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Responsiveness to environmental conditions and developmental plasticity of root
systems are crucial determinants of plant fitness. These processes are interconnected
at a cellular level with cell wall properties and cell surface signaling, which involve
arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized
glycoproteins, often GPI-anchored, which participate in root functions at many levels.
They are involved in cell expansion and differentiation, regulation of root growth,
interactions with other organisms, and environmental response. Due to the complexity
of cell wall functional and regulatory networks, and despite the large amount of
experimental data, the exact molecular mechanisms of AGP-action are still largely
unknown. This dynamically evolving field of root biology is summarized in the
present review.
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INTRODUCTION

Plants are sessile organisms with cells surrounded by cell walls which mediate interactions with
surrounding environment. Communication across the cell wall and related cell surface signaling is
an essential, complex, and largely unexplored aspect of plant biology (Seifert and Blaukopf, 2010;
Duman et al., 2020; Rui and Dinneny, 2020). The deposition and remodeling of the cell wall enables
growth and development of plant organs, and cell-wall derived signals mediate responses to internal
and external factors (Voxeur and Hofte, 2016; Gigli-Bisceglia et al., 2020).

Arabinogalactan proteins (AGPs) are ubiquitous in the cell wall and in extracellular exudates
(Showalter, 2001). They take part in the regulatory and functional continuum of the plasmalemma,
cell wall, and environment (Ellis et al., 2010). AGPs occur in all plant organs (Clarke et al., 1979;
Fincher et al., 1983; Nguema-Ona et al., 2012; He et al., 2019) but molecular mechanisms of
their function remain rather puzzling. They are involved in the regulation of plant growth and
development, affect cell wall properties, structure, and architecture (Seifert, 2018, 2021; Tucker
et al., 2018), play a role in stem development and differentiation (Ito et al., 2005; MacMillan
et al., 2010; Liu et al., 2020), root growth and differentiation (Dolan et al., 1995; Bossy et al.,
2009; Nguema-Ona et al., 2012), sexual reproduction (Cheung et al., 1995; Cheung and Wu,
1999; Nguema-Ona et al., 2012; Pereira et al., 2015; Su and Higashiyama, 2018), embryogenesis
(Kreuger and van Holst, 1993; Yu and Zhao, 2012; Perez-Perez et al., 2018), fruit ripening (Leszczuk
et al., 2020a,b), response to abiotic and biotic stress factors (Mareri et al., 2018; Seifert, 2021), and
interactions with microorganisms (Nguema-Ona et al., 2013; Rashid, 2016).
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The root system, not covered by a protective cuticle,
is constantly interacting with the rhizosphere. It secretes
protective mucilage and other compounds, interchanges
signaling molecules with soil organisms, and adjusts root
development according to the heterogeneous distribution of
soil resources with an amazing degree of plasticity. Roots thus
present a unique system to evaluate different aspects of AGP
functions in the cell wall and extracellular spaces (Figure 1).
In roots, AGPs are important regulators of elongation and
differentiation of cells (Shi et al., 2003), including root hairs
(Kirchner et al., 2018; Borassi et al., 2020). They represent
important components of root exudates, aid in the formation
of a rhizosheath (Galloway et al., 2020), modulate response to
root pathogens and parasites (Gaspar et al., 2004; Bozbuga et al.,
2018), and are involved in the establishment of root symbioses
with beneficial microorganisms (Brewin, 2004). AGPs even
form major components of the glue-like adhesive nanoparticles
secreted by the roots of climbing plants (Huang et al., 2016).
In this review we summarize selected aspects of AGP action
related to root development and function (Figure 1), updating
previous excellent reviews (Nguema-Ona et al., 2012, 2013) and
covering recent advances in this field of root biology. Available
AGP mutants with phenotypic manifestations in roots are
summarized (Table 1).

ARABINOGALACTAN PROTEINS

Structural proteins are a minor but essential component of the
primary cell wall (Rui and Dinneny, 2020) and include proline-
rich proteins (PRPs), glycine-rich proteins (GRPs), extensins
(EXTs), and AGPs. AGPs are present in vascular plants,
bryophytes (Bartels et al., 2017; Johnson et al., 2017; Ma et al.,
2017; Classen et al., 2019) and green algae (Palacio-Lopez et al.,
2019; Přerovská et al., 2021). AGPs or AGP-like proteins have
also been detected in brown algae (Herve et al., 2016) and
cyanobacteria (Jackson et al., 2012) opening discussion on their
evolutionary origin (Knox, 2016).

