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The Yellow River Delta is water, salt, and nutrient limited and hence the growth of plants
depend on the surrounding factors. Understanding the water, salt, and stoichiometry
of plants and soil systems from the perspective of different halophytes is useful for
exploring their survival strategies. Thus, a comprehensive investigation of water, salt,
and stoichiometry characteristics in different halophytes and soil systems was carried
out in this area. Results showed that the oxygen isotopes (δ18O) of three halophytes
were significantly different (P < 0.05). Phragmites communis primarily used rainwater
and soil water, while Suaeda salsa and Limonium bicolor mainly used soil water. The
contributions of rainwater to three halophytes (P. communis, S. salsa, and L. bicolor)
were 50.9, 9.1, and 18.5%, respectively. The carbon isotope (δ13C) analysis showed that
P. communis had the highest water use efficiency, followed by S. salsa and L. bicolor.
Na+ content in the aboveground and underground parts of different halophytes was all
followed an order of S. salsa > L. bicolor > P. communis. C content and N:P in leaves of
P. communis and N content of leaves in L. bicolor were significantly positively correlated
with Na+. Redundancy analysis (RDA) between plants and each soil layer showed that
there were different correlation patterns in the three halophytes. P. communis primarily
used rainwater and soil water with low salt content in 60–80 cm, while the significant
correlation indexes of C:N:P stoichiometry between plant and soil were mainly in a 20–
40 cm soil layer. In S. salsa, the soil layer with the highest contribution of soil water and
the closest correlation with the C:N:P stoichiometry of leaves were both in 10–20 cm
layers, while L. bicolor were mainly in 40–80 cm soil layers. So, the sources of soil water
and nutrient of P. communis were located in different soil layers, while there were spatial
consistencies of soils in water and nutrient utilization of S. salsa and L. bicolor. These
results are beneficial to a comprehensive understanding of the adaptability of halophytes
in the Yellow River Delta.
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INTRODUCTION

Soil salinity is a major abiotic stress affecting plant growth
and productivity throughout the world (Akramkhanov et al.,
2011). About 1/10 of the total dry land surface on the earth
suffers from salinity problems (Pan et al., 2013). Currently,
the saline soil resources in China account for 4.88% of the
country’s available land area, and the area of salinized land
in the Yellow River Delta is as high as 180,000 hm2 (Lim
et al., 2017; Xia et al., 2019). Halophytes are plants that
have the ability to survive in a saline environment, and are
a typical form of vegetation in coastal ecosystems (Kumari
et al., 2015). Halophytes have formed a series of physiological
salt resistance characteristics in the process of adapting to
a saline habitat, and have a stronger ability to overcome
salt stress and ion toxicity than non-halophytes. Generally,
halophytes are classified into three groups according to their
main salt resistance mechanisms (Flowers and Colmer, 2008;
Zhang and Shi, 2013). Halophytes can increase ground cover
to reduce evaporation, conserve water and soil, improve saline-
alkali land, and protect beach and embankment. At the same
time, a large area of beach formed by halophytes provides a
habitat for all kinds of animals, thus improving the ecological
environment (Curado et al., 2014). Studies have shown that
planting halophytes on salinity soil can improve soil physical
and chemical properties, and have great potential in relieving
the pressure of cropping systems and restoring degraded lands
(Lei et al., 2018). Therefore, it is of great ecological and
economic significance to study the adaptability of halophytes.
The adaptability of halophytes is reflected not only in their
salt tolerance potential, but also in their ability to utilize
water and nutrients.

Water is one of the principle factors limiting plant growth,
species diversity, and vegetation distribution (Zhu et al., 2016).
The stable isotope technique has become one of the most
important techniques in the field of water science. This technique
not only has good biological safety, but also overcomes the time
and space constraints of traditional research methods (Arslan
et al., 1999; Kübert et al., 2020). Therefore, it greatly promotes
the research of water source (Yang et al., 2011; Wu et al., 2014;
Tetzlaff et al., 2021), water use efficiency (Gouveia et al., 2019;
Pan et al., 2020), plant water stress (Zhang et al., 2014), and water
use strategy (Eggemeyer et al., 2009; Kanduc et al., 2012; Zhai
et al., 2016). At present, stable isotope technology has been widely
used in the field of ecology, such as desert, forest, and farmland
ecosystems (Cao et al., 2002; Wang et al., 2010; Zhu et al.,
2020). Studies have shown that the determination and analysis
of stable carbon isotope (δ13C) among different species of leaves
is an extensive and effective technical means in the study of the
difference of water use and water stress adaptation of plants in a
period of time (Arslan et al., 1999; Pan et al., 2020), and it is more
accurate to use stable oxygen isotope (δ18O) as the main tracer
index in the study of water use sources of halophytes (Ellsworth
and Williams, 2007). The water use source, water contribution,
and water use efficiency of plants will change due to the influence
of the external environment (such as precipitation, drought,
salinity, etc.), and these changes in water use characteristics

reflect the adaptability of plants (Chen et al., 2017; Pan et al.,
2020; Cui et al., 2021). Therefore, using δ18O and δ13C stable
isotope technologies to clarify the above water use characteristics
is helpful to understand the water adaptation of plants.

