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Stem Carbon Availability
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A bimodal radial growth (RG) pattern, i.e., growth peaks in spring and autumn, was
repeatedly found in trees in the Mediterranean regions, where summer drought causes
reduction or cessation of cambial activity. In a dry inner Alpine valley of the Eastern
Alps (Tyrol, Austria, 750 m asl), Pinus sylvestris shows unimodal RG with onset and
cessation of cambial activity in early April and late June, respectively. A resumption
of cambial activity after intense summer rainfall was not observed in this region. In
a field experiment, we tested the hypothesis that early cessation of cambial activity
at this drought-prone site is an adaptation to limited water availability leading to an
early and irreversible switch of carbon (C) allocation to belowground. To accomplish
this, the C status of young P. sylvestris trees was manipulated by physical blockage of
phloem transport (girdling) 6 weeks after cessation of cambial cell division. Influence
of manipulated C availability on RG was recorded by stem dendrometers, which
were mounted above the girdling zone. In response to blockage of phloem flow,
resumption of cambial activity was detected above girdling after about 2 weeks.
Although the experimentally induced second growth surge lasted for the same period
as in spring (c. 2 months), the increment was more than twice as large due to doubling
of daily maximum RG rate. After girdling, wood anatomical traits above girdling no
longer showed any significant differences between earlywood and latewood tracheids
indicating pronounced effects of C availability on cell differentiation. Below girdling, no
reactivation of cambial activity occurred, but cell wall thickness of last formed latewood
cell was reduced due to lack of C supply after girdling. Intense RG resumption after
girdling indicates that cessation of cambial activity can be reversed by manipulating C
status of the stem. Hence, our girdling study yielded strong support for the hypothesis
that belowground organs exert high C sink strengths on the drought-prone study site.
Furthermore, this work highlights the need of in-depth experimental studies in order to
understand the interactions between endogenous and exogenous factors on cambial
activity and xylem cell differentiation more clearly.

Keywords: bimodal growth, cambial activity, carbon availability, drought, girdling, radial growth, Scots pine, wood
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INTRODUCTION

Drought stress is a common trigger of growth reduction or
premature cessation of cambial activity and cell differentiation
in trees (e.g., van der Werf et al., 2007; Camarero et al., 2010;
De Luis et al., 2011; Balducci et al., 2013), because cambial
activity and cell differentiation are highly responsive to water
availability (Sterck et al., 2008; Muller et al., 2011; Deslauriers
et al., 2016). In several Mediterranean tree species (Pinus spp.,
Juniperus thurifera, Quercus ilex, and Arbutus unedo), cambial
activity resumes, i.e., is reactivated in autumn if soil water
availability increases again after prolonged summer drought (De
Luis et al., 2007; Battipaglia et al., 2010; Camarero et al., 2010;
Gutiérrez et al., 2011; Pacheco et al., 2016; Campelo et al., 2018).
This bimodal pattern of cambial activity leads to the formation
of intra-annual density fluctuations (IADFs; e.g., Campelo et al.,
2007; Novak et al., 2013; Battipaglia et al., 2016; De Micco et al.,
2016; Pacheco et al., 2018). The formation of earlywood-like
tracheids with wide lumen and thin cell walls in latewood (also
called L-IADF; Campelo et al., 2013) reflects the ability of some
tree species to respond to favorable environmental conditions
at the end of the growing season. However, IADF formation is
not obligatorily linked to bimodal growth, because short-term
fluctuations in cambial activity and cell enlargement during the
growing period can also induce formation of IADFs in trees of
temperate climate zone (Wimmer et al., 2000; Rigling et al., 2002;
Vieira et al., 2009; Rozas et al., 2011).