Arabinogalactan proteins have the most extensive
glycosylation of Pro/Hyp-rich glycoproteins. Their carbohydrate
moiety forms 90 to 99% of their molecular mass, combining
galactose and arabinose as major sugars with fucose, rhamnose,
and glucuronic acid as minor sugars (Fincher et al., 1983; Ellis
et al., 2010; Showalter and Basu, 2016; Silva J. et al., 2020). AGPs
form a complex family (Showalter, 2001). Their classification
has been modified several times over the last decades. Most
recently they have been divided into several groups according to
their molecular structure: classical AGP, AG peptides, Lys-rich
AGPs, chimeric AGPs including FLAs (FASCICLIN-LIKE
AGPs), ENODLs (EARLY NODULIN-LIKE AGPs), XYLPs
(XYLOGEN-LIKE AGPs), other chimeric AGPs, and HAEs
(AGP-EXT hybrids) (Showalter, 2001; Pereira et al., 2015; Mareri
et al., 2018; He et al., 2019; Silva J. et al., 2020). Classical AGPs are
characterized by the presence of an N-terminal signal sequence,
which targets the protein to the endoplasmic reticulum (ER) and
secretory pathway, a middle PAST-rich domain (rich in Pro, Ala,
Ser, and Thr), and a C-terminal sequence, which is cleaved during

the establishment of the GPI (glycosylphosphatidylinositol)
anchor in the ER (Schultz et al., 1998). AG-peptides are short
classical AGPs with only 10–15 amino acids. Fasciclin-like (FLA)
AGPs are also similar to classical AGPs, but possess one or two
fasciclin-like domains (FAS) in their protein core (He et al.,
2019). Lys-rich AGPs contain a Lys-rich domain between PAST
domain and C-terminus, ENODLs contain plastocyanin-like
domains, XYLPs contain non-specific lipid transfer protein
domains, and HAEs combine modules characteristic for AGPs
and EXTs. For further details of classification see recent reviews
(Ma et al., 2017; Silva J. et al., 2020).

Proposed mechanisms of AGP functions vary among groups
or may be combined within a single protein. Crosslinking of
glycoproteins, such as EXTs and AGPs, by cell wall peroxidases
might reinforce the cell wall (Bradley et al., 1992; Kjellbom et al.,
1997). AGPs are covalently linked to pectins or hemicelluloses
(Immerzeel et al., 2006; Tan et al., 2013) and their action as
“pectin plasticizers” was hypothesized (Lamport et al., 2006;
Corral-Martinez et al., 2019). Another putative mechanism is
an enzymatic release of mobile oligosaccharides from AGP
glycan side chains that may act as signaling molecules possibly
recognized by plasma membrane receptors (Showalter, 2001;
Van Hengel and Roberts, 2002; Zagorchev et al., 2014; Silva
J. et al., 2020). In spite of studies linking activity of plant
chitinases with AGPs action in developmental processes (van
Hengel et al., 2001; Dos Santos et al., 2006; Zielinski et al.,
2021), this mechanism needs to be proven and membrane
receptors recognizing AGP-borne oligosaccharide fragments
are not yet characterized. AGPs crosslinked with other cell-
wall polysaccharides, especially pectins, can also modulate
the plasma membrane-cell wall continuum and cell to cell
adhesion (Schultz et al., 1998; Showalter, 2001). FLAs can be
involved in crosslinking and cell wall adhesion through the
interactions of their FLA domains in the protein core – a
mechanism proposed based on their similarity with animal
fasciclins and their homophilic interactions, which influence
developmental processes (Snow et al., 1989; Elkins et al.,
1990). The crosslinking with pectins through PAC (Proline-
rich Arabinogalactan protein and Conserved Cysteines) domain
is another putative mechanism. This type of interaction was
documented for AtAGP31 (Hijazi et al., 2014). The protein
even interacted with itself through PAC domain in vitro
(Hijazi et al., 2014).

