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Quantifying symptoms of tar spot of corn has been conducted through visual-based

estimations of the proportion of leaf area covered by the pathogenic structures generated

by Phyllachora maydis (stromata). However, this traditional approach is costly in terms

of time and labor, as well as prone to human subjectivity. An objective and accurate

method, which is also time and labor-efficient, is of an urgent need for tar spot surveillance

and high-throughput disease phenotyping. Here, we present the use of contour-based

detection of fungal stromata to quantify disease intensity using Red-Green-Blue (RGB)

images of tar spot-infected corn leaves. Image blocks (n = 1,130) generated by uniform

partitioning the RGB images of leaves, were analyzed for their number of stromata

by two independent, experienced human raters using ImageJ (visual estimates) and

the experimental stromata contour detection algorithm (SCDA; digital measurements).

Stromata count for each image block was then categorized into five classes and tested

for the agreement of human raters and SCDA using Cohen’s weighted kappa coefficient

(κ). Adequate agreements of stromata counts were observed for each of the human raters

to SCDA (κ = 0.83) and between the two human raters (κ = 0.95). Moreover, the SCDA

was able to recognize “true stromata,” but to a lesser extent than human raters (average

median recall= 90.5%, precision= 89.7%, and Dice= 88.3%). Furthermore, we tracked

tar spot development throughout six time points using SCDA and we obtained high

agreement between area under the disease progress curve (AUDPC) shared by visual

disease severity and SCDA. Our results indicate the potential utility of SCDA in quantifying

stromata using RGB images, complementing the traditional human, visual-based disease

severity estimations, and serve as a foundation in building an accurate, high-throughput

pipeline for the scoring of tar spot symptoms.

Keywords: contour-based image segmentation, stromata detection, plant disease quantification, tar spot of corn,
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INTRODUCTION

Plant disease assessments are conducted to quantitatively
measure the amount of disease (intensity) in a host population
(Campbell and Madden, 1990; Nutter et al., 1993). Nevertheless,
plant disease epidemics occur from the interaction of both host
and pathogen populations with the environment in space and
time. Therefore, symptoms and signs of diseases are expected to
be directly proportional to the size of the pathogen population
(Nutter et al., 2006; Groves et al., 2020). Hence, disease
assessments can be conducted by estimations or measurements
of the extent of disease symptoms or signs of the pathogen (e.g.,
number of spores, sclerotia, and stromata) per unit area of the
plant sampled (Nutter, 1997, 1999).

Despite the significant role that human vision-based disease
evaluation has played in the advancement of plant pathology,
the accuracy of this traditional way of disease estimation has
continuously been questioned due to the “human factor” that
is part of the endeavor (Sherwood et al., 1983; Shokes et al.,
1987; Nutter and Schultz, 1995; Nutter and Esker, 2006; Nutter
et al., 2006). To address these problems, digital imagery-based
disease phenotyping has extensively been explored during the
past decade for its potential in mitigating the limitations of
human visual-based disease estimates (Mahlein, 2016; Simko
et al., 2017; Bock et al., 2020). The feasibility of digital image
processing has been assessed and is widely used for plant disease
quantification (Tucker and Chakraborty, 1997; Bock et al., 2008;
Gongora-Canul et al., 2020). The utility of Red-Green-Blue
(RGB) image-based processing and deep learning have shown a
great promise for the recognition and quantification of various
plant diseases (Lamari, 2002; Bardsley and Ngugi, 2013; Stewart
and McDonald, 2014; Ngugi et al., 2021).

Tar spot, caused by Phyllachora maydis Maubl., is a fungal
disease of corn that is endemic to Mexico and to various
countries in Central and South America (Maublanc, 1903).
The disease has established itself across the northern US since
2015 (Ruhl et al., 2016; McCoy et al., 2018; Dalla Lana et al.,
2019; Kleczewski et al., 2019; Mueller et al., 2020; Valle-
Torres et al., 2020) resulting in ∼$840 million in losses during
2018–2019 (Crop Protection Network, 2021). Phenotyping and
surveillance of tar spot have been performed through human
visual assessments of disease severity based on the detection
of pathogenic structures called stromata. These black-brown,
semi-circular growths are produced as a result of P. maydis
infection and are embedded in host tissue and can be observed
across leaf surfaces and other tissues (Liu, 1973; Hock et al.,
1995; Carson, 1999; Kleczewski et al., 2019; Valle-Torres et al.,
2020). In addition, P. maydis can produce ascospores in
sexual structures embedded in the stromata, acting as inocula
(Kleczewski et al., 2019; Valle-Torres et al., 2020). Therefore,
the proportion of stromata relative to the area of the corn leaf
has been estimated to reflect tar spot severity. Moreover, since
stromata can also serve as a measure of pathogen colonization
of infected plant tissue, the number of stromata per unit area
of the infected corn leaf serves as an important measure of tar
spot severity.

Despite the growing importance of tar spot, a standardized,
objective method capable of high-throughput assessments of
its symptoms is not available. Interpretation of the symptom
intensity data collected for tar spot is essential to guide disease-
management decisions (Bock et al., 2010). Hence, selecting the
method suited to accurately represent the intensity of a disease of
interest is crucial (Campbell and Madden, 1990; Gaunt, 1995).
The objectives of our study were to (i) develop a tar spot
stromata contour detection algorithm (SCDA) using RGB images
of tar spot-infected corn leaves; (ii) assess the performance of
the SCDA by comparing the numbers and locations of the
stromata to those determined by two independent human raters
(reference data), and evaluate its feasibility in tracking tar spot
disease development in the field by comparing it to human
visual disease estimations and an alternative machine learning-
based approach. A reliable, accurate, high-throughput method
for tar spot assessment will benefit plant disease modeling,
epidemiology, and resistance screening.