Several dendroecological studies conducted at a drought-
prone inner Alpine site revealed that limited soil water availability
in spring and early summer constrains radial stem growth (RG)
in coniferous species (e.g., Rigling et al., 2002; Zweifel et al.,
2006; Schuster and Oberhuber, 2013). Analyses of intra-annual
dynamics of RG and wood formation by dendrometers and
microcoring, respectively, revealed that the maximum RG rate of
co-occurring conifers peaked early in the growing season in late
May through early June (Gruber et al., 2010; Oberhuber et al.,
2014), although higher precipitation in summer would provide
more favorable environmental conditions for tree growth. Gruber
et al. (2010) suggested that the early decrease in RG might be
due to an early shift of carbon (C) allocation to belowground
organs as an adaptation to ameliorate drought stress. This view
is corroborated by several authors who reported that (i) plant
growth is limited by competition between sinks rather than
directly by C resources (e.g., Körner, 2003; Simard et al., 2013;
Guillemot et al., 2017) and (ii) that the mycorrhiza-associated
root system is a strong sink for C in plants experiencing water
shortage during the growing period (Shipley and Meziane, 2002;
Brunner et al., 2015; Hagedorn et al., 2016; Rainer-Lethaus and
Oberhuber, 2018; Hartmann et al., 2020).

Wood formation is a highly C-demanding process (Koch,
2004; Simard et al., 2013; Cuny et al., 2015; Deslauriers
et al., 2016). Therefore, physical blockage of phloem transport
(girdling) allows evaluation of the influence of changes in tree
C status on RG (Maier et al., 2010; Maunoury-Danger et al.,
2010; De Schepper and Steppe, 2011; Rademacher et al., 2019).
Previously, we found that in potted Norway spruce (Picea abies)
saplings exposed to drought, cambial reactivation and intense

RG occurred above girdling (Oberhuber et al., 2017). However,
a field study determining RG response and effects on xylem
cell differentiation of drought-stressed Pinus sylvestris to phloem
blockage after cessation of RG is still lacking. Due to higher
sensitivity of growth processes compared to photosynthesis
to drought (Muller et al., 2011), carbohydrates accumulate
during periods of water shortage and C accumulation during
drought could modulate wood formation and growth dynamics
during resumption of cambial activity. By applying automatic
dendrometers, intra-annual dynamics of RG can be followed at
high-resolution pre- and post-girdling, i.e., during the regular
and induced growing period, respectively.

Aims of this study therefore were (i) to assess whether
phloem blockage after cessation of RG and shoot growth induces
reactivation of cambial activity in young P. sylvestris trees at
a xeric site in the field, (ii) to analyze differences in dynamics
(growth rate, duration, and intensity) of RG before and after
phloem blockage, and (iii) to compare wood anatomical traits
[cell lumen diameter (CLD), cell area (CA), and cell wall
thickness] between regular spring growth and the induced growth
phase after girdling. We hypothesized that cambial reactivation
after girdling occurs and due to increase in C availability above
girdling, induced RG in summer shows different kinetics, i.e.,
increase in duration, growth rate, and total increment, compared
with regular spring RG. Furthermore, we expected a crucial
role of higher C availability after phloem blockage on wood
anatomical traits, especially an increase in cell wall thickness.

MATERIALS AND METHODS

Study Site
The field study was conducted at a xeric site at 750 m asl in
a dry inner Alpine valley of the Eastern Alps in Austria (47◦
13′ 53′′ N, 10◦ 50′ 51′′ E). Based on >100 years of climate
records at Ötz (812 m asl, 5 km from the study area) mean
annual air temperature and total precipitation amount to 7.3◦C
and 724 mm, respectively (long-term means during 1911–2017).
According to the FAO classification system (FAO, 2006) soils
of the protorendzina type, i.e., rendzic and lithic leptosols, are
primarily developed. As a result of low soil depth and the coarse-
textured structure, soils have a low water holding capacity. In
this drought-prone environment, Scots pine (Pinus sylvestris
L.) dominates and forms poorly growing open stands (Erico-
Pinetum typicum, Ellenberg and Leuschner, 2010). We selected
a south-west facing steep slope (c. 30◦), where P. sylvestris
rejuvenates naturally under open canopy. In order to minimize
the impact on the protected forest area, we used young trees
for the girdling experiment instead of mature trees. Stem height
and diameter of selected trees (n = 7) amounted to 1.5 m and
2.9 cm, respectively. Age of trees at 30 cm stem height was
35± 5 years (Table 1).

Phloem Blockage
Girdling was applied to block phloem C transport from
aboveground to belowground sinks. Trees (n = 3) were girdled
after cessation of shoot and RG in mid-July 2019 (day of the
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TABLE 1 | Site description and characteristics of selected Pinus sylvestris trees (n = 7).