Arabinogalactan proteins are often attached to the outer
side of the plasma membrane by a GPI-anchor. GPI-anchored
proteins act as signal transductors that may enable the targeting
of partner receptor-like kinases or modulate ligand recognition
specificity as co-receptors (Yeats et al., 2018; Zhou, 2019).
A proposed function of AGPs may be related to the cleavage
of GPI-anchors, which may generate intracellular messengers or
extracellular signals to neighboring cells (Schultz et al., 1998;
Showalter, 2001). However, this remains to be conclusively
proven. The cleavage of the anchor may also release the plasma
membrane from the cell wall matrix, influencing membrane
dynamics, including the trafficking of membrane receptors
between the plasmalemma and inner compartments (Seifert,
2020). AGPs might act as a cargo linkage/receptor during the
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FIGURE 1 | Schematic summary of the involvement of arabinogalactan proteins (AGPs) in root processes. (1–4) AGPs modulate cell wall properties and regulate
developmental events in roots: (1) cell division, cell expansion and cell wall deposition (Shi et al., 2003; Yang et al., 2007; Zhang et al., 2011; Seifert, 2018, 2021;
Tucker et al., 2018), (2) trichoblast definition and root hair growth (Šamaj et al., 1999; Lin et al., 2011; Marzec et al., 2015; Kirchner et al., 2018; Borassi et al., 2020),
(3) xylem differentiation (Dolan et al., 1995; Bossy et al., 2009), and (4) early events of lateral root development (Yang et al., 2007; Johnson et al., 2011; Zhang et al.,
2011). (5–12) AGPs are components of root exudates and cell walls of root cap cells and root-associated, cap-derived cells (border cells and border-like cells) and
participate in responses to biotic and abiotic environmental factors: (5–6) help to protect roots against abiotic stress (e.g., drought, toxicity) and microbial pathogens
(Cannesan et al., 2012; Koroney et al., 2016; Marquez et al., 2018; Driouich et al., 2019; Galloway et al., 2020), (7–10) participate in establishment of mutualistic
interaction with N-fixing microorganisms (Berry et al., 2002; Brewin, 2004; Brewin et al., 2008; Tsyganova et al., 2009, 2019; Nguema-Ona et al., 2013), arbuscular
fungi (Gollotte et al., 1995; Balestrini and Lanfranco, 2006; Schultz and Harrison, 2008) and beneficial endophytes (Basińska-Barczak et al., 2020; Nivedita et al.,
2020), and (11–12) affect root susceptibility to parasites (Beneventi et al., 2013; Bozbuga et al., 2018).
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TABLE 1 | Mutants with modulated expression of AGP genes showing phenotypic manifestations in root system.

Gene, locus
identifier

Species Mutant Gene modulation Phenotypic manifestations in root
system

Important effects in other plant
organs

AGP mutants with observed root phenotypes

AtFLA1,
At5g55730

A. thaliana fla1 Knock-out T-DNA fla1:higher number of lateral roots,
longer primary roots, altered pericycle
cell division on callus inducing medium
(Johnson et al., 2011)

fla1:reduced shoot regeneration
from root explants in vitro, no shoot
phenotype under normal growth
conditions (Johnson et al., 2011)

AtFLA3,
At2g24450

A. thaliana fla3 Knock-down (RNAi) fla3:no root phenotype observed (Li
et al., 2010)

fla3:shorter siliques, less seeds,
abnormal non-viable pollen grains
(Li et al., 2010)

FLA3-ox Overexpression FLA3-ox: enhanced primary root
growth, formation of abnormal root cap
cells (Li et al., 2010)

FLA3-ox: larger leaves, reduced
female fertility, very short siliques,
less seeds (Li et al., 2010)

SOS5/AtFLA4,
At3g46550

A. thaliana sos5/atfla4 EMS mutag. sos5/atfla4: defective cell expansion,
reduced root growth under salinity,
altered cell wall structure (Shi et al.,
2003), recovered by external ABA
(Seifert et al., 2014; Xue and Seifert,
2015)

sos5/atfla4: slightly larger leaves,
longer petioles, shorter siliques (Shi
et al., 2003)

AtAGP8,
At2g45470

A. thaliana agp8 Knock-out (T-DNA) agp8: increased susceptibility to
root-knot nematodes (Bozbuga et al.,
2018)

agp8: not analyzed

AtAGP14,
At5g56540

A. thaliana agp14 Knock-out (T-DNA) agp14: longer root hairs in control and
low-Pi conditions (Lin et al., 2011)

agp14:not analyzed

AtAGP15,
At5g11740

A. thaliana agp15 Knock-out (T-DNA) agp15: contiguous root hair formation
milder then atagp21 (Borassi et al.,
2020)

agp15: not analyzed

AtAGP17,
At2g23130

A. thaliana rat1/agp17 Knock-down (T-DNA) rat1/agp17: roots resistant to
Agrobacterium transformation (Nam
et al., 1999; Gaspar et al., 2004)

rat1/agp17: not analyzed

AtAGP18,
At4g37450,

A. thaliana agp18 Knock-down (RNAi) agp18: no root phenotype observed
(Acosta-García and Vielle-Calzada,
2004)

agp18: higher seed abortion
(Acosta-García and Vielle-Calzada,
2004)

AGP18-ox Overexpression AGP18-ox: shorter primary roots, lower
number of lateral roots (Zhang et al.,
2011)

AGP18-ox: abnormal survival of
megaspores (Demesa-Arevalo and
Vielle-Calzada, 2013), smaller
rosettes with multiple branches,
less viable seeds, short siliques
(Zhang et al., 2011)

AtAGP19,
At1g68725

A. thaliana agp19 Knock-out (T-DNA) agp19: reduced lateral root number,
smaller vascular cylinder of primary root
(Yang et al., 2007; Zhang et al., 2011)

agp19: reduced cell division and
expansion in shoot, shorter siliques,
less seeds (Yang et al., 2007)

AtAGP21,
At1g55330

A. thaliana agp21 Knock-out (T-DNA) agp21: contiguous root hair formation
(Borassi et al., 2020)

agp21: not analyzed

AtAGP30,
At2g33790

A. thaliana agp30 Transposon insertion agp30: inhibited initiation of
adventitious roots from a callus culture,
faster germination, lower sensitivity to
external ABA (Van Hengel and Roberts,
2003)

agp30: not analyzed

AGP30-ox Overexpression AGP30-ox: not analyzed AGP30-ox: inhibited shoot
development (Van Hengel and
Roberts, 2003)

BcFLA1 Brassica carinata bcfla1 Knock-down (CRISPR) bcfla1: reduced root-hair length in
Pi-deficient conditions (Kirchner et al.,
2018)

bcfla1: not analyzed

EMS-mutag, selected from ethane-methyl-sulfonate mutagenized population; HSR, high sugar response; MUR, murus; RAT, resistant to agrobacterium transformation;
SOS, Salt Overly Sensitive; T-DNA, T-DNA insertion.
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endocytosis of extracellular material (Wang et al., 2019). The
function of AGPs is likely related to the general adhesive
properties of their peripheral carbohydrate moieties, which
are Ca2+ and pH-dependent (Tan et al., 2018). AGPs are
putative calcium capacitors (Lamport and Varnai, 2013; Lopez-
Hernandez et al., 2020), which bind Ca2+ in a reversible
and pH-dependent manner and thus enable Ca2+ oscillations
and signal transduction (Lamport and Varnai, 2013; Lamport
et al., 2018). Arabidopsis thaliana mutants with compromised
glucuronidation of arabinogalactans and AGPs have reduced
Ca2+-binding capacity, disrupted calcium wave propagation in
roots, and show serious growth defects (Lopez-Hernandez et al.,
2020). The complexity of putative functions and available study
tools still did not provide consistent insight into physiological
aspects of this protein family.

AGPS IN PLANT ROOTS

Arabinogalactan proteins are abundant throughout the plant
body, including the roots. Su and Higashiyama (2018)
summarized expression data for 130 of 151 AtAGP genes
(including all subgroups; classical AGPs, AG peptides, FLA,
XYPL, PAG, etc.) and many of them were expressed in roots.
In Populus trichocarpa, 18 of 35 identified PtrFLA genes were
analyzed by qRT-PCR and all of them were expressed in roots
(Zang et al., 2015). In Triticum aestivum, all 34 identified TaFLA
genes were expressed mostly in seeds and roots (Faik et al., 2006).
In Oryza sativa, 10 of the 69 identified OsAGPs were abundantly
expressed in roots (Ma and Zhao, 2010). AGP epitopes, localized
via an immuno-histochemical approach, appeared differentially
in various root tissues: pericycle sectors according to vascular
tissue context (Knox et al., 1989; Casero et al., 1998), developing
vascular tissues, trichoblasts, atrichoblasts, growing root hairs,
root caps, and border cells, for review see Showalter (2001) and
Nguema-Ona