MATERIALS AND METHODS

Leaf Sample Collection and
Red-Green-Blue Image Acquisition
Two datasets were generated and used in this study. The first
consisted of tar spot-infected maize leaves randomly collected
from a field experiment site established at the University of
Illinois South Farm in Urbana-Champaign, Illinois. Fresh leaf
samples were pressed to flatten out the leaf edges and brought
back to our laboratory. RGB images were acquired using a
Canon E.O.S. 6D full-frame 20.2 MP DSLR camera body and a
Canon E.F. 50mm f/1.8 S.T.M. lens. A 30 × 70 cm cardboard
panel covered by a synthetic blue fleece fabric was laid out on
a flat surface as a background for all leaf samples to facilitate
effective background removal during the image preprocessing
step. Photographs were taken in .jpg format and then converted
to .png format. The second dataset (Dataset B) contained RGB
images of maize leaves acquired during the summer of 2020
at the Pinney Purdue Agricultural Center (PPAC) in Wanatah,
Indiana. A tar spot fungicide trial was established at PPAC with
a randomized complete block design. The fungicide treatments
were randomly assigned into blocks and four replications were
established. We selected two plots per replication, an untreated
and experimental setup, of which from preliminary results,
we have identified the high efficacy of the experimental setup
[Headline AMP, 10 fl oz + Preference (NIS), 0.25% v/v] in
managing tar spot. Each plot consisted of four rows of which the
middle two rows were used to collect both image- and visual-
rating data. A total of five maize plants in the middle two rows
were selected in a zig-zag manner, wherein two leaves from the
middle canopy of each selected maize plant were marked and
tagged to track tar spot development at different time points.
The RGB images of the leaves were collected approximately at
weekly intervals over six time points during 2020: August 25,
September 3, 10, 15, 22, and 29. Collectively, 466 RGB images of
selected maize leaves were then used as input and analyzed using
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SCDA and a maskRegion-based convolutional neural network
(maskR-CNN) approach (unpublished data).

Generation of “Image Blocks”
Quantification of disease severity can be done at the scale of plant
organs (e.g., the stems and the leaves) or in quadrats (Bock et al.,
2010). In our study, we partitioned six tar spot-infected leaf RGB
images (samples A–F) into uniformly-sized (400 × 400 pixels)
squares or “image blocks” which contained different regions of
the corn leaf with varying numbers of stromata. A total of 1,130
image blocks (Sample A = 202 blocks, Sample B = 196 blocks,
Sample C= 193 blocks, Sample D= 131 blocks, Sample E= 217
blocks, and Sample F= 191 blocks) were provided to the human
raters for software-aided, visual assessment and also used as input
for stromata contour analyses.

Reference (Human Visual-Based) Data Tar
Spot Disease Quantification
In this study, we utilized the terms, “estimate” and
“measurement” to refer to assessments conducted by human
rater (visual) and the SCDA, respectively. To generate reference
ground truth for Dataset A, two human raters with experience in
tar-spot disease estimations were employed to generate reference
data to assess the performance of the SCDA. Human raters
analyzed the number of stromata for each image block with
the help of the point toolbox (yellow, cross-shaped markers)
provided by Fiji (Image J; Schindelin et al., 2012), wherein raters
clicked on the center of all structures perceived as stromata.
Furthermore, the reference disease severity data for Dataset B
was in the form of estimated percentage leaf area covered by
stromata. Estimations were done for the lower, middle, and
upper canopy per experiment plot. The prominent ear leaf was
considered leaf 0 (L0). Leaves below or above L0 were identified
with signs “–,” and “+,” respectively. The lower canopy was from
L-3 to the lowest leaf (L - n), mid-canopy from L-2 to L + 1, and
the upper canopy from L+ 2 to the flag leaf (L+ n).

Assessing the Agreement Between SCDA
and Human Raters
To measure the agreement of stromata counts for all the image
blocks analyzed by two independent raters as well as between
those of the raters and the SCDA, weighted Cohen’s kappa
coefficient (κ) was used. Cohen’s kappa is a metric to assess the
agreement between two raters, i.e., the two raters either agree in
their rating or disagree. However, it does not quantify the extent
of disagreement. Weighted Cohen’s kappa with a modification to
Cohen’s kappa can resolve this issue, using predefined weights
that measure the degree of disagreement between the two raters;
the higher the disagreement, the higher is the weight. For
instance, let (1) n be the total number of subjects, (2) ni be the
number of subjects for which rater A chooses category i, (3) mj

be the number of subjects for which rater B selects category j,
and (4) ni,j be the number of subjects for which raters A and B
choose categories i and j at the same time, respectively. Defining
pi = ni/n, qi = mj/n, and pi,j = ni,j/n, one can calculate the

weighted Cohen’s kappa (Bakeman and Gottman, 1997) by:

κ = 1−





∑

i,j

wi,jpi,j



 /





∑

i,j

wi,jei,j



 ,

where ei,j = piqi are the expected probabilities and wi,j are
the weights.

