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INTRODUCTION

Plants are continuously exposed to various biotic and abiotic stressors that limit their productivity.
Any kind of stressor leads to the generation of Reactive Oxygen Species (ROS), majorly, through
the activity of plasma membrane-localized respiratory burst oxidase homolog (RBOH) proteins
that generate O•−

2 in the apoplast (Mittler, 2017). Owing to its reducing properties, O•−

2 is highly
toxic and is involved in the peroxidation of membrane lipids and the conversion of Fe3+ to ferrous
ions (Fe2+). In addition, O•−

2 can also be converted into H2O2 by the activity of superoxide
dismutase (SOD), which may enter the cytosol through aquaporins to trigger signaling cascades
(Rodrigues et al., 2017). Further, Fe2+ can directly interact with H2O2 through Fenton reaction and
accelerates the production of hydroxyl radical (OH•), which is another lethal ROS (Mittler, 2017).
Since ions of Fe play a major role in ROS production, plants keep a check on the concentration
of these ions to maintain ROS homeostasis. In plants, two major groups of proteins participate in
iron (Fe2+/Fe3+) sequestration including ferritin and plant defensin proteins. The latter group of
proteins also participate in the plant defense and inhibit the growth of fungal pathogens. Recently, a
pivotal role of iron in the hypersensitive response induced cell death, during plant defense signaling,
was reported in rice upon infection with the fungal pathogen, Magnaporthe oryzae (Dangol et al.,
2019). This type of iron-dependent cell death was first reported in mammalian tumor cells and
was termed “ferroptosis” by Dixon and co-workers in 2012 (Dixon et al., 2012). Ferroptosis is,
genetically, morphologically, and biochemically, distinct from other types of known cell death
including apoptosis, necrosis, and autophagy (Dixon et al., 2012). The onset of ferroptosis requires
high levels of ROS and Fe2+ and depletion of reduced glutathione (GSH) (Dixon and Stockwell,
2019). Subsequently, a GSH-dependent glutathione peroxidase-4 (GPX-4) was identified as a key
player of mammalian ferroptosis (Angeli et al., 2014; Yang et al., 2014). GPX enzymes catalyze the
reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using reduced
GSH or thioredoxin (TRX) (Yang et al., 2016).

In plants, ferroptosis was first reported by Distéfano and co-workers in 2017 in
Arabidopsis thaliana under heat stress conditions, and, similar to the animals, the plant
ferroptosis was also found to be dependent on the GSH depletion, lipid peroxidation,
and accumulation of ROS and ions of Fe (Distéfano et al., 2017). Although the literature
evidence on plant ferroptosis is limited, it has been observed that it can be triggered
by both abiotic (heat stress) and biotic stressors (M. oryzae), and both plant and animal
ferroptosis exhibit similar morphological characteristics, such as cytoplasmic retraction, normal
nuclei, and the formation of small lytic vacuoles (Distéfano et al., 2021). In addition,
a noticeable shrinkage of mitochondria along with increased mitochondrial membrane
density and decreased mitochondrial cristae has been observed in animal ferroptosis
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(Dixon et al., 2012); however, no such observation has been
reported in the case of plants. By utilizing several agonists
(Supplementary Table 1), Dangol et al. characterized the
detailed process of plant ferroptosis, and their results collectively
suggested the role of plasma membrane-localized NADPH-
oxidases (RBOHs), NADP-malic enzyme, polymerization
of actin microfilaments along with the depletion of GSH,
peroxidation of membrane lipids, and accumulation of ions of Fe
and ROS (Dangol et al., 2019). Similar to the animals, the plant
ferroptosis also seems to be dependent on the activity of GPX-4
as treatment for erastin, an inducer of ferroptosis and inhibitor
of GPX-4, resulted in the depletion of reduced and total GSH
and accumulation of ROS and Fe3+ to result in ferroptosis in rice
sheath cells (Dangol et al., 2019). Correspondingly, treatment
of Arabidopsis cells with another GPX-4 inhibitor RSL3 led to
cell death, which was prevented by the treatment of ferroptosis
inhibitors including liproxstatin-1 and ferrostatin-1 (Hajdinák
et al., 2019). A recent study demonstrated that silencing of GPX4
in Nicotiana benthamiana resulted in enhanced ferroptosis
in response to Tobacco mosaic virus 24A+UPD infection
(Macharia et al., 2020). However, some of the recent evidence
suggests the possible involvement of others GPXs, such as
membrane-localized GPXL5, in the plant ferroptosis (Meyer
et al., 2020). Overall, these results suggest that ferroptosis is a
highly regulated cell death process that is induced by both biotic
and abiotic stressors. Since the analysis of ferroptosis during
incompatible rice–M. oryzae interactions suggested a positive
role of ferroptosis in preventing the infection by avirulent strains
of the fungus, the process of ferroptosis can be manipulated
in the future to develop the biotic and abiotic resilient crops
(Dangol et al., 2019; Kazan and Kalaipandian, 2019).