Site Aspect Slope (◦) CC (%) Soil type Humus type Soil depth
(cm)

Tree age1 (year)
mean ± SD

Stem height2 (m) SDM2,3 (cm)
mean ± SD

Xeric SW 30 33 Syrosem Xeromoder <10 35 ± 5 1.5 ± 0.3 2.9 ± 0.6

Mean values ± standard deviation (SD) are presented (CC, canopy coverage and SDM, stem diameter).
1Cambial age at height of dendrometers.
2Measured at start of dendrometer records in March 2019.
3Measured at height of dendrometers.

year (doy 199) at a stem height of 25 cm above the soil surface
by carefully detaching a 2–3-cm-wide band of bark including
periderm, living phloem, and cambium. Exposed wood was
treated with a fat-containing cream to prevent dehydration. At
the time of girdling, cambial cell division of trees has already
stopped for about 6 weeks (cf. Figure 2).

Dendrometer Records
Temperature compensated electronic diameter dendrometers
with resolutions of <3 µm (DD-S, Ecomatik, Munich, Germany)
were installed on trees (controls: n = 4; girdled trees: n = 3)
at 5–7 cm above girdling to record intra-annual dynamics of
RG. The temperature coefficient of the sensor was <0.2 µm/K
(unverified information of the producer). The dead outermost
loose layer of the bark (periderm) was slightly removed to
allow proper mounting of the dendrometer and to ensure close
contact with the stem. Data were recorded every 30 min with
analog data loggers (HOBO UX120-006M, ONSET, Bourne,
MA, United States).

Daily stem diameter variations (SDVs) were calculated by
averaging all daily measurements (48 values per day), i.e., one
value per day was extracted from the time series. The daily
mean approach yields time series of daily SDVs, which consist of
both water- and growth-induced diameter changes (Deslauriers
et al., 2007). It has to be considered that irreversible growth-
related diameter increments recorded by dendrometers include
formation of xylem, phloem, and outer bark (Plomion et al.,
2001). Time series of daily SDVs were set to zero on March 1,
and we modeled short-term variations in intra-annual RG with
the Gompertz function, which is commonly used to describe
RG dynamics in trees (Zeide, 1993; Rossi et al., 2003; De Micco
et al., 2019), by applying the Origin software package (OriginLab
Corporation, Northampton, MA, United States).

Microclimate Records
At the study site, environmental conditions [air temperature,
relative air humidity (RH), and daily precipitation] were
continuously monitored during the study period (March
through October 2019) at 2 m aboveground (ONSET, Pocasset,
MA, United States). In addition, three soil moisture sensors
(ThetaProbes Type ML2x, Delta-T, Cambridge, England) were
installed at 5–10 cm soil depth to record changes in volumetric
soil water content (SWC). In data loggers, measuring intervals
for all sensors were programmed to 30 min. All measurements
per day (i.e., 48 values) were used to calculate mean daily
air temperature and relative air humidity (RH). The equation
presented in Prenger and Ling (2000) was used to compute

vapor pressure deficit of the air (VPD). Climate records and
SWC during the study period are depicted in Figure 1. Student’s
t test was applied to detect significant differences among
climate and environmental variables during the regular (i.e.,
pre-girdling) and induced (i.e., post-girdling) growing period
(cf. Figure 2).

Wood Anatomy
Changes in wood anatomy (radial CLD; CA; and radial cell
wall thickness, CWT) in response to C manipulation were
analyzed at the end of the growing season. Stem cross-sections
were collected from all trees (controls and girdled trees) at
the position of dendrometers. In girdled trees additional cross-
sections were sampled 5 cm above and below the girdling
zone. The chosen distance to the girdling zone ensured that
influence of wound responses on wood formation was avoided.
CWT, CA, and CLD were measured in earlywood and latewood
on stem transverse sections of ∼20-µm thickness, which
were cut using a sliding microtome. To distinguish between
earlywood and latewood tracheids, the Mork’s index, i.e., the
ratio between the double CWT and CLD (both measured
in radial direction), was computed (Denne, 1988). In non-
girdled controls (n = 4 trees) and in girdled trees (n = 3
trees), anatomical features of tracheids were determined in
earlywood and latewood pre- and post-girdling. Additionally,
continuous records of wood anatomical parameters were
determined above and below girdling and in non-girdled controls
along five radial cell rows per tree, and mean values were
calculated. In these time series time of girdling was deduced
from intra-annual wood formation dynamics determined in
P. sylvestris within the study area (Gruber et al., 2010) and
abrupt alterations in anatomical traits. Because separation of
individual cell walls could not be unequivocally detected in all
samples, CWT of adjacent cells was recorded (double radial
CWT), and this value was then halved yielding radial CWT.
Cell anatomical parameters were measured by applying the
image analysis software PROGRES Gryphax (Version 2.0.0.68,
Jenoptik Optical Systems GmbH, Jena, Germany) and were
recorded throughout five earlywood and latewood cells along
five cell rows (i.e., n = 25 cells per sample), and mean
values and standard deviations were calculated. The proportion
of cell wall material was calculated as the ratio between
CLD and CWT. A decrease/increase in CLD:CWT indicates
an increase/decrease in wood density. Student’s dependent
sample t test was used to determine significant differences
among cell anatomical traits pre- and post-girdling and non-
girdled controls.