Carbon (C), nitrogen (N), and phosphorus (P) in plants
interact with each other, and there are significant correlations
between C, N, and P contents in plants (Schindler, 2003). The
alteration of plant stoichiometry can reveal the status of nutrient
uptake and utilization by different plants and the restrictive
relationship among different nutrients. It is an important index
to judge whether plants can renew themselves and recycle
nutrients (Crous et al., 2019). Paying attention to the changes in
stoichiometry of environment and plants can not only determine
the nutrient limiting factors of plant growth, but also provide
an important supplement for exploring the relationship between
ecosystem stoichiometry and plant function or environmental
adaptation mechanism (Cao and Chen, 2017). For instance,
studies have shown that the N:P and C:P ratios between
soil and plant tissues were strongly correlated, and the plant
C:N and C:P ratios responded differently at different nutrient
conditions (Cao and Chen, 2017; Wang Z. et al., 2018). On
the contrary, Wang et al. (2015) found that leaf C:N, C:P, and
N:P were hardly affected by soil features, and there were few
correlations with soil nutrition. There are various factors affecting
the stoichiometry of plants, such as interactions between leaf
traits and soil nutrients, variations in plant-type, and possibly
species-level interactions, etc (Cao and Chen, 2017). Thus, a
more comprehensive understanding of nutrient utilization would
include not only determining the stoichiometry in plants but
also those in soil and soil microbial biomass (Li et al., 2012).
The carbon: nitrogen: phosphorus (C:N:P) ratio in soil directly
reflects soil nutrition and indirectly serves as an indicator of plant
nutritional status (Elser et al., 2010). The vegetation in the Shell
Dike Island is mainly composed of different halophytes. Suaeda
salsa, Limonium bicolor, and Phragmites communis are typical
representatives widely distributed in this coastal ecosystem
(Tian et al., 2011). Therefore, studying of the stoichiometry of
plants and soil, and the correlations between them is helpful
to better understand the adaptability of halophytes in the
Yellow River Delta.

The Shell Dike Island in the Yellow River Delta is salt-stressed.
Fresh water and nutrients are deficient in this area. Halophytes
need to change their physiological and biochemical behavior to
survive (Drake and Franks, 2003). In recent years, numerous
studies have focused on the plant salt tolerance (María et al.,
2005; Flowers et al., 2015, 2019), plant water use (Cui et al.,
2017; Ferrio et al., 2020; Pan et al., 2020), and plant stoichiometry
(Wang et al., 2015; Cao and Chen, 2017; Shang et al., 2018; Crous
et al., 2019). However, comprehensive investigation of water,
salt, and stoichiometry characteristics in different halophytes
and soil systems is scarce. Hence, a study was carried out to
investigate the δ18O stable isotope, C:N:P stoichiometry, and salt
heterogeneity in selected halophyte species (S. salsa, P. communis,
L. bicolor) and soil systems in the heterogeneous habitat of Shell
Island. The objectives of the present study are to: (1) clarify the
characteristics of water use, salinity, and C:N:P stoichiometry of
different halophytes, (2) estimate the correlations of water, salt,
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and stoichiometry in three different halophytes and soil, and
thus to better understand the adaptation of halophytes to the
coastal environment. The results may enrich the understanding
of the “salt-water- stoichiometry” relationship theory of different
halophytes and will provide a theoretical basis for coastal
vegetation restoration.

MATERIALS AND METHODS

Survey of the Research Area
The study area is located in Wudi County, Shandong Province,
the Shell Dike Island (38◦18′N, 117◦54′E) of the Yellow River
Delta. The region belongs to the warm temperate East Asian
monsoon continental semi-humid climate zone, with an average
annual precipitation of 550 mm. Rainfall is concentrated in June
to September (Zhu et al., 2016).

