri were from
the published data (Gornicki et al., 2014; Bernhardt et al., 2017).
The remaining sequences in Supplementary Table 1 in Triticeae
were newly sequenced. Sample information including accession
numbers, origins, genome type, ploidy, and GenBank accession
data were also listed in Supplementary Table 1. The seed
materials with PI and W6 numbers were graciously provided
by the American National Plant Germplasm System (Pullman,
WA, United States). The seed materials with ZY and Y numbers
were collected by the authors of this article. The plants used
for sequencing and voucher specimens are deposited at the
Herbarium of Triticeae Research Institute, Sichuan Agricultural
University, China (SAUTI).

Plastome Sequencing and Data
Assembly
DNA extractions were performed on young leaves dried in
silica using the DNeasy Plant Mini kit (QIAGEN, Valencia, CA,
United States) according to the instructions of the manufacturer
after homogenization with liquid nitrogen. The plastomes were
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amplified in overlapping fragments using the long-range PCR
method of Yang et al. (2014). The PCR products were fragmented
into short inserts (400–600 bp) to construct the sequencing
paired-end library according to the NEBNext R© protocol. DNA
from each individual was indexed using tags and pooled together
in one lane of an Illumina Hiseq 4000 PE150 for sequencing.
The raw reads were trimmed using Fastp v0.20.0 (Chen et al.,
2018) and the clean reads were subjected to de novo assembly
using NOVOPlasty 4.0 (Dierckxsens et al., 2016) with default
parameters. Approximately, 100 million reads were randomly
selected and aligned to the close-related sequences of Agropyron
cristatum using BWA v0.7.15 (Li and Durbin, 2009) (MEM
algorithm), and a perfect matched read to the psbA gene
was selected as the seed input. NOVOPlasty produced two
optional sequences which were simply different in small single-
copy region (SSC) direction. The sequence with the same SSC
direction to Agropyron cristatum (GenBank No. KY126307)
and Pseudoroegneria libanotica (GenBank No. KX822019) was
selected and subjected to annotation.

Sequence Alignment and Analysis
The complete chloroplast sequences were aligned with MAFFT
v. 7 (Katoh and Standley, 2013) using the default settings.
All alignments were visually inspected in MEGA 6.0 (Tamura
et al., 2013) and manually adjusted where needed. We also
conducted a co-linear analysis using the software LASTZ, and
the results were visualized using AliTV (Ankenbrand et al.,
2017). Multiple alignment of the protein-coding sequence was
conducted using ClustalW in MEGA 6 (Tamura et al., 2013), with
manual adjustment. Amino acid translations were used to guide
the nucleotide alignments. The sequence statistics, including
nucleotide substitutions, Kimura 2-parameter (K2-p) distances,
transition/transversion ratio, and variability of the sequences,
were calculated by MEGA 6 (Tamura et al., 2013).

To estimate the genetic differentiation of the protein-coding
sequences between Kengyilia and its close relatives, the K2-p
model was used to calculate the genetic distances of the protein-
coding sequences of 52 genes (76 unique genes, excluding 24
which have no variable nucleotide sites and/or are <200 bp).
A total of 1,664 (32 samples and 52 protein-coding genes)
genetic distances were used to estimate the genome relationship
employing hierarchical agglomerative clustering in R (Version
3.4.2; Vienna, Austria). The Hopkins statistic was used for the
evaluation of the clustering tendency. The optimal number of
clusters was determined by the “fviz_dend” algorithm in the R
package “factoextra” Version 1.0.5. Bivariate cluster (k-means
clustering) analysis based on genetic distances and agglomerative
hierarchical clustering was performed by the “clustplot” function
in the R package “cluster” package (Version 2.0.6).

Phylogenetic Analysis
Because complete chloroplast genome sequences offer the
greatest phylogenetic resolution (Ma et al., 2014), phylogenomic
trees were generated from the complete genomes of all sampled
chloroplasts. Phylogenomic analyses were conducted using
maximum likelihood (ML) and Bayesian inference (BI). The

ML analysis was performed using the IQ-Tree software.1 The
TVM + F + R3 model was selected for the ML analysis
according to ModelFinder implemented in IQ-Tree. To assess
branch support, the IQ-Tree analyses used the ultrafast bootstrap
approximation (UFboot) with 10,000 replicates (Minh et al.,
2013) and the SH-like approximate likelihood ratio test (SH-
aLRT) with 1000 bootstrap replicates (Guindon et al., 2010).