Frontiers in Plant Science | www.frontiersin.org 3 May 2021 | Volume 12 | Article 674438

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-674438 May 22, 2021 Time: 17:15 # 4

Oberhuber et al. Girdling Triggers Bimodal Radial Growth

RESULTS

At the start of the growing season in late March/early April, mean
daily air temperature and SWC reached 10◦C and >20 vol%,
respectively (Figures 1A,B). After frequent rainfalls in May, SWC
rose to >30 vol%. Only sporadic rainfall during June and July
caused SWC to drop to c. 10 vol%. Mean daily air temperature
and VPD reached highest values during late June (28◦C and
2.6 kPa, respectively; Figures 1B,C). Starting with rainfall events
in mid-July, SWC reached again >30 vol% in early September.
The observed abrupt drops in SWC following precipitation
events are caused by low water holding capacity of the shallow,
stony soils prevailing at the study plot (Table 1). Mean SWC
during the regular and induced RG period (see Figure 2)
amounted to about 21% (Table 2). Mean air temperature
during these periods was 9.8 ± 3.3◦C (regular RG period) and
16.5± 3.5◦C (induced RG period). Precipitation was 31% higher
during the induced RG period compared with the regular RG
period (Table 2). Other environmental variables recorded at the
study plot (SWC, VPD, and RH) were not significantly different
between RG periods.

Dendrometer traces and Gompertz growth models pre-
and post-girdling are depicted in Figure 2. Regular growth
period started end of March (doy 88), reached a maximum
in mid-April (doy 104), and ceased end of May (doy 148).
Girdling in mid-July (doy 199) of a subset of trees induced
a second growth surge after about 2 weeks (doy 213), which
exceeded regular RG in spring more than twofold (Figure 2 and
Table 3). During regular and induced RG, the inflection point
of modeled growth was reached about 2 weeks after growth
onset (Table 3). While growth duration amounted to about
2 months during both growing periods, growth intensity (i.e.,
increment) and growth rate (i.e., slope of modeled growth at
the inflection point) were quite different during regular and
induced RG period. These parameters more than doubled post-
girdling (Table 3).

Measurement of wood anatomical parameters above the
girdling zone revealed that after girdling CLD and CA
significantly decreased in earlywood and increased in latewood,
while CWT of tracheids developed after girdling significantly
increased in earlywood (Figures 3, 4). After girdling, the
ratio CLD:CWT decreased in earlywood (P = 0.019) and
increased in latewood (P = 0.009). Wood anatomical parameters
(CLD, CA, CWT, and CLD:CWT) were all significantly
different between earlywood and latewood tracheids pre-girdling
(P < 0.01), but not significantly different post-girdling (P > 0.05).
Continuous measurements of cell anatomy revealed that below
the girdling zone cambial activity did not resume after girdling
(Figures 5A–F) and last latewood tracheid showed striking
decrease in CWT (-52%) and slight increase in CLD leading
to decrease in wood density (Figure 5F). Above the girdling
zone CLD increased sharply after girdling (Figures 5G–I) and
remained at about 50% of regular earlywood-CLD except for the
last formed cells, which show decreasing CLD (Figure 5G). CWT
stayed constant after girdling, i.e., it remained at the level of
latewood-CWT again with the exception of last formed tracheids
showing a decrease in CWT (Figure 5H).