Plot Setting and Sample Collection
According to the characteristics of soil quality, geomorphology,
and land use types in Shell Dike Island of the Yellow River Delta,
one sample line was set along the Shell Dike Island. Three points
were set on the sample line, the interval between each point
was not less than 1 km, three plots of 5 m × 5 m were set in
each point, S. salsa, P. Communis, and L. bicolor species and soil
samples were collected.

The soil samples were collected in June by using a 4.5 cm
diameter special earth drill in five soil depths: 0–10 cm, 10–
20 cm, 20–40 cm, 40–60 cm, and 60–80 cm. Three groups of
parallel samples were taken. One part of the sample was packed
in a self-sealing bag, the other part was immediately packed
in a glass bottle with a plug and sealed with parafile. In each
sample plot, the mature corked stems of three to four uniform-
growing S. salsa, P. Communis, and L. bicolor were collected,
respectively. The standard barrel of meteorological station was
used to collect rainwater.

The representative homogeneous communities of S. salsa,
P. Communis, and L. bicolor were selected. Leaves with sufficient
illumination were also selected and then they were mixed into
a sample bag with good air permeability. Leaves were dried in
105◦C for 20 min, then they were transferred to 70◦C for 48 h.
The drying material was grinded and selected by 80 mesh sieving.

Sample Extraction and Determination
All samples were used to extract the water from xylem and soil by
vacuum freeze extraction technology (Kanduc et al., 2012). The
isotope values of the extracted samples were determined by liquid
water isotope analyzer (LWIA, DLT-100, LGR, United States).
Hydrogen and oxygen stable isotope ratio: δX(h) = (Rsample
/Rstandard-1) × 1000, in which Rsample is the ratio of heavy to
light isotope abundances of elements in samples (H, O)sample
and Rstandard is the ratio of stable isotope abundances of
international common standards (H, O stable isotopes using
v-SMOW) (Einbond et al., 1996). The analytical error for δ2H
and δ18O were ±1.0h and ±0.3h, respectively. The standard
sample LGR4E (LGR, United States) was used as the quality
control standard to test the stability and accuracy of data

analysis. By substituting the average value of the LGR4E standard
sample into a regression curve, the values of δ2H and δ18O
were close to their standard values (δ2H = −49.2 ± 0.5h,
δ18O = −7.81 ± 0.15h). It showed that the method can
meet the requirement of accurate determination of a liquid
water sample. The δ18O values of plant samples were corrected
according to the method of Schultz et al. (2011). The leaf
δ13C determination was carried out by Finnigan DELTAPlus
XP stable isotope mass spectrometer (Thermo Electron Corp.,
Waltham, MA, United States). The value of plant leaf δ13C
was calculated by the following formula: δ13C(h) = (13C/
12Csample-13C/ 12Cstandard)/(13C/ 12Cstandard) × 1000, in which
13C/ 12Csample is the 13C/12C ratio of plant leaf samples, and 13C/
12Cstandard is the 13C/12C ratio of glycine in the determination
process (Medina and Francisco, 1997).

Soil water content was determined by oven drying and
weighing method (Wang and Chen, 2010). Soluble salt was
analyzed by the gravimetric method (water/soil, 5:1) (Lu, 1999).
Plant sample was digested by HNO3:HCl (3:1) and Na+ content
in plant was determined by inductively coupled plasma atomic
emission spectroscopy (ICP-AES, Thermo IRIS Intrepid II XDL,
United States) according to the procedures of Emanuel et al.
(2014). The total carbon (TC) and total nitrogen (TN) of soil
and plant were determined by element analyzer (Vario EL III,
Elementar, Germany) and total phosphorus (TP) was determined
by molybdenum-antimony colorimetric method (Lu, 1999).

Data Analysis
Excel 2010 (Microsoft Corp., Redmond, WA, United States)
and SPSS19.0 (SPSS Inc., Chicago, IL, United States) were
used to analyze the variance of the data. The contribution of
potential water sources to xylem moisture of halophytes (S. salsa,
P. Communis, and L. bicolor) was calculated by using IsoSource
mixed model (Phillips and Gregg, 2003). The increment of model
parameters was 1%, and the tolerance of mass balance was 0.05.
The figures were plotted by Origin Pro 9.0 software.

RESULTS

Water Content of Different Soil Layers
With the increase of depth, the soil water content at the ridge of
Shell Dike Island firstly decreased and then increased (Figure 1).
Due to the influence of rainfall in July, the water content of the
0–10 cm soil layer was higher than that of the 10–40 cm soil
layer, of which the 20–40 cm soil layer had the lowest water
content, which was 5.94%. The water content of the 40–80 cm
soil layer was significantly higher than that of the 0–40 cm soil
layer, and the highest water content of the 60–80 cm soil layer
was 13.21% (P < 0.05). Although the shallow soil water content
was greatly affected by surface evaporation, the soil moisture
content of the 0–10 cm soil layer was still higher than that of the
20–40 cm soil layer.