Evidence in Support of Ethylene Mediated
Regulation of Ferroptosis
Although the direct involvement of any phytohormones in the
plant ferroptosis has not been reported yet, a growing body of
evidence suggests the possible involvement of ethylene in the
plant ferroptosis. It has been observed that all the components
of ferroptosis, including GSH, ions of Fe, and ROS, are linked to
the gaseous plant hormone ethylene, and thus, we hypothesize
the involvement of ethylene in the regulation of plant ferroptosis
based on the following literature evidence.

1. There is ample evidence that suggests ethylene induces the
biosynthesis of GSH. For instance, exogenous treatment of
ethylene has been shown to significantly elevate the levels
of GSH and ascorbate (AsA) in Zea mays seedlings under
cadmium (Cd) toxicity (Liu et al., 2019). In addition, the
exogenous application of ethephon, an ethylene precursor,
increased the amount of GSH in Cd-treated Brassica juncea
(Khan et al., 2016), while the application of ethylene inhibitor
Aminoethoxyvinylglycine (AVG) resulted in decreased GSH
levels (Masood et al., 2012). Similarly, ethephon treated
Glycine max plants showed an accumulation of GSH together
with the increased activity of glutathione reductase (GR)
under waterlogging conditions (Kim et al., 2018). In contrast,
treatment using ethylene biosynthesis inhibitor resulted in

reduced levels of GSH in Cd-exposed Lycium chinense plants
compared with untreated plants, further confirming a direct
role of ethylene in the regulation of cellular GSH levels (Guan
et al., 2015).

2. The connection between Fe2+ and ethylene is well-
established, and it has been known for years that excess
ions of Fe trigger ethylene biosynthesis in plants (Peng and
Yamauchi, 1993; Becker and Asch, 2005; Majerus et al., 2007).
The ethylene biosynthetic pathway is relatively simple, taking
place via only two committed enzymatic reactions catalyzed
by 1-amino-cyclopropane-1-carboxylic acid (ACC) synthase
(ACS) and ACC oxidase (ACO) (Riyazuddin et al., 2020).
Both ACS and ACO are controlled at the transcriptional and
post-translational levels, which enables a tailored regulation
of ethylene production in plants (Pattyn et al., 2021). The
final regulatory step of the ethylene biosynthetic pathway is
the conversion of ACC to ethylene and is catalyzed by ACO,
which requires Fe2+ as the active-site cofactor. Therefore,
Fe2+ plays a critical role in ethylene biosynthesis by regulating
the activity of ACO (Houben and Van de Poel, 2019).
Subsequently, the deficiency or accumulation of Fe2+ may
directly affect cellular ethylene production. In other words,
Fe2+ may be the limiting factor in ethylene production,
and the excess could result in higher production of ethylene
(Peng and Yamauchi, 1993; Li et al., 2015). For instance,
excess Fe2+ resulted in the upregulation of the transcript
level of ethylene biosynthesis genes, such as AtACS2, AtACS7,
AtACS8,AtACS11, andAtACO1 andAtACO2, and contributed
to higher ethylene production in Arabidopsis (Li et al., 2015).
In turn, ethylene, thus, produced triggered the expression
of genes encoding Fe-sequestering ferritins, such as FER1,
FER2, FER3, and FER4, and minimized Stelar and xylem
Fe2+ concentrations to limit Fe accumulation and toxicity
both in shoots and roots (Li et al., 2015). Further, FER1 and
FER3 were found to be significantly elevated in the roots
of Arabidopsis ethylene-overproduction mutant (eto1-1)
as compared with wild type (WT) during Fe2+ toxicity
(Li et al., 2015).

3. The interconnection between ethylene and ROS homeostasis
is quite evident, and it is well-known that ethylene maintains
ROS homeostasis by activating the enzymatic and non-
enzymatic antioxidant defense to limit the accumulation
of ROS and subsequent peroxidation of membrane lipids
that result in ferroptosis (Riyazuddin et al., 2020). At first,
it was shown that the exogenous application of ethylene
precursor ACC resulted in the enhanced activities of ascorbate
peroxidase (APX), catalase (CAT), SOD, and peroxidase
(POX), and reduced the lipid peroxidation in creeping
bentgrass (Larkindale and Huang, 2004). Similarly, exogenous
application of ACC has been shown to improve the heat
stress tolerance in rice seedlings by reducing lipid peroxidation
and relative electrolyte leakage during heat stress (Wu and
Yang, 2019). Correspondingly, the exogenous application of
ethephon, another ethylene precursor, to Ni-treated Brassica
juncea plants resulted in significantly increased activity of
SOD, APX, GR, GPX, and the accumulation of proline (Khan
et al., 2020). Similarly, exogenous application of ethephon
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substantially induced the activity of enzymatic and non-
enzymatic antioxidants, such as SOD, APX, GR, GSH -S-
transferase (GST), GPX, monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR), AsA, and
GSH, under Zinc toxicity in B. juncea (Khan et al., 2019).
In Lactuca sativa, the application of exogenous ethylene
increased the activity of antioxidant enzymes, such as