FIGURE 1 | Climate variables and soil water content recorded at the study
plot from March through October 2019. Daily precipitation and soil water
content (A), mean daily air temperature (B), and relative air humidity (RH) and
vapor pressure deficit of the air (VPD; C). Gray horizontal bars indicate regular
(pre-girdling) and induced (post-girdling) growing periods in April–May and
August–September, respectively (cf. Figure 2). Gray arrow in (A) indicates
time of girdling at doy 199.

DISCUSSION

Although frequently applied, girdling, i.e., removing surface
tissues including outer bark, living phloem, and cambium around
the stem, is a rather crude method to manipulate phloem
transport compared with less-destructive methods like phloem
compression or phloem chilling (Rademacher et al., 2019).
Tangential rows of traumatic resin ducts and callus tissue are
generally formed in conifers as a response to tissue damage
(Schweingruber, 2007). Wood anatomical analyses of stem cross
sections taken at the position of dendrometers, however, did
not reveal presence of overgrowing callus tissue or abnormal
formation of tangential rows of resin ducts after girdling,
because we avoided possible wound reactions by analyzing
growth response and wood anatomy 5–7 cm above the girdling
zone. It has also been found that the less-destructive phloem
chilling method leads to similar growth responses as girdling
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FIGURE 2 | Time series of mean daily dendrometer records. Regular growth
(pre-girdling, n = 7) and induced growth (post-girdling, n = 3) are given in gray
and black lines, respectively. Dendrometer record of the non-girdled subset of
trees (n = 4) is shown in dashed gray line (A), modeled intra-annual radial
growth by applying the Gompertz function in (B; for parameters, see Table 2),
and daily growth pre-girdling and post-girdling calculated from Gompertz
function in (C; GP, growth period). Arrow indicates time of girdling. Bars in (A)
depict standard errors of mean daily dendrometer records during the last
25 days.

(De Schepper and Steppe, 2011), indicating that the applied
method is a useful tool to infer growth response and changes
in xylem cell differentiation provided the zone of direct wound
response is avoided.

Unimodal Pattern of Stem Radial Growth
of Pinus sylvestris in Dry Inner Alpine
Valleys
In contrast to tree species from the Mediterranean regions
(e.g., Camarero et al., 2010; Battipaglia et al., 2016; Pacheco
et al., 2018), which use adequate water availability in spring
and autumn for tree growth, but show strongly reduced or no
growth during the dry and hot summer period, a comparable
bimodal growth pattern does not occur in P. sylvestris in dry
inner Alpine environments. Several authors (Gruber et al., 2010;
Oberhuber et al., 2014; Swidrak et al., 2014) reported a unimodal

growth pattern characterized by early peak of RG in mid-May to
early June in coniferous species (P. sylvestris, P. abies, and Larix
decidua) within the study area, although extended dry periods
frequently occur in spring and higher precipitation during
summer would provide more favorable environmental conditions
for tree growth. It was suggested that extreme environmental
conditions, i.e., drought stress and nutrient deficiency of the
predominantly dolomite bedrock cause an early shift in C
allocation from aboveground stem growth to belowground sinks
to ensure adequate resource acquisition (Oberhuber and Gruber,
2010; Swidrak et al., 2013). Dendrometer records of root RG
of mature P. sylvestris trees having a diameter of approximately
10 mm also revealed unimodal growth lasting from June through
early August (Supplementary Figure 1).