The evolutionary model used for BI analysis was determined
using ModelTest v3.7 (Ronquist et al., 2012) with Akaike
information criterion (AIC). The BI analysis was performed
using MrBayes v3.2 (Posada and Crandall, 1998) under the
GTR + G + I model that was identified as the best fit by
ModelTest. Four Markov Chain Monte Carlo (MCMC) chains
(one cold and three heated), applying MrBayes default heating
values (t = 0.2), were run 1,000,000 generations for plastome
data, with each sampled in each data set every 100 generations.
Majority-rule (>50%) consensus trees were generated with a
relative burn-in of 25%. The statistical confidence in nodes was
estimated by posterior probabilities (PP). A PP-value less than
90% was not included in the figures.

RESULTS

Characteristics of Chloroplast Genomes
and Genes
All sequenced genomes are very similar to the published
chloroplast genomes of Triticeae (Gornicki et al., 2014; Bernhardt
et al., 2017) and are rather conservative in genome structure
and gene content. Their genome size ranges from 134,985 in
Roegneria ciliaris to 135,489 bp in A. cristatum (ZY09064).
All plastomes exhibited a typical quadripartite structure that
included a pair of IRs separated by a large single-copy region
(LSC) and a SSC and contained a total of 109 genes (including
76 protein coding genes, 29 tRNA genes and 4 rRNA genes).
Assemblies in the genus Kengyilia averaged 135,113 bp, with
an estimated 0.064% insertion data (compared to P. libanotica
reference); genus Roegneria assemblies averaged just less than
135,079 bp (0.039% estimated insertion data, compared to P.
libanotica reference).

Analysis of co-linearity is inferred for two diploid taxa
representing St and P genomes, one tetraploid species with
the StP genome, one tetraploid species with the StY genome,
and three hexaploid species with the StYP genome (Figure 1).
Despite a high degree of co-linearity among these genomes
due to the conservation in chloroplast genome structure and
gene content, five big indels (at positions 17,819–18,278,
56,172–56,963, 62,664–63,130, 83,590–84,338, and 130,804–
131,592 bp, respectively) were detected between the St- and
P-containing lineages, which is indicative of high genetic
divergence between them.

The features of each of the 76 protein-coding genes
in the diploid–polyploid plastome data are summarized in
Supplementary Table 2. The lengths of each gene ranged from 90
(petN) to 4,440 (rpoC2) bp. The proportion of the variable sites

1http://www.cibiv.at/software/iqtree/
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FIGURE 1 | The co-linear analysis of the chloroplast genomes of Kengyilia species and its close relatives. The phylogenetic tree was constructed based on the
complete chloroplast genomes using ML.

(variable sites/total sites, V/T) varied from 0 (e.g., petG) to 3.36%
(rpl32). The ratio of parsimony-informative characters per total
aligned characters was greatest for petL (2.08%) and lowest for
petG, psbF, and rpl23 (0).

Phylogenetic Analyses
Bayesian phylogenetic reconstruction of the plastome data under
the GTR + G + I model resulted in a tree with high posterior
probability support across most clades. The ML analyses in IQ-
Tree under the TVM + F + R3 model recovered the same
topology as the Bayesian analyses (Supplementary Figure 1).

The tree illustrated in Figure 2 was the BI tree with
statistical support (UFboot, SH-aLRT, and PP) above branches.
The phylogenetic tree showed that plastome sequences of
Kengyilia were split into two major clades (Clade I and
II) with consistent statistical support (100% UFboot and
SH-aLRT; 1.0 PP). The Clade I included Thinopyrum (Eb),
Lophopyrum (Ee), Dasypyrum (V), and Pseudoroegneria (St),
as well as all the sampled St-containing (Douglasdeweya,
StP; Roegneria, StY; and Kengyilia, StYP) polyploid species
(except for K. melanthera), which also had the consistent
statistical support (100% UFboot and SH-aLRT; 1.0 PP). In this
clade, Thinopyrum, Lophopyrum, Dasypyrum, Douglasdeweya,
four species of Pseudoroegneria (P. stipifolia, P. cognata,