The collected nominal data were then classified into five
categories (Classes 1–5) and the resulting ordinal categorical
data were used to calculate Cohen’s weighted kappa index for
the agreement between the ordinal data. The five groups were
delimited as: Class 1 (0 to 2 stromata); Class 2 (3 to 9 stromata);
Class 3 (10 to 20 stromata); Class 4 (21 to 45 stromata); and Class
5 (>46 stromata). The kappa coefficient ranges from −1 to 1,
wherein the value of −1 indicates complete disagreement (poor
agreement), 0 indicates agreement by chance, and 1 indicates
perfect agreement. The strength of agreement for positive kappa
values can be further categorized as slight (0.01–0.20), fair (0.21–
0.40), moderate (0.41–0.60), substantial (0.61–0.80), or nearly
perfect (0.81–0.99) (Landis and Koch, 1977; Shoukri et al.,
1999).

Assessing the Performance of the Tar-Spot
SCDA to Recognize Stromata Compared to
Human Raters
To assess the performance of the SCDA in recognizing stromata
at the human rater level, we utilized the same image blocks
which were previously used to quantify the number of stromata.
Using ImageJ, human raters labeled the centers of the stromata
by using yellow cross markers in all image blocks and
saved the labeled images. Then, using MATLAB, these labeled
images were loaded and converted into a binary mask by the
following threshold condition of detecting all pixels colored
in yellow:

[

Th

]

i,j
=

{

true or 1, if
[

R
]

i,j
=

[

G
]

i,j
= 255 and

[

B
]

i,j
= 0

false or 0, otherwise

where Th is the resulting binary mask that encodes spatial
locations of stromata detected by the human raters. The binary
mask Th was then compared to the binary mask produced
by the SCDA algorithm, denoted by Ta. If an isolated region
having 1 in Ta spatially overlaps with a region having 1
in Th, this region or the corresponding stroma had spatial
coincidence using both human and SCDA methods; it was
considered to be a true positive. This task was repeated for
all isolated regions having 1 in Ta. On the other hand, if an
isolated region having 1 in Ta did not overlap with any region
having 1 in Th, it was regarded as a false positive. Finally, if
an isolated region having 1 in Th did not overlap with any
region having 1 in Ta, it was considered as a true negative.
After processing all the image blocks, precision, recall, and
Dice coefficient metrics were calculated. Precision measures the
correctly identified positive cases among all predicted positive
cases. Thus, it is a useful figure of merit to observe whether
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the cost of false positives is high. Recall measures the correctly
identified positive cases against all the actual positive cases and
is an important metric when the cost of false negatives is high.
Dice coefficient (or F1-score) is proportional to the harmonic
mean of precision and recall and is calculated to assess the spatial
overlap shared by the ground truth (i.e., human raters A or B)
and the SCDA for a comprehensive measure of the incorrectly
classified cases.

Precision, recall, and Dice coefficients measured in percentage
(%) are defined as follows:

Precision (%) =
TP

TP + FP
× 100,

Recall (%) =
TP

TP + FN
× 100,

Dice (%) = 2×
Precision× Recall

Precision+ Recall
× 100

=
2× TP

2× TP + FN + FP
× 100,

where TP = true positive, FP = false positive, and FN = false
negative. TP is defined by the number of true stromata correctly
detected by the SCDA, FN is the number of true stromata
undetected, and FP is the number of wrong stromata detected
by the SCDA. The results of all blocks of each sample leaf
were transformed into a histogram, showing the probability
density vs. percentage for precision, recall, and Dice coefficient
metrics. Note that the total area of each histogram (i.e., Riemann
sum) is supposed to be equal where the width of the bin is
chosen as 4%.

Quantification of Tar Spot Intensity Using
Mask R-CNN
Parallel to SCDA, mask R-CNN approach was used as a deep
learning approach to detect tar spot stromata. The output of this
approach provided stromata counts and the proportion of leaf
area covered by stromata, which were then statistically analyzed
for a side-by-side evaluation of its performance and that of SCDA
and agreement with the visual data.

Assessing the Agreement Between
Reference Visual Data to the SCDA and a
Mask R-CNN Approach
The area under disease progress curve (AUDPC) using visual
severity estimation of tar spot at different canopy levels was used
as reference data to measure the agreement with digital counts
of stromata and the area occupied by stromata measured by the
two algorithms. Accuracy, precision, and bias of digital disease
measurements (Nutter et al., 1991; Madden et al., 2007) were
evaluated. However, before measuring the agreement, AUDPC
values from visual and the algorithm data were matched with
similar scale values according to the maximum and minimum
values. Accuracy is a product of precision and bias (Nita et al.,
2003; Madden et al., 2007). Accuracy was calculated with Lin’s
concordance correlation coefficient (ρc) which measures the

variation of data from a concordance line, a 1:1 line with an
intercept of zero and a slope of one (Lin, 1989; Nita et al.,
2003; Bock et al., 2010). To obtain ρc, we used the equation
ρc = r × Cb, where r represents the correlation coefficient as
the measurement of precision (r = 1 perfectly straight line),
while Cb as the measurement of bias (closeness of best fit line
to the concordance line; Cb = 1 indicates no bias). The Cb was
calculated with the equation

Cb = 2/[u2 + ν + (1/ν)],

where ν = (σ1/σ2) indicated scale shift or difference in the
slope of the concordance and best-fit lines (ν = 1 for equal
slopes), and u = [(µ1−µ2)/

√
(σ1 × σ2)] corresponds to location

shift or differences in height (u = 0 for equal intercepts).
Furthermore,µ1 andµ2 are themeans ofmeasured values/digital
disease measurement and true values/visual disease estimates,
while σ1 and σ2 are the standard deviations of these values
calculated based on maximum-likelihood estimates (Nita et al.,
2003; Madden et al., 2007). The analysis was performed using
PROG REG ALL procedure on SAS (SAS Institute, Cary NC),
based on the macro statement developed by Lawrence Lin and
verified by Min Yang (Lin et al., 2002).