Analysis of Soil Water Stable Isotope
The δ18O isotopic characteristics of soil water in Shell Dike Island
of the Yellow River Delta were shown in Figure 2. In this study,
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FIGURE 1 | Water content of different soil layers of Shell Dike Island in the
Yellow River Delta. Different letters mean a significant difference of 0.05.

FIGURE 2 | Characteristics of δ18O and δ2 H stable isotope of soil water in
Shell Dike Island of the Yellow River Delta. Different letters mean a significant
difference of 0.05.

the δ18O of soil water increased first and then decreased. It was
the lowest in the 60–80 cm soil layer, and the highest in the
20–40 cm soil layer. The δ18O of soil water increased in the 0–
40 cm soil layer, and decreased in the 40–80 cm soil layer. Besides,
the δ2H (D) isotopic characteristics of soil water were shown in
Figure 2. The δ2H value of soil water had the similar pattern with
δ18O. It was the lowest in the 0–10 cm soil layer, and the highest
in the 20–40 cm soil layer., the δ2H value of soil water increased
in the 0–40 cm soil layer, and the δ2H value of soil water reduced
continuously in the 40–80 cm soil layer.

δ18O and δ13C Values for Different
Halophytes
It showed that the δ18O values of xylem water of three halophytes
were significantly different (Figure 3). The δ18O value of S. salsa

was the highest, followed by L. bicolor, and P. communis was
the lowest. The leaf δ13C value of P. communis was relatively
higher than that of S. salsa and L. bicolor. The δ13C values
of the three halophytes ranged from −25.63 to −30.05h. It
showed that the water use efficiency of P. communis was the
highest, followed by S. salsa, and L. bicolor was the lowest.
The results showed that there were significant differences in
water use efficiency among three halophytes. The δ13C value of
P. communis (−25.63h) was significantly high compared with
the global survey (−28.74h). S. salsa (−28.01h) was close to
the global value, and L. bicolor (−30.05h) was significantly low
compared with it. In general, the average carbon isotope value
of three halophytes was −27.90h, which was significantly high
(P < 0.05).

Water Use of Different Halophytes
The water use of different halophytes was shown in Figure 4.
It showed that P. communis mostly absorbed and utilized the
rainwater, the contribution of rainwater was 50.9%. The total
contribution of soil water was 49%. With the depth of soil water,
the contribution of soil water to P. communis decreased first
and then increased. The lowest contribution of soil water to
P. communis was 6.2% in the depth of 20–40 cm, and the highest
was 13.4% in the depth of 60–80 cm.

In each layer, S. salsa mainly absorbed the water from soil
water. The total contribution of soil water to S. salsa was 90.9%.
With the increase of soil water depth, the contribution of soil
water to S. salsa decreased. The lowest contribution of soil water
to S. salsa was 16.1% in the depth of 60–80 cm. The highest
contribution of soil water to S. salsa was 19.8% in the depth of
10–20 cm, and the contribution of rainwater was 9%.

The absorption and utilization of rainwater by L. bicolor was
18.5%, while the contribution of soil water to L. bicolor was
81.4% in all layers. So the water absorbed and used by L. bicolor
mainly came from soil water. With the increase of soil water
depth, the contribution of soil water in different depths decreased
first and then increased. In different depths of soil water, the
highest contribution was 21.5% at in the depth of 60–80 cm,
and the lowest contribution was 10.5% in the depth of 20–
40 cm.

Salt Content in Different Soil Layers
The results showed that the salt content of each soil layer in the
beach ridge of Shell Island ranged from 0.52 to 1.04 g.kg−1. With
the increase of soil depth, there was no significant difference in
salt content between the 0 and 60 cm soil layers, while the salt
content of the 60–80 cm soil layer was significantly lower than
that of the 0–60 cm soil layer (Figure 5).

Na+ Content in Plant Tissues
The Na+ content in the same organs of different plants and
different organs of the same plant were different (Figure 6).
The Na+ content in different tissue parts of P. communis
showed no significant difference, and was significantly lower
than S. salsa and L. Bicolor. The Na+content in leaves of
S. salsa was significantly higher than that in roots and stems.
The Na+contents in roots, stems, and leaves of S. salsa were
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FIGURE 3 | δ18O of xylem water and leaf δ13C values of different halophytes. Different letters mean a significant difference of 0.05.