P. Libanotica, and P. tauri), two species of Roegneria (R. grandis
and R. ciliaris), and four species of Kengyilia (K. alatavica,
K. hirsuta, K. laxiflora, and K. batalinii) were in one subclade
(99.8% UFboot, 100% SH-aLRT, and 1.0 PP). K. alatavica from
Central Asia formed a paraphyletic grade with Thinopyrum,
Lophopyrum, Dasypyrum, Douglasdeweya, and two species of
Pseudoroegneria (P. stipifolia and P. cognata). Two Kengyilia
species from Central Asia (K. hirsuta and K. batalinii) and
one Kengyilia species from the Qinghai-Tibetan Plateau
(K. laxiflora) were clustered with two species of Roegneria
(R. grandis and R. ciliaris) (95% UFboot, 95% SH-aLRT,
and 1.0 PP). K. kokonorica from the Qinghai-Tibetan
Plateau and two species of Pseudoroegneria (P. libanotica
and P. tauri) formed a paraphyletic grade in the subclade.
Five species of Kengyilia from the Qinghai-Tibetan Plateau
(K. thoroldiana, K. grandiglumis, K. mutica, K. stenachyra,
and K. rigidula) were grouped with one species of Roegneria
(R. longearistata) (100% UFboot, 100% SH-aLRT, and 1.0
PP), and this group was a sister group to two accessions
of Pseudoroegneria spicata (99.6% UFboot, 100% SH-aLRT,
and 1.0 PP). The clade II contained all sampled Agropyron
species (A. cristatum and A. mongolicum) and K. melanthera
from the Qinghai-Tibetan Plateau (100% UFboot, 100%
SH-aLRT, and 1.0 PP).
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FIGURE 2 | Bayesian tree inferred from the complete chloroplast genome sequences for Kengyilia species and its diploid relatives in the Triticeae. Numbers above
branches are values of the statistical support values, and values are indicated only if deemed robust as follows: UFboot ≥ 95%/SH-aLRT ≥ 80%/PP ≥ 0.9. The
capital letters in brackets indicate the genome type of the species. Different colors indicated the geographic information of Kengyilia species.
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Statistic of K2-p Distance Matrix
A distance matrix including 1,664 genetic values was generated
to investigate the relationship between the plastomes of Kengyilia
and those of its close relatives (Supplementary Table 3).
The Hopkins statistic was found to be 0.2057, indicating that
data provides information to cluster the samples. Analysis
of hierarchical agglomerative clustering shows four major
clusters (Figure 3), which correspond to the four genomic
types (P/StYP, Ee/Eb, StY/StYP, and St/StP/StY/StYP). This is
also well congruent with the groupings in the phylogenomic
tree inferred from the plastome data including all sampled
Triticeae plants.

DISCUSSION

The cpDNA-based (trnL-F, matK, rbcL, and trnH-psbA)
phylogenies of the genus Kengyilia, especially with regard to the
origin of the maternal donor during hexaploid polyploidization
events, were largely unresolved due to the occurrence of many
polytomies and incongruence among the published gene trees
(Zhang et al., 2009; Luo et al., 2012). Ma et al. (2014) pointed out
that despite missing samples, phylogenetic analysis of plastome
sequences can offer the greatest phylogenetic resolution. In
this study, a resolved tree with high statistical support was
inferred from the plastome sequences of Kengyilia and those of

its relatives in Triticeae, allowing the relationship regarding the
maternal lineages of Kengyilia to be clarified.

In the phylogenomic tree, 10 species of Kengyilia (K. alatavica,
K. hirsuta, K. laxiflora, K. batalinii, K. kokonorica, K. thoroldiana,
K. grandiglumis, K. mutica, K. stenachyra, and K. rigidula),
Roegneria, and Pseudoroegneria were in one group with
consistent support, indicating that Pseudoroegneria is likely to be
the maternal donor of these 10 StYP genome Kengyilia species
and the sampled StY genome Roegneria species. Since Kengyilia
species arose from two hybridization events followed by three
genome doublings (the St, Y, and P genomes), with one first
generating the StY genome Roegneria and the other forming
the StYP genome (Yen et al., 2006; Fan et al., 2012); Roegneria
served as the maternal donor during the speciation of the 10
Kengyilia species.

Analysis of trnL-F suggested that four species of Kengyilia
(K. kokonorica, K. melanthera, K. mutica, and K. thoroldiana)
were closely related to species of Agropyron (Zhang et al., 2009).
A similar deep-level relationship regarding the maternal lineages
is also presented by Luo et al. (2012), although molecular
characters (including matK, rbcL, and trnH-psbA) and more taxa
were sampled from Kengyilia. In this study, only K. melanthera
was grouped with the species of Agropyron, and the remaining
three species (K. kokonorica, K. mutica, and K. thoroldiana)
were placed into the clade including St-containing species.
Moreover, the plastome sequence of K. melanthera and Agropyron

FIGURE 3 | The cluster plot based on a distance matrix of Kengyilia species and its close relatives. Numbers represent lineages listed in Supplementary Table 3.
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FIGURE 4 | A diagram of lineage relationships among genera Kengyilia,
Roegneria, and Agropyron.