THEORY AND CALCULATION

Image Pre-processing
Background Removal
The images in Dataset A had a blue background panel behind
the corn leaf for easier background removal. Since the color
properties of the corn and the blue panel can be distinguished
by a simple thresholding, one can obtain the region of interest
(RoI) of the diseased corn leaf easily. The SCDA pipeline
starts first by reading the input RGB image, denoted by I.
Its red, green, and blue channel matrices are represented by
R, G, and B, respectively. The RGB images containing the
diseased corn leaf with a blue panel as background were
utilized as input, as shown in Figure 1A. Thresholding color
values isolated the region of interest, or the corn leaf via the
following conditions:

[

T
]

i,j
=

{

1, if
[

B
]

i,j
>

[

R
]

i,j
and

[

B
]

i,j
>

[

G
]

i,j

0, otherwise

for all pixels, i.e., i = 1, 2, · · · ,Nr and j = 1, 2, · · · ,Nc where
Nr and Nc are the number of horizontal and vertical pixels. Note
that T is the resulting binary image mask after thresholding.

An example of the resulting binary image is depicted in
Figure 1B, in which pixels having value 1 are visualized by
white, whereas the other pixels are visualized by black. Next,
we complemented the binary image, i.e., values at all pixels are
reversed (Figure 1C), and salt-and-pepper noise was removed by
performing CCC or ρc erosion and dilation, which are deleting
and adding of pixels to the boundary of an original object,
respectively, depending on the size and shape of the structuring
element. The resulting mask, denoted by M, is illustrated in
Figure 1D. Finally, RoI can be obtained by performing the
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FIGURE 1 | Pre-processing of original tar spot-infected leaf images. (A) Original RGB image, (B) binary image after thresholding, (C) complement of the binary image,

(D) resultant mask, and (E) cropped sample image after isolating the region of interest (RoI) (leaf image without background).

Hadamard product of each channel matrix (R, G, or B) of the
original RGB image andM, i.e.,

RROI=R◦M, GROI=G◦M, BROI=B◦M.

Furthermore, for computational efficiency, non-RoI regions were
discarded by introducing a window (rectangular box) that only
contained RoI. This can be done by measuring the size of the
RoI, i.e., minimum and maximum indices of rows and minimum
and maximum indices of columns, denoted by, rmin,roi, rmax,roi,
cmin,roi, cmax,roi, respectively. The final RGB image to be analyzed
is illustrated in Figure 1E.

In contrast to Dataset A, which consisted of images
acquired under controlled lighting conditions (indoor), Dataset
B comprised images which were acquired under natural
lighting conditions with varied focus. An advanced background
remover was required to correctly isolate the RoI; however, the
development of such a tool was beyond the scope of this study.
Instead, we utilized a commercial artificial-intelligence-based,
background image remover, Clipping Magic, which enabled us to
process 466 RGB images of maize leaves collected in the field with
arbitrary background. The processing time for each RGB image
was<10 s. Subsequent procedures for detecting tar spot stromata
were the same as those used for the previous analysis of Dataset
A, where the image is then partitioned into image blocks.

Homogenization of Inhomogeneous Brightness of

RGB Images
Due to the prevailing conditions, when taking pictures of corn
leaves, such as weather and time, raw RGB images often have
inhomogeneity that can degrade the accuracy of detecting tar
spot stromata. An example of an image block imposed by
the intensity inhomogeneity of a raw image is illustrated in
Figure 2A. To homogenize the brightness of the image blocks
so that the false detection rate of tar spot stromata can be
minimized, MATLAB built-in function imflatfield() was utilized
(Figure 2B). Moreover, to prevent false-positive detections,
such as the salt-and-pepper noises, MATLAB built-in function
imgaussfilt() was used to apply the Gaussian filter, which blurred
the input RGB image and reduced its resolution (Figure 2C).
This approach will also improve the computation speed with the
use of fewer contours.

Converting the RGB Images Into Grayscale Images
Each input RGB image (three channels) was converted into a
grayscale image (one channel) to generate contour lines. The
naïve average method (Niblack, 1986; Solomon and Breckon,
2011),

[

P
]

i,j
= 0.3333

[

R
]

i,j
+ 0.3333

[

G
]

i,j
+ 0.3333

[

B
]

i,j
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FIGURE 2 | Homogenization and Gaussian filtering of image blocks. (A) Pre-homogenization, (B) post-homogenization, and (C) post-filtering.

FIGURE 3 | Normalized grayscale images Q using the (A) average method

and (B) weighting method.

where P is the resultant grayscale image (Figure 3A), generally
produces a darker grayscale image. Consequently, the resulting
image may lose the distinct patterns manifested by the stromata
structure and may degrade the contrast between the stromata
patterns and the surrounding regions (leaf area). To avoid
this problem, we used the weighted (or luminosity) method,
which combines RGB colors with different weighting factors
(Figure 3B). The weighted method resolves the issue mentioned
above, given by

[

P
]

i,j
= 0.2989

[

R
]

i,j
+ 0.5870

[

G
]

i,j
+ 0.1140

[

B
]

i,j
.