FIGURE 4 | Contribution of different water sources to different halophytes.

significantly higher than those of the other two halophytes. The
Na+ content in different tissues of L. bicolor was significantly
different, with the order of leaf > stem > root. The Na+ content

in different halophytes was significantly different, which was
S. salsa > L. bicolor > P. communis. The results showed that
the Na+ content in the aboveground and underground parts of
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FIGURE 5 | Salt content in different soil layers. Different letters mean a
significant difference of 0.05.

different halophytes was significantly different, with an order of
S. salsa > L. bicolor > P. communis.

Stoichiometry Characteristics in
Different Soil Layers
The soil C content in different soil layers ranged from 6.50 to
9.91%. The soil C content generally decreased with depth and
the greatest content existed in the 10–20 cm soil layer. The soil

N content in different soil layers ranged from 0.016 to 0.049%.
From 0 to 80 cm soil layer, the soil N content had a similar pattern
with C content. The soil N content of the 0–10 cm soil layer was
significantly higher than that of the 20–80 cm soil layers. The soil
P content in different soil layers ranged from 0.16 to 0.49 g.kg−1.
The soil P content was no significantly different in the 0 to 80 cm
soil layers (Figure 7).

C:N in different soil layers increased with the increase of soil
depth, and the difference between 10 and 80 cm soil layer was not
significant, but it was significantly higher than that of the 0–10 cm
soil layer; C:P increased first and then decreased with the increase
of soil depth, and C:P in the 20–80 cm soil layer was significantly
lower than that of 0–20 cm soil layer (Figure 7).

Stoichiometry Characteristics in
Different Halophytes
The C:N:P stoichiometric characteristics in three halophytes
were significantly different (Figure 8). Compared with
the same tissue of different halophytes, the C content in
roots was P. communis > L. bicolor > S. salsa, but there
was no significant difference in stems, while in leaves was
P. communis > L. bicolor > S. salsa. The N content showed
no significant difference in the roots and leaves of the three
halophytes. The difference of N content existed in the
stem, which was L. bicolor > S. salsa = P. communis. The
results showed that P content in the roots was as follows:
L. bicolor > S. salsa = P. communis. The P content in stems
was similar to the roots in three halophytes, but there was
no significant difference in leaves. In general, P content
in tissues of L. bicolor, especially in roots and stems, was
significantly higher than that in S. salsa and P. communis. C:N

FIGURE 6 | Comparison of Na+ contents in roots, stems, leaves (A) and aboveground, underground parts (B) of three different halophytes. Significant differences
between the same plant are marked with lowercase letters, and significant differences among different plant species are marked with capital letters.
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FIGURE 7 | Stoichiometric analysis of different soil layers. Different letters mean a significant difference of 0.05.

in roots and stems was P. communis > S. salsa > L. bicolor.
The C:P in roots was P. communis > S. salsa = L. bicolor,
P. communis > S. salsa > L. bicolor in stems, but there was no
significant difference among the three in leaves. N:P in roots was
P. communis > L. bicolor > S. salsa, but there was no significant
difference in stems and leaves.

Correlations Among the Indexes of
Different Halophytes
The correlations between leaf stoichiometry and Na+ content in
leaves of three halophytes were significantly different (Table 1).
Specifically, N content and P content in P. communis leaves
were significantly positively correlated, while C content and
N:P in leaves were significantly positively correlated with Na+
content (correlation coefficient was 0.685, 0.698, respectively),
The correlation index of S. salsa was the least among the
three halophytes, and its stoichiometry characteristics had no
significant correlation with Na+ content. N content and C:N
in L. bicolor were significantly positively correlated (0.789) and
negatively correlated with Na+ content (−0.841), in addition,
the C content was significantly positively correlated with N
content and P content.

The C content and C:N in leaves of three halophytes were
consistent. Although the above correlations did not reach the
significant difference level, they were all negatively correlated
with δ13C index. The correlations between N:P and Na+ content
and δ13C were all positively correlated, but the correlations were
not significant (Table 1).