are obviously distinct from those of the St-containing species.
Thus, the molecular phylogenies based on the published cpDNA
fragments and the present plastome sequence data in resolution
of the placement of K. kokonorica, K. mutica, and K. thoroldiana
led to contradictory results, apparently. Discordances among
the phylogenetic trees result from methodological artifacts (e.g.,
sampling error and/or a failure of molecular characters) and the
complex dynamics of the evolutionary processes in organisms
(e.g., hybridization and/or ancestral polymorphisms) (Betancur-
R et al., 2014; Sha et al., 2017a). Sampling error is likely to be
the candidate for the current incongruences because our samples
for the comparative phylogenies with Kengyilia species included
nearly all of the monogenomic genera accepted in genome-based
classifications of the Triticeae, and most monogenomic genera
were not covered in the previous study (Zhang et al., 2009;
Luo et al., 2012). It is well known that molecular characters
can affect the accuracy of phylogenetic estimates (Ma et al.,
2014). Incongruences would also be the result of a lack of
molecular characters. Fewer molecular characters in cpDNA
regions, as indicated by our estimate for the variable features of
each chloroplast protein-coding gene (Supplementary Table 3),
together with their slowly evolving rates in the chloroplast
genome, would not only provide lower variable information for
the accuracy of the phylogenetic reconstruction but also result
in the occurrence of polytomies in the phylogenetic tree. On the
contrary, the plastome data offer enough molecular characters
for the accuracy of phylogenetic estimates with a well-supported
topology. Both hybridization and ancestral polymorphisms
acting alone or in concert can generate discordance and
therefore are the principal processes to explain the phylogenetic
incongruence in Triticeae species (Mason-Gamer, 2013; Sha et al.,
2017a).

The analysis of the genetic distance matrix based on
the 52 protein-coding genes suggested that Lophopyrum and

Thinopyrum are closely related to the St-containing species. In
the phylogenomic tree inferred from the complete chloroplast
genome, Lophopyrum, Thinopyrum, Dasypyrum, and two species
of Pseudoroegneria (P. stipifolia and P. congnata) form a
monophyletic group. These results indicated Lophopyrum,
Thinopyrum, Dasypyrum, and Pseudoroegneria (most likely
P. stipifolia and P. congnata) shared ancestral polymorphisms
due to the incomplete diversification of the common maternal
ancestry. Such ancestral polymorphisms could be genetically
transmitted to certain polyploid species (e.g., StP, StY, and StYP)
via the hybridization between Pseudoroegneria as the female
parent and the donors with Y and/or P genomes. The hypothesis
of hybridization is also a likely candidate to explain the conflict
because different polyploid species with the same genotypes
could be derived from different parental donors via independent
hybridization events, generating a diverse array of polyploid
genotypes in Triticeae (Sun et al., 2008; Fan et al., 2013). The
present plastome data also provides support for the independent
origin of certain polyploid species, which can be shown by
different Kengyilia species that were grouped with different
Roegneria species in a phylogenetic tree. For example, in the clade
I of the phylogenomic tree, three Kengyilia species (K. hirsuta,
K. laxiflora, and K. batalinii) were clustered with R. grandis with
strong statistical support (100% UFboot, 100% SH-aLRT, and 1.0
PP), and five Kengyilia species (K. thoroldiana, K. grandiglumis,
K. mutica, K. stenachyra, and K. rigidula) were grouped with
R. longearistata (100% UFboot, 100% SH-aLRT, and 1.0 PP).
The analysis of genetic distances based on the 52 protein-coding
sequences also presented similar results. Sympatric distribution
among R. grandis, R. longearistata, and Agropyron species have
provided an opportunity in physical proximity for hybridization
events. It is thus suggested that different Kengyilia species derived
their StY genome from different Roegneria species. Our data also
indicated that Agropyron species served as the maternal donor
during the speciation of K. melanthera, providing additional
support for the independent origins of different Kengyilia species.
However, it seems unlikely that maternal Agropyron lineage
in K. melanthera resulted from hybridization between high
ploidy Roegneria species with StY genomes (served as paternal
donor) and diploid P genome Agropyron species. One possible
explanation is that the P genome of K. melanthera originated
from the tetraploid Agropyron lineage as the female parent
(Figure 4). Given the present data, multiple origins of polyploid
species result in a maternal haplotype polymorphism and could
explain the rich diversity and wide adaptation of polyploid species
in the genus Kengyilia (Yen et al., 2006).

CONCLUSION

The present analysis of phylogenetic relationships in Kengyilia
based on the plastome sequences revealed that both Roegneria
and Agropyron tetraploid species served as the maternal donor
during the speciation of Kengyilia species, and different Roegneria
species contributed their StY genome to different Kengyilia
species. This is indicative of the independent origin of different
Kengyilia species, which shed new light on our understanding
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of the maternal lineages, polyploidization events, and speciation
process of Kengyilia.
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