Then, we can normalize this as

[

Q
]

i,j
=

[

P
]

i,j
−min(P)

max(P)−min(P)

where max
(

P
)

and min(P) are maximum and minimum values

of elements in the matrix P. As a result, one can obtain the
resulting normalized grayscale image Q in which elements range
from 0 to 1 with double data type.

Generating Contour Lines to Detect Tar
Spot Stromata
The choice of contour analysis, for the detection of tart spot
stromata, was motivated by the morphology of the pathogen

structure (stromata), characterized by the protrusion of black
and semi-circular regions on the leaf surface, leading to an
elevated and rough topology (Valle-Torres et al., 2020). Suppose
that a scalar function is defined on the 2-dimensional Cartesian
coordinate system, denoted by f (x, y). The function value takes a
scalar number at a given position (x, y). A contour line (isoline)
is made of a set of points connected so that their function values
are equal. Different contour lines represent another set of points
having different function values. Here, the function values of
contour lines correspond to values of the grayscale image at a
given pixel obtained in the previous step. Thus, contour lines
describe the brightness of the pixels in the image. Note that
contour lines can be generated by using the built-in function
contour() in MATLAB.

Figures 4A,B illustrate contour lines for a representative
image block. Note that the color of each contour line represents
the brightness of the normalized grayscale image. Brightness
can be thought similarly as heights of the contour lines on
a map. Furthermore, Figure 4C illustrates contour lines of tar
spot stromata in a zoomed window at rows from 452 to 475
and columns from 288 to 306, wherein the contour lines near
a stroma show distinct patterns of densely populated contour
lines that monotonically increase the brightness levels from
the center of the stroma toward the outer boundary of the
structure. This feature facilitated the search for sets of contour
lines showing such patterns, which were predicted to delineate
tar spot stromata.

Feature Extraction: Identification of Tar
Spot Stromata and Local Contour Analysis
Consider a set of points, denoted by (x

(i)
j , y

(i)
j ), which represents

the j-th point of the i-th contour line. The degree of circularity of
a polygon formed by the i-th contour line is calculated and the
area can be evaluated by a MATLAB built-in function polyarea().

The center point of the i-th contour line, denoted by (x
(i)
cent , y

(i)
cent),

of the contour line can be calculated by averaging all points
consisting of the i-th contour line. The degree of circularity,
denoted by gcircle, can be evaluated by

gcircle = dmin/dmax
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FIGURE 4 | Contour lines generated from a normalized grayscale image block. (A) All contour lines, (B) zoomed-in view of contour lines where columns from 360 to

440 and rows from 260 to 340, and (C) distinct pattern of contour lines of stromata.

FIGURE 5 | Two example contour lines. Red circle markers are points of each

contour line and the blue dots indicate the center point of polygons (A)

gcircle = 0.7606, area = 2.3821 and (B) gcircle = 0.0566, and area = 0.9515.

where dmin and dmax are minimum and maximum radii, i.e.,
distances between each point and the center point of the contour
line, which can be written by= min (d) and= max (d) where,

[d]j =
√

(x
(i)
cent − x

(i)
j )2 + (y

(i)
cent − y

(i)
j )2.

Note that gcircle has the range of 0 ≤ gcircle ≤ 1; in other words,
the higher the gcirclevalue, themore circular the shape of a contour
will be (i.e., gcircle = 1 for a perfect circle).

Figure 5 compares the degree of circularity of two example
contour lines. Since the shape of tar spot stromata is often semi-
circular or circular, the contour lines with very low values of
gcircle can be discarded. For the contour lines which overlap, a
contour line satisfying the following conditions was regarded
as a tar spot stroma and searched: (1) the contour line must
completely enclosemore thanNct number of smaller sub-contour
lines, (2) the ratio of areas of the nearest sub-contour lines should
be less than rad (threshold value), and (3) contour levels should
be monotonically decreasing from the largest to the smallest
contour lines.

Consequently, the largest contour line found would
correspond to the boundary of the tar spot stroma and its
interior region becomes the area of the stroma. Thus, the largest

FIGURE 6 | Illustration showing instances when two given contour lines are

either (A) enclosed or (B) not enclosed using the MATLAB built-in function

overlaps().

contour line that we found can be called a stroma-boundary-
contour line. To check enclosedness between two contour lines,
built-in function overlaps() in MATLAB was used (Figure 6).
Finally, the searching algorithm was repeatedly performed to
find all stroma-boundary-contour lines for all blocks in a sample
corn leaf in Figures 7A,B.

RESULTS

Agreement Between the Stromata Contour
Detection Algorithm and Human Raters A
and B With Respect to Detection and
Quantification of Stromata
A total of 1,130 of image blocks was evaluated for the number of
stromata by two independent human raters and by the stromata
contour detection algorithm (SCDA). The capability of the SCDA
to recognize Classes 1, 2, and 3 was slightly biased compared
to the human raters, but the kappa strengths of the agreement
between SCDA and human raters A (κ = 0.83) and B (κ = 0.83)
were classified as nearly perfect and identical to the strength of
agreement observed between human raters A and B (κ = 0.95)
(Figure 8; Table 1).
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FIGURE 7 | Illustration, showing the (A) original Red-Green-Blue (RGB) image input (top) and the (B) resulting image after detection of stromata colored in red using

the SCDA (bottom).