Correlations Between Different
Halophytes and Different Soil Layers
The relationships between environmental factors and plant
factors in different soil layers were analyzed by Redundancy
analysis (RDA). In P. communis, the correlation between plants
and soil layers was as follows: In the 10–20 cm soil layer, leaf
P content and N:P were positively correlated and negatively
correlated with soil salt content, respectively. In the 20–40 cm
soil layer, the significant correlation indexes between plant and
soil were significantly increased, leaf C content was significantly
positively correlated with soil water content, leaf N content
was positively and negatively correlated with soil P content and
N:P, respectively; leaf P content was positively and negatively
correlated with soil C:N and N:P; leaf C:N was positively
correlated with soil N:P. In the 40–60 cm soil layer, there was
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FIGURE 8 | Stoichiometry of different tissues of different halophytes. Significant differences between the same plant are marked with lowercase letters, and
significant differences among different plant species are marked with capital letters.

a significant negative correlation between leaf C content and
soil C:P, and leaf C:P, N:P, leaf Na+ content were significantly
positively correlated with soil water content. In the 60–80 cm
soil layer, leaf C:N was positively correlated with soil salt
content (Figure 9).

In S. salsa, with the increase of soil depth, the correlation
between the indexes of S. salsa leaves and soil decreased
(Figure 9). In the 0–10 cm soil layer, leaf C content was
positively correlated with soil N content, and leaf C content
was negatively correlated with soil C:N. In the 10–20 cm soil
layer, the leaf C content was significantly negatively correlated
with the soil C content, C:N, and C:P. Leaf C:P and soil N
content was significantly positively correlated, leaf Na+ content
was significantly negatively correlated with soil water content,
and leaf C:N was significantly positively correlated with soil salt
content in the 20–80 cm soil layer.

In L. bicolor, leaf C:P was positively correlated with soil C:P
and N:P in the 0–10 cm soil layer. In the 10–20 cm, leaf N
content was positively correlated with soil water content, leaf C:N
was positively correlated with soil C:N. In the 20–40 cm, leaf
N content was positively correlated with soil C content. In the
40–60 cm, leaf N content was positively correlated with soil N
content, P content and soil salt content, and leaf Na+ content was

significantly positively correlated with soil N content, P content
and salt content (Figure 9).

DISCUSSION

Water Use Patterns and Water Use
Efficiencies of Different Halophytes
Plant water sources will be adjusted according to water supply
(Duan et al., 2008). There were apparent variations in the xylem
water δ18O values of different plants (Cui et al., 2021). In
this study, the xylem water δ18O of three halophytes species
were significantly different, which indicated that there were
interspecific differences in the water absorption. The water source
of the plants in the same habitat may be diverse, and this
diversity is usually of positive significance for the coexistence
of plants (Min et al., 2019). There are obvious differences in
rainwater utilization rate among the three halophytes. Compared
with the other two types of halophytes, P. communis has the
highest rainwater utilization rate, which reflects its advantage in
freshwater utilization. Soil water is the source of water that plants
can use directly. The contribution of soil water to S. salsa was the
highest when the soil depth was 10–20 cm. For P. communis and
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L. bicolor, the highest contributions of soil water were both in the
depth of 60–80 cm, which indicated that the latter two mainly
used the deep soil water. The above results may be attributed
to the root distribution depth and spatial distribution structure
of three halophytes (Nie et al., 2011; Ren et al., 2017). There
is a characteristic of water uptake by plant roots, that is, the
dependence of plants on different water content changes with the
availability of this water source (Dawson and Pate, 1996; Mccole
and Stern, 2007; Guo et al., 2018).

δ13C can comprehensively reflect the physiological and
external environmental characteristics of various factors affecting
the relationship between carbon and water during vegetation
growth. Many studies have shown that δ13C is highly correlated
with plant WUE. Therefore, leaf δ13C can be used to reflect the
WUE characteristics of different plant species (Farquhar et al.,
1982; Stokes et al., 2010; Baruch, 2011). In this study, the value
of δ13C in leaves of P. communis is the highest, which indicates
that P. communis has the highest utilization efficiency of water
resources form habitat. The water use efficiency of L. bicolor
is the lowest, which indicates that it belongs to the profligate
consumption of soil water (Quiroga et al., 2013; Ding et al., 2016).
The reason may be related to the different sources of water use of
the three halophytes.

Correlations of Water, Salt, and
Stoichiometry in Different Halophytes
C, N, and P are the essential elements of organisms, and have
strong interactions in biological function (Sterner and Elser,
2002). Plant stoichiometry varies mainly with environment and
taxonomic affiliation (Zhang et al., 2016). In this study, C content
in roots and leaves of P. communis were highest among the three
halophytes, indicating that P. communis has a stronger ability
of carbon fixation by photosynthesis. N content in stems, and
P content in roots and stems of L. bicolor were highest among
the three halophytes, which showed that L. bicolor has a higher
nitrogen and phosphorus absorption efficiency. C:N and C:P,
being important physiological indices, can also reflect the growth
rate of plants (Frost et al., 2005; Wang N. et al., 2018). C:N and
C:P in roots and stems of P. communis were highest among the
three halophytes, indicating that construction efficiency of roots
and stems in P. communis is higher than S. salsa and L. bicolor.