Cambial Reactivation Induced by
Girdling
Based on a previous experimental set-up using potted P. abies
saplings (Oberhuber et al., 2017), we expected that girdling
also triggers cambial reactivation of P. sylvestris under field
conditions. Results of this study confirmed our hypothesis and
revealed reactivation of cambial activity by phloem blockage
2 weeks after girdling at a drought-prone site. Girdling occurred
in mid-July (doy 199), i.e., 6 weeks after cessation of the regular
RG period excluding wall-thickening of latewood tracheids,
which at xeric sites lasts until September (Gruber et al.,
2010). Phloem blockage triggered cambial reactivation causing
a bimodal RG pattern, i.e., a spring peak (doy 104) was
followed by a secondary peak in summer (doy 228). While in
Mediterranean areas bimodal growth is initiated by increase
in water availability in autumn after intense summer drought,
we could show that reactivation of cambial activity can be
induced by an endogenous trigger, i.e., an increase in tree C
status. In accordance with other studies (e.g., Daudet et al.,
2005; De Schepper and Steppe, 2011; Oberhuber et al., 2017)
results strongly suggest that interruption of C transport in the
phloem to belowground sinks increased stem C availability above
girdling inducing reactivation of cambial activity. This reasoning
is corroborated by significant decrease in fine root mass of potted
P. abies saplings in response to blockage of phloem C transport
(Rainer-Lethaus and Oberhuber, 2018). Below girdling phloem
blockage caused cessation of cell differentiation (evident in the
form of reduced CWT of last latewood tracheids) and did not
lead to a resumption of cambial activity. Hence, C availability
in the stem, i.e., an endogenous factor is important for RG
to occur under extreme environmental conditions. Based on
findings of Smith and Stitt (2007) and Lastdrager et al. (2014), we
suggest that sugar signaling—induced by interruption of phloem
C transport—is involved in reactivation of cambial activity and
triggering of bimodal RG in P. sylvestris trees.

Plant hormones direct growth and development and also
responses to environmental stimuli (Davies, 2010). Accordingly,
tree-ring formation, i.e., cambial activity and xylem cell
differentiation, is induced and controlled by hormones (for
a review see Buttò et al., 2020). Specifically, cambial activity
is known to be highly responsive to the growth-promoting
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TABLE 2 | Climate variables and soil water content during the regular (i.e., pre-girdling) and induced (i.e., post-girdling) growing period (cf. Figure 2).

Growing period Precipitation (mm) SWC (vol.%) Air temp (◦C) VPD (kPa) RH (%)

Regular 124 21.1 ± 4.7a 9.8 ± 3.3a 0.457 ± 0.31a 71.6 ± 15.8a

Induced 162 21.1 ± 6.1a 16.5 ± 3.5b 0.460 ± 0.31a 82.2 ± 10.1a

Except for precipitation (total sum), mean values ± standard deviations are shown (SWC, soil water content; Air temp, mean air temperature; VPD, vapor pressure deficit;
and RH, relative air humidity). Different letters indicate significant differences (Student’s t test; P < 0.001) between growing periods.

TABLE 3 | Parameters of the Gompertz function for radial growth dynamics of trees during the regular (i.e., pre-girdling) and induced (i.e., post-girdling) growing period
(cf. Figure 2) and R2 of the model (A, upper asymptote; Ip, inflection point; κ, rate of change parameter; and Growthmax, maximum daily growth at inflection point).

Growing period A (mm) Ip (doy) Growthmax (µm/day) κ R2

Regular 1.37 ± 0.03 104 ± 1.1 32.9 0.069 ± 0.007 0.886

Induced 3.23 ± 0.03 228 ± 0.4 83.6 0.072 ± 0.003 0.987

Mean values ± standard deviations are shown.

FIGURE 3 | Radial cell lumen diameter (CLD), cell wall thickness (CWT), and
ratio of CLD:CWT of earlywood (EW) and latewood (LW) tracheids in
non-girdled controls, and above the girdling zone during the regular (i.e.,
pre-girdling) and induced growing period (i.e., post-girdling). Student’s t test
was applied to determine statistically significant differences of anatomical
parameters between non-girdled controls, and pre- and post-girdling.
Different letters indicate significant difference at P < 0.05.

hormone auxin [indole-3-acetic acid (IAA); Uggla et al., 1998;
Dünser and Kleine-Vehn, 2015; Bhalerao and Fischer, 2016] and
Uggla et al. (1996) found a steep radial concentration gradient
of IAA in Scots pine peaking in the cambium meristem. IAA
is transported in the mature phloem in a basipetal flux from
source tissues (leaf primordia and young leaves) to proximal
regions (Muday and DeLong, 2001; Hacke et al., 2017). Several
findings argue against the influence of accumulation of IAA
above girdling on cambial reactivation: (i) heating of the stem
can trigger cambial activity during dormancy (Oribe et al.,
2003; Gričar et al., 2006; Begum et al., 2010), (ii) high levels
of IAA are found in cambial tissues in the dormant period
(Sundberg et al., 1990; Eklund et al., 1998; Funada et al.,
2002), (iii) reduced responsiveness of cambial tissues to IAA
during activity-dormancy transition (Baba et al., 2011), and
(iv) sugar signaling can stimulate cambial cell division (e.g.,
Uggla et al., 2001; Lastdrager et al., 2014). The lag of about

FIGURE 4 | Cell area of earlywood (EW) and latewood (LW) tracheids in
non-girdled controls, and above the girdling zone during the regular (i.e.,
pre-girdling) and induced growing period (i.e., post-girdling). Student’s t test
was applied to determine statistically significant differences of anatomical
parameters between non-girdled controls and pre- and post-girdling. Different
letters indicate significant difference at P < 0.05.

2 weeks between girdling and onset of the induced RG period
above girdling might be due to an extensive drought period at
the time of girdling or as Oribe et al. (2003) suggested, that
newly formed phloem cells are necessary for xylem formation
to resume. The latter assumption is supported by results of
Swidrak et al. (2014), who reported that phloem formation
in P. sylvestris precedes xylem formation within the study
area by about 3 weeks. In general, girdling induced cambial
reactivation after regular spring growth was made possible
because at the time of girdling the cambial meristem was not
yet in endodormancy state (Lang et al., 1987; Chang et al.,
2021), which can only be released by external triggers, i.e.,
chilling, photoperiod, and temperature (e.g., Badeck et al., 2004;
Pallardy, 2008; Swidrak et al., 2011; Basler and Körner, 2014;
Begum et al., 2018).

Comparison of Regular vs. Induced
Radial Stem Growth
The increase of C availability above girdling strongly affected
RG rate and intensity (increase by 154 and 136%, respectively,
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FIGURE 5 | Change in wood anatomical parameters throughout growing period(s) in (A–C) non-girdled controls (n = 4) and (D–F) below and (G–I) above girdling
(n = 3). In (D–I), the regular (i.e., pre-girdling = preg) and induced growing period (i.e., post-girdling = postg) are separated by dotted lines. Data were normalized to
overall cell count of the individual tree in 2019. Mean values ± standard deviations are shown.

compared with regular RG), while RG duration remained quite
constant amounting to about 2 months (excluding duration of
cell wall thickening). Hence, more than a doubling of increment
in the induced compared with regular RG period resulted from
striking increase in RG rate. This finding is in accordance
with Rathgeber et al. (2011), who reported that the extent of
RG in silver fir (Abies alba) is more related to the rate of
cell production than to its duration. Hence, phloem blockage
of C transport to belowground organs provided a continuous
supply of carbohydrates to sustain increased rate of cambial cell
division and wood formation, processes that are considerable
energy sinks (Oribe et al., 2003; Koch, 2004; Muller et al.,
2011). Several authors (e.g., Simard et al., 2013; Delpierre et al.,
2015; Guillemot et al., 2017) also reported that tree growth
is limited by C competition between sinks rather than by
C resources. During the induced RG period, which extended
from August through September, C allocation was primarily
restricted to cambial activity and wood formation, because
within the study area shoot and needle growth of P. sylvestris
ceases in June and July, respectively (Swidrak et al., 2013), and

apical meristems remained in dormancy state after girdling.
Similarly, internal shifts of C allocation were found to affect
the second growth peak in Pinus pinaster, a species showing
a bimodal RG pattern (Garcia-Forner et al., 2019). It has to
be considered that water availability is the primary growth-
limiting environmental factor within the study area (Pichler
and Oberhuber, 2007; Oberhuber et al., 2011; Gruber et al.,
2012) and therefore increase in precipitation by c. 30% during
the induced compared with regular RG period might also be
involved in RG increase at the xeric study site. However, air
temperature was found to be inversely related to RG and stem
water deficit of P. sylvestris within the study area (Oberhuber
et al., 1998, 2015; Oberhuber, 2017). Therefore, strikingly higher
temperatures during the induced compared with regular RG
period (+6.7◦C) increased evapotranspiration, which probably
compensated the stimulating effect of higher precipitation on
RG for the most part. Lack of increase in SWC despite higher
precipitation is explained by increase in evapotranspiration
together with surface run-off on the steep slope during high
precipitation events in summer.
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Although maximum daily RG in conifers from cold
environments is related to photoperiodic growth constraint
to allow xylem differentiation to be completed before early
frosts occur (e.g., Rossi et al., 2006; Gruber et al., 2009),
this does not apply for P. sylvestris on drought-prone sites
(Swidrak et al., 2011). Because both RG periods are characterized
by (i) the same duration (about 2 months), and (ii) the
same length of time until the maximum daily RG rate was
reached (about 2 weeks), an endogenous control of cambial
activity and tracheid differentiation as an adaptation to
extreme environmental conditions (drought stress, nutrient
deficiency) can be assumed.

Wood Anatomical Changes After Phloem
Blockage
Wood formation is a highly C demanding process (Koch,
2004; Simard et al., 2013; Cuny et al., 2015) and low sink
priority of the cambium for C was frequently reported (Cannell
and Dewar, 1994; Ericsson et al., 1996; Muller et al., 2011;
Heinrich et al., 2015). Therefore, we expected a clear role of
C accumulation above girdling on wood anatomical traits after
interruption of basipetal C transport by girdling. This hypothesis
was confirmed by missing significant differences (p > 0.05)
of wood anatomical parameters (i.e., CLD, CA, CWT, and
CLD:CWT) between earlywood and latewood tracheids after
girdling, i.e., the characteristic wood anatomical pattern in
conifers (thin-walled earlywood cells with large lumina vs. thick-
walled latewood cells having narrow lumina) was not sustained
as a result of increased C supply. Significant decrease in CLD and
CA in earlywood after girdling can be explained by (i) decrease
in xylem sap flow frequently reported to be a consequence of
physically blocking phloem transport (e.g., Zwieniecki et al.,
2004; Lopez et al., 2015; Oberhuber et al., 2017) and leading
to decrease in turgor pressure and cell enlargement (Cabon
et al., 2020), and/or (ii) high C availability resulting in faster cell
wall deposition, which reduces cell enlargement time (Cartenì
et al., 2018). That cell enlargement time primarily explains
CLD in conifers was reported by Cuny et al. (2014). Increase
in osmotically active C compounds after phloem blockage are
required to produce adequate wall-yielding turgor pressure for
cell expansion (Pantin et al., 2013; Steppe et al., 2015) and explain
significant increase in CLD and CA and concomitant decrease
in wood density (increase of CLD:CWT ratio) of latewood
tracheids formed after girdling. Furthermore, significant increase
in CWT and wood density (decrease in CLD:CWT ratio) in
earlywood tracheids after girdling can also be regarded as an
outcome of C accumulation above the girdling zone, because C
availability is a constraint of cell wall formation (Cuny et al., 2015;
Deslauriers et al., 2016; Winkler and Oberhuber, 2017; Cartenì
et al., 2018).

Below the girdling zone cell differentiation ceased after
interruption of C transport by phloem blockage causing a
striking decrease in CWT in last few latewood tracheids
(resulting in increase of CLD). Although a decrease in CWT

in last latewood tracheids frequently occurs (Arzac et al., 2018;
Pacheco et al., 2018; Castagneri et al., 2020), a direct link
to decline in C availability by girdling can be deduced from
observations that (i) cell wall thickening in P. sylvestris lasts
until September within the study area (Gruber et al., 2010),
(ii) reduction in C supply due to insect defoliation similarly
reduces cell wall thickening in conifer species (e.g., Axelson
et al., 2014; Castagneri et al., 2020; Peters et al., 2020), and
(iii) cell wall thickening has a considerable C requirement (e.g.,
Cuny et al., 2015).

CONCLUSION

Our experimental study revealed that manipulation of stem C
status in young P. sylvestris trees by phloem blockage triggered
bimodal RG above the girdling zone and strongly affected xylem
cell differentiation. Results indicate that endogenous control over
C allocation, which is most likely hormonally mediated, is a key
driver of RG and tracheid differentiation in addition to exogenous
factors, i.e., water availability. It is reasonable to assume that a
high C sink-strength of belowground root growth and/or storage
organs develops early during the growing season as an adaptation
to extreme site conditions, i.e., frequent drought stress and low
nutrient availability of the substrate, prevailing within the study
area. We conclude that tree species showing higher plasticity in
RG than P. sylvestris will be at an advantage in the long term,
because more variable environmental conditions are predicted
under future climate change.
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