SOD, CAT, and APX, and reduced the H2O2 content (Ma
et al., 2013), while in Nelumbo sp., ethylene treatment
maintained endogenous ROS levels by regulating the AsA–
GSH antioxidant system under Cd stress (Yuan et al., 2018).
In Dendrobium nobile, ethephon treatment led to an increase
in the contents of AsA and GSH, while exogenous treatment
of ethylene inhibitor resulted in decreased contents of both

FIGURE 1 | A schematic representation highlighting the proposed role of ethylene in ferroptosis cell death in plants. Plant ferroptosis is characterized by the increase

in ROS and subsequent peroxidation of membrane lipids, accumulation of iron, and depletion of reduced glutathione (GSH). Stress-induced accumulation of ROS is

mainly dependent on the activity of plasma membrane-localized NADPH-oxidase (respiratory burst oxidase homolog, RBOH) proteins. NADP-malic enzyme supplies

electrons to the RBOH proteins and thus contributes indirectly to ROS production and thus to plant ferroptosis. H2O2 produced in the apoplast, because of the

conversion of superoxide radicals (O•−

2 ) and/or the activities of the class III peroxidases (POX) and polyamine oxidases (PAO), enters the cytosol through plasma

membrane intrinsic proteins (PIP; aquaporins) and mediates the conversion of Fe2+ to Fe3+ through the Fenton reaction. Fe2+ are otherwise involved in the

biosynthesis of ethylene by functioning as a cofactor of enzyme ACC oxidase (ACO). Ethylene so produced triggers the synthesis of ferritin proteins that participate in

the sequestration of ions of iron and thus prevent their accumulation, which is a prerequisite for ferroptosis cell death. In addition, ethylene also induces the synthesis

of GSH and thus helps to maintain the GSH levels to prevent ferroptosis cell death.
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of these antioxidants. In addition, APX and GR also showed
a significant change under the ethylene regulator treatments
(Zhang et al., 2021). Further, a growing body of evidence
suggests that Ethylene response factors (ERFs) play a role in
linking redox and hormonal regulation in plant responses to
abiotic stresses. The overexpression of ERF96 gene enhanced
selenium tolerance in Arabidopsis via elevation of CAT, GPX
activities, and GSH content to cope with H2O2 compared with
those in WT (Jiang et al., 2020). Similarly, overexpression of
ERF38 resulted in reduced contents of MDA and H2O2 in
the transgenic poplars as compared with WT by elevating the
expression of POD and SOD and accumulation of proline
and soluble proteins (Cheng et al., 2019). Furthermore,
overexpression of ERF1 in tomatoes resulted in higher proline
accumulation and lower lipid peroxidation as well as increased
the activity of antioxidant enzymes (POD and SOD) under salt
stress (Hu et al., 2014). ERF3 also regulated ROS metabolism
in tobacco resulting in lower accumulation of ROS (Wu et al.,
2008). Overall, all of these results confirm a tight correlation
between ethylene levels and ROS homeostasis in plants.

4. In addition to regulating the enzymatic and non-enzymatic
antioxidants, ethylene has also been shown to regulate
the activities of NADPH-oxidases (RBOHs) to limit ROS
production. At first, ethylene was shown to be involved
in the regulation of H2O2 signaling by controlling the
expression of Rboh genes under hypoxia stress in Arabidopsis
(Yang and Hong, 2015). In addition, ACS1 mediated early
ethylene production has been shown to temporarily inhibit the
expression of NADPH-oxidase (RBOH-D and RBOH-F) genes
to prevent the ROS burst in Brassica oleracea (Jakubowicz
et al., 2010). On the contrary, reduced expressions of ethylene
biosynthesis genes including ACS7 and ACS8 and ethylene
signaling genes including ERF73 were observed in the rbohd-
knockout mutants, further indicating an intricate relationship
between NADPH-oxidase, ROS production, and ethylene
(Yang and Hong, 2015).

CONCLUSION

Based on the presented literature evidence, it can be speculated
that ethylene controls and inhibits the ferroptosis process
in plants by at least three ways: (1) by limiting the excess
accumulation of Fe2+ in the cells via increasing the iron
sequestrating ferritin proteins and thus inhibiting the generation
of excess ROS based on Fe2+ accumulation, (2) by activating
the antioxidant defense mechanism to limit the excess ROS
accumulation in the cells, and (3) by facilitating the synthesis
of GSH (Figure 1). However, further experimentations are
required to investigate the ethylene biosynthesis and/or
signaling during iron- and ROS-dependent ferroptosis in plants.
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