The changes of contents of C, N, and P must be accompanied
with the transportation of salt ions in halophytes. It is reported
that salt ions and N can promote each other. It is speculated
that N can effectively promote salt ion absorption in halophytes
and contribute to the improvement of halophytes in a saline-
alkali habitat (Shao et al., 2005; Yong et al., 2016). In the study,
C content and N:P in leaves of P. communis were significantly
positively correlated with Na+, and the N content of leaves in
L. bicolor was positively correlated with Na+. The findings are
consistent with previous research. While N content of leaves in
S. salsa had no significant correlation with Na+, which needs
to be further studied. The correlation between the stoichiometry
characteristics and Na+ in the leaves of the three halophytes
is consistent with the salt tolerance mechanism of the three
halophytes to a great extent.
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FIGURE 9 | RDA analysis of the relationships between three halophytes and environmental factors in different soil layers. TC, Plant total carbon; TN, Plant total
nitrogen; TP, Plant total phosphorus; C:N, Plant C/N ratio; C:P, Plant C/P ratio; N:P, Plant N/P ratio; Na+, Sodium ion of plant; C13, Carbon isotope of plant; STC,
Soil total carbon; STN, Soil total nitrogen; STP, Soil total phosphorus; S(C:N), Soil C/N ratio; S(C:P), Soil C/P ratio; S(N:P), Soil N/P ratio; S(SC), Salt content of soil;
S(MC), Moisture content of soil.
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Although there was no significant correlation between the
δ13C values of the three halophytes and their leaf C content and
C:N, they all showed the same trend. This indicates that water
use efficiency of leaves has an influence on the stoichiometric
characteristics of C:N:P in leaves. As pointed out by Flexas et al.
(2016), the increase of WUE at the leaf level does not necessarily
promote the increase of WUE at the whole plant level. This
is because the favorable factors of improving WUE at the leaf
level may be offset by other factors, which are not completely
independent of WUE (Flexas et al., 2016). For instance, the
growth of plant leaves causes a large shading area, and the
increase of plant respiration may lead to the increase of carbon
catalysis, etc. (Thomas et al., 2013), which is consistent with our
result that the δ13C value and C content of three halophytes are
negatively correlated.

The long-term nitrogen use efficiency (NUE) of plant
leaves is expressed by leaf C:N (Livingston et al., 1999),
which provides a broad view of organic matter source. This
parameter characterizes the efficiency of nitrogen distribution
and utilization for carbon acquisition and assimilation (Hedges
et al., 1986). Studies have shown that the WUE and NUE of
different dominant plants in the main forest ecosystems in the
north-south transect of eastern China are significantly negatively
correlated, indicating that plants with higher water use efficiency
tend to have lower nitrogen use efficiency in natural ecosystems
(Field et al., 1983; Patterson et al., 1997; Sheng et al., 2011). In
this study, the characteristic parameters δ13C of WUE were all
negatively correlated with C:N in three halophytes. This result
is consistent with the above research and it is in line with the
relevant conclusion that plants can not optimize the use of water
and nitrogen at the same time in natural ecosystems, and its
utilization strategy is to make efficient use of one resource at the
expense of another (Salazar-Tortosa et al., 2018).

Correlations of Water, Salt, and
Stoichiometry in Plant and Soil,
Respectively
Water, nutrients, and salt are the important resources and
conditions that affect the growth and development of plants.
How to optimally utilize and integrate water, salt, and nutrients
is related to the varying behaviors in different plants. Soil
salinity is one of the main factors which contributes to plant
δ13C. The analysis of the correlation between plant δ13C and
soil salinity can provide an important reference for judging
the physiological and ecological adaptability of plants to salt
(Costantini et al., 2010). In this study, the correlation between
Na+ content and δ13C in leaves of three halophytes did not
reach significant level, but all showed positive correlation trend.
Farquhar et al. (1989) have already suggested that the δ13C
value of plants increased with the increase of salinity. Many
studies have also shown that there is a positive correlation
between the δ13C value of plant leaves and soil salinity, whether
they are halophytes (such as Mesembryanthemum crystallinum,
Puccinellia nuttalliana, Avicennia marina, etc.) (Guy and Reid,
1986; Winter and Holtum, 2005; Ladd and Sachs, 2013) or
non-halophytes (wheat, safflower, tomato, etc.) (Yousfi et al.,

2012; Amor and Francisco, 2013; Hussain and Al-Dakheel,
2018). The reason of soil salinity affecting plant δ13C is that
salt environments cause some changes in plant physiological
activities (such as CO2 diffusion, transfer, or photosynthetic rate)
(Farquhar et al., 1982; Flanagan and Jefferies, 1989).