Assessment of the Ability of SCDA to
Accurately Detect Stromata Compared to
Human Raters
The higher concordance correlations between the numbers
of stromata detected by the SCDA vs. human raters is not
enough to evaluate its performance. For more accurate validation
purposes, the coincidence rate for each stroma detected was
measured both by the algorithm and human raters. Figure 9
depicts the coincidence measurement (the present algorithm vs.
human rater A) for three example blocks. Image blocks were
chosen randomly while showing infected leaf image sections with
varying numbers of stromata (increasing frequencies of stromata,
from left to right).

The mean and median values of recall for all the image blocks
analyzed by both human raters A and B ranged from 83.3 to
91.7% (average: 87.1%) and from 88.2 to 94.4% (average: 90.5%),
respectively (Table 2). Note that the median is greater than the
mean, which indicates that the recall distribution is asymmetric
based on the mean but left skewed (negative skewness), meaning
that poor performance is infrequent (Figure 10), showing that
the SCDA can detect a given actual stroma with a probability
of 87.1% (mean based) or 90.5% (median based). Furthermore,
the mean and median values of precision ranged from 71.3 to
92.1% (average: 84.3%) and from 82.4 to 93.8% (average: 89.7%),
respectively, with the left-skewed precision distribution. From
the precision result, the probability of stromata detected by the
SCDA to human-scored stromata was 84.3% (mean based) or
89.7% (median based). The performance degradation compared
with that of precision results from Sample A, which was the image
of relatively lower quality than other sample images. Particularly,
image A included many blurred blocks due to focusing problems
while it was being collected. This issue will be considered in
future work. As a result, mean and median values of Dice
coefficient values ranged from 75.0 to 91.0% (83.9%) and from
84.5 to 92.6% (average: 88.3%), respectively.

Correlation of AUDPC of Visual Severity,
SCDA, and Mask R-CNN
We observed a higher agreement between AUDPC of visual
severity and AUDPC of SCDA at the three canopy levels

(ρc = 0.75, r = 0.82, Cb = 0.82) than AUDPC from the R-
CNN model (ρc = 0.14, r = 0.13, Cb = 0.27). In general,
AUDPC from stromata counts (ρc = 0.82, r = 0.87, Cb =
0.95) had better correlation with AUDPC from the visual
estimation than the AUDPC from the area occupied by the
stromata (ρc = 0.60, r = 0.87, Cb = 0.69). The best correlation
occurred at the mid and upper canopy between AUDPC from
visual and AUDPC from the counts of stromata (Figure 11;
Table 3).

DISCUSSION

A successful automated system for disease assessment should
provide reproducible results and approach the accuracies
achieved by human performance. The outcomes of our study
suggest the potential of RGB image processing using contour
analysis to mimic human rater assessments of tar spot stromata
counts on leaves. The SCDA performed with high accuracy and
reliability in quantifying the number of stromata to assess the
disease intensity and detect “true stromata” as recognized by
human raters. Moreover, we observed that stromata detected by
the SCDA were highly correlated with reference ground truth
recognized by human raters. Accurate numerical descriptions
of the extent of manifestations (symptoms) brought about by
the disease and of pathogen structures (signs) observed in a
diseased plant sample are essential to correctly assess the effect
of the disease and to devise effective management strategies
(Nutter and Schultz, 1995; Nutter et al., 2006). Although software
tools have been used to quantify the disease severity (Biernacki
and Bruton, 2001; Stewart and McDonald, 2014; Rivera et al.,
2020), they are neither efficient nor appropriate for the disease
count task discussed here. To our knowledge, RGB image-based
quantification for tar spot of corn has not been established
previously. Since counting thousands of stromata present on
leaf images or leaf samples is tedious and labor-intensive, the
resulting fatigue can lead to inaccurate counts of stromata,
providing less reliable data. To prevent such situations, we
utilized Fiji (ImageJ) in this study, which allowed for increased
accuracy of detection based on the recognition of the stromata
by human raters. This prevented the raters from counting the
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FIGURE 8 | Agreement charts reflecting the agreement of tar spot stromata

counts (classes 1 to 5) between (A) two human raters, (B) human rater A and

SCDA, and (C) human rater B and SCDA after kappa analysis.

same stroma more than once and allowed for the tracking of the
stromata locations on each leaf.

The generation of image blocks or partitioning single
images into equal sizes used these “blocks” for the downstream
analysis. The rationale for this procedure was that image
blocks decrease the computational cost required for
analyzing an entire leaf sample, they increase the number
of samples (i.e., image blocks). In addition, this approach
also reduces rater subjectivity, which is crucial as the labor-
intensive nature of generating ground truth data affects the
reliability and accuracy of the results (Bock et al., 2010).
Moreover, by partitioning the whole leaf into image blocks,
a wide variation in disease intensity (stromata count) can
be analyzed.

The under-or over-estimation of the SCDA may be accounted
for by its limitation to detect small-sized stromata and the
low resolution in regions beyond the focus of the camera.
The use of flatbed scanners is one of our recommendations to
address this issue, although obtaining high-resolution images
may take a bit more time than using a camera. Moreover, the
noise was eliminated in our image blocks using a Gaussian
filter to generate a high-quality image before processing each
image for feature extraction. Images were enhanced by utilizing
a Gaussian filter, which blurs the images by suppressing high
frequencies, similar to the effect of the mean filter. The
Gaussian filter has been used previously in image-based plant
disease detection (Camargo and Smith, 2009; Shrivastava et al.,
2017).

In some cases, another type of manifestation of tar spot
is “fish-eye” symptoms, which often appear after stromata
structures have emerged and are visible (Hock et al., 1992, 1995;
Bajet et al., 1994). These lesions are characterized by Phyllachora
maydis stromata at their centers while surrounded by ellipsoidal,
chlorotic/necrotic halos, which can enhance the severity of tar
spots (Hock et al., 1992; Bajet et al., 1994). Detecting these
types of symptoms was not the scope of this study as they
are not as common in northern North America; however, this
is a recommended enhancement for future research projects.
In addition, the condition of the leaf samples was preserved
by using a leaf press and storing them at 4◦C. Along with
the stromata contour detection algorithm (SCDA) in providing
accurate disease intensity quantification in the lab, field disease
evaluations still need improvement.

For the optimal performance of the proposed algorithm, one
should set parameters properly, such as (1) the number of smaller
sub-contour lines surrounding a stroma (Nct), (2) the degree of
roundness (gcircle), and (3) the ratio of areas of a pair of nearest

sub-contour lines (rad = area of the smaller contour
area of the larger contour

≤ 1). Moreover,

for a given image block, the determination of these parameters
mainly depends on (1) the blurriness of the grayscale image
and (2) the total number of contour levels used to discretize
a grayscale level of the image block. In principle, the optimal
parameters may be different for each image block, even on the
same corn leaf, since the extents of the intensity in homogeneities
and blurriness due to a focusing spot imposed on a raw RGB

Frontiers in Plant Science | www.frontiersin.org 9 October 2021 | Volume 12 | Article 675975

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lee et al. Contour-Based Stromata Detection

TABLE 1 | Agreement of two independent raters and SCDA according to Cohen’s weighted kappa and associated 95% confidence levels (CI).

Comparisons Weighted kappa

κ Z-statistic CI Pr > F

Human rater A vs. B 0.9494 44.4357 0.9384–0.9605 <0.0001

Human rater A vs. SCDA 0.8297 39.7888 0.8075–0.8518 <0.0001

Human rater B vs. SCDA 0.8283 39.7702 0.8060–0.8505 <0.0001

FIGURE 9 | Overview of evaluating spatial overlap of stromata recognized by human rater A and contour analysis. Illustration of evaluating random image blocks

(A–C), showing infected leaf image blocks with varying numbers of stromata (increasing frequency of stromata from left to right). Red blobs represent the area of

stromata detected by contour analysis while the center of blue squares signifies the point which the human raters identified to be stromata.

image are different in general. That is why we applied the two-
step preprocessing (i.e., intensity homogenization and Gaussian
filtering) to make sure that all image blocks would be in a
similar condition as far as possible. Consequently, the same
parameters used in analyzing all image blocks may not lead to
significant degradation.

Nevertheless, when an image block is too blurry due to the
Gaussian filter with a larger window, smaller tar spot stromata
tend to be wiped out along with salt-and-pepper noise; thus,
they are never recognized. On the other hand, analyzing an
image block that is less blurred requires a more significant
number of contour levels to detect smaller tar spot stromata,
ending up with expensive computational costs. Specifically, when
more contour levels are used for a less blurred image block,
contour lines around a tar spot stroma tend to be more densely
populated; thus, Nct generally increases, and rad converges to
unity allowing for a higher probability of detecting true-positive
cases since the detection of stromata may not be very sensitive
to the parameters chosen. However, when insufficient numbers
of contour levels are used for a less blurred image block,
the performance may degrade significantly; specifically, many
false-positive cases may occur. In contrast, for an image block
that is blurred excessively, the performance would be saturated
even with the use of numerous contour levels. This is because
information on smaller tar spot stromata was already lost during
the course of blurring. As a consequence, a tradeoff exists between
computational efficiency and accuracy. Therefore, the accuracy
is determined by the degree of blurriness applied to an image

block. Specifically, it determines the smallest size of tar spot
stromata that can be found. Then, one can find an optimal
number of contour levels for the best performance in detecting
tar spot stromata for the blurred image block, which determines
computational costs.

In general, both SCDA and mask R-CNN were able to detect
and measure the number of stromata and diseased areas covered
by the stromata. However, SCDA performed better than the mask
R-CNN algorithm based on its correlation of estimated visual
severity (AUDPC). Both SCDA and mask R-CNN separated
plots that were controls (untreated plots) from those used as
treatments (with fungicide application). Generally, control plots
had higher values for visual tar spot disease severity, stromata
counts, and leaf area covered with stromata. However, the SCDA
showed a significantly greater area under disease progress curve
(AUDPC) agreement with visual disease estimations compared
to mask R-CNN. For future research, we can employ artificial
intelligence to train a machine to automatically find the optimal
parameters for a given image block while performing the
contour-based stromata detection analysis. This is beyond the
scope of the present project.

In our study, we utilized a laptop with Intel Core i7-8650U
processor (with an 8-MB cache memory and a base frequency
of 1.9 GHz and a maximum frequency of 4.2 GHz) and 16 GB
of RAM for the present analyses. For our empirical observation
with several trials and errors, we found that it would be the best
setup with 100 contour levels for each image block and σ = 2 and
σ = 1.5 for coarse and fine windows, respectively, for using the
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FIGURE 10 | Validation of performance (precision, recall, and Dice coefficient) of the stromata contour algorithm (SCDA) in recognizing “true stromata” compared to

human rater A (left panels) and human rater B (right panels) on (A) Sample A, (B) Sample B, (C) Sample C, (D) Sample D, (E) Sample E, (F) and Sample F.

FIGURE 11 | Agreement of AUDPC between visual disease severity vs stromata counts and proportion of leaf covered by stromata generated by SCDA and mask

R-CNN.
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TABLE 2 | Summary of the mean and median of precision, recall, and Dice coefficients (%) upon comparing the stromata contour detection algorithm (SCDA) to human

raters A and B for six leaf sample images.

Comparison 1 (vs. human rater A) Comparison 2 (vs. human rater B)

Mean Median Mean Median

Sample A

Recall (%) 89.0 90.6 88.9 90.8

Precision (%) 71.4 84.0 71.3 82.4

Dice (%) 75.0 84.5 75.2 84.6

Sample B

Recall (%) 85.9 88.2 84.3 86.4

Precision (%) 79.3 86.3 80.1 86.6

Dice (%) 81.0 86.0 80.6 85.0

Sample C

Recall (%) 91.7 94.4 85.7 92.1

Precision (%) 91.6 93.5 89.2 91.7

Dice (%) 91.0 92.6 87.6 89.8

Sample D

Recall (%) 89.0 90.4 87.9 89.4

Precision (%) 91.5 93.8 88.8 91.4

Dice (%) 89.8 91.3 87.8 89.5

Sample E

Recall (%) 87.6 91.9 83.3 89.1

Precision (%) 92.1 93.3 89.9 91.9

Dice (%) 88.8 91.5 86.3 89.4

Sample F

Recall (%) 88.1 92.3 83.5 90.0

Precision (%) 84.3 92.2 82.5 89.3

Dice (%) 83.0 89.8 80.3 85.7

Recall (%) Precision (%) Dice (%)

Average of mean 87.1 84.3 83.9

Average of median 90.5 89.7 88.3

Gaussian filter provided by MATLAB. Note that σ represents a
standard deviation of the two-dimensional Gaussian distribution.
With this parameter setup, we set Nct = 10 and Nct = 5 in
searching stromata in coarse and fine windows, respectively. For
both windows, we set gcircle = 0.25 and rad = 0.7. It is worth
noting that the reason why gcircle was set to a relatively lower value
is because of the detection of matured tar spot stromata that tend
to form an ellipse-like shape.

Plant disease intensity is often measured with random
variables. In some instances, pathogen density based on the
number of stromata per unit leaf area may be a better measure
of disease intensity than the visual severity in terms of inter-rater
repeatability (Madden et al., 2007). Also, severity and counts are
different concepts from a statistical standpoint. The count is a
discrete variable, and severity is a continuous, random variable.
Although discrete stromata count data can encapsulate and
convey the natural progression of pathogen invasion and disease
development, without automation, counting stromata is time-
consuming and tiring. Automated counting of physically distinct
stromata is an option with plant diseases as characteristic and
conspicuous as tar spot of corn. Automated disease measurement
is still in an exploratory stage and the results presented are

the basis of future research based on data collected under field
conditions and data processing with more advanced techniques.
Our ultimate goal is to explore the spatio-temporal domain of
plant disease quantification using both visual and digital imagery
and weather variables to properly describe and forecast plant
disease epidemics.

CONCLUSION

Automated, image-based, accurate detection and assessment of
disease intensity will provide a substitute for labor-intensive
and subjective-prone, human visual-based disease intensity
estimations and aid in generating high volumes of reliable
data in a relatively short time. In turn, this will support
building robust epidemiological models for tar spot outbreaks
and improving the management decisions for this disease.
Moreover, for an emerging disease, such as tar spot, it is
crucial to develop and establish a standardized method that will
provide accurate estimates of plant disease intensity to obtain
reliable assessments for monitoring tar spot epidemics, resistance
screening, and management practices. The contour-based
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TABLE 3 | Correlation of AUDPC between visual disease severity vs. SCDA and mask R-CNN, respectively, at lower, middle, and upper canopies of the experimental

plots.

Comparison Canopy level Parameter CCC r Cb u ν

Visual severity vs. SCDA Lower Area_AUDPC 0.51 0.72 0.72 −0.80 0.69

Count_AUDPC 0.70 0.72 0.96 0.06 1.33

Middle Area_AUDPC 0.79 0.96 0.82 −0.57 0.71

Count_AUDPC 0.87 0.97 0.90 0.35 1.37

Upper Area_AUDPC 0.49 0.92 0.53 −1.32 0.51

Count_AUDPC 0.91 0.93 0.98 −0.22 0.98

Total Area_AUDPC 0.59 0.84 0.71 −0.80 0.65

Count_AUDPC 0.82 0.84 0.97 0.08 1.26

Visual severity vs. R-CNN Lower Area_AUDPC −0.06 −0.59 0.10 −4.14 1.09

Count_AUDPC 0.27 0.65 0.41 1.00 3.58

Middle Area_AUDPC −0.06 −0.51 0.12 −3.81 1.12

Count_AUDPC 0.29 0.88 0.33 1.47 3.69

Upper Area_AUDPC −0.03 −0.48 0.07 −5.07 0.80

Count_AUDPC 0.47 0.82 0.57 0.69 2.66

Total Area_AUDPC −0.05 −0.52 0.10 −4.23 1.03

Count_AUDPC 0.31 0.76 0.41 1.06 3.41

stromata detection method developed in this study will serve
as a foundation toward building a systematic approach in
quantifying the disease intensity of tar spot using digital imagery
as well as for other plant diseases generating similar types
of stromata.
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