The C:N:P ratio in soil directly reflects soil fertility and plant
nutritional status (Elser et al., 2010). A fundamental study found
positive correlations between plant leaf and soil nutrients in 1900
plant species across China (Han et al., 2011). Regression analyses
showed that soil N:P ratios were significantly correlated with leaf
N:P ratios in subtropical Eucalyptus plantations (Fan et al., 2015).
Positive relationships between soil C:N:P and leaf nutrient ratios
in Australia’s major native vegetation ecosystems have also been
observed (Bui and Henderson, 2013). The C:P and N:P of soil
were positively correlated with plant tissues of black locust plants
on the Loess Plateau (Cao and Chen, 2017). In this study, leaf C:N
of P. communis was positively correlated with soil N:P. Leaf C:P
of L. bicolor was positively correlated with soil C:P and N:P, leaf
C:N was positively correlated with soil C:N. leaf C:P of S. salsa
was positively correlated with soil N. The results show that the
stoichiometry between soil and plant were influenced not only by
soil factors, but also by plant physiological metabolism.

Considering the fact that these soil-sourced factors changed
variously, their effect on leaf stoichiometry is complex (Wang
et al., 2015). In this study, leaf C:N of P. communis was positively
correlated with soil salt content, and leaf C:P and N:P were
significantly positively correlated with soil water content. Leaf
C:N ratio of S. salsa was significantly positively correlated with
soil salt content, and leaf N of L. bicolor was positively correlated
with soil water content. The results show that soil salinity and
soil water are also important factors for plant stoichiometry in
coastal ecosystems.

In the same habitat, there is competition among different
plants in resources, how to reasonably obtain the related
resources and minimize the restriction of a certain environmental
factor on its growth is an important survival strategy for plants
(Barot et al., 2014; Sebastien et al., 2016; Falster et al., 2017). Based
on the correlation analysis of water sources, stoichiometry, and
the salt content between soil and plant, the survival strategies of
three types of halophytes were found. The soil water contribution
of the 60–80 cm soil layer to P. communis is the largest and the soil
layer salt content is the lowest, which indicates that P. communis
prefer to use the soil water with low salt concentration. However,
the closest correlation of C:N:P stoichiometry between plant
leaves and soil is in the 20–40 cm soil layer. S. salsa and L. bicolor
not only use the soil water of the soil layer with a low salt
content, but also have high utilization of the soil water of the
soil layer with a relatively high salt concentration. The soil water
contribution of the 10–20 cm soil layer to S. salsa is the highest,
and the closest correlation of C:N:P stoichiometry between plant
leaves and soil is also in the 10–20 cm soil layer. The soil
water contribution of the 40–60 cm soil layer to L. bicolor is
the highest, and the closest correlation of C:N:P stoichiometry
between plant leaves and soil is also in the 40–60 cm soil layer.
This indicates that there is spatial consistency of soil in water
and nutrient utilization of S. salsa and L. bicolor. The differences
of correlation patterns between the three halophytes and each
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soil layer are maybe caused by ecophysiological strategies of
different halophytes, which can make the most positive and
effective response to the heterogeneity of the surrounding soil
environment, so as to achieve the best resource utilization
efficiency of water, salt, and nutrients.

CONCLUSION

Our research indicated that there were significant differences
in water sources and water contribution from different soil
depth among the three halophytes. P. communis showed certain
advantages in the above water adaptability, while L. bicolor was a
relatively water consuming plant. The differences of Na+ content
in different tissues of three halophytes showed that S. salsa
had a stronger salt tolerance than L. bicolor and P. communis.
In terms of nutrient adaptability, L. bicolor showed higher N
and P uptake, while P. communis showed a higher construction
efficiency of roots and stems. Moreover, the effect of Na+ on
the stoichiometry of L. bicolor and P. communis was greater
than that of S. salsa. The correlations between soil depth and
different halophytes indicated that the adaptation strategies are
different. The soil layers which were closely related to the water
and nutrient use of P. communis were not coincidental, while the
water and nutrient sources of the S. salsa and L. bicolor had spatial
consistency. Therefore, in the process of vegetation restoration in
the Yellow River Delta, it is possible to achieve better results by
allocating different halophytes according to their adaptability and
the heterogeneity of soil vertical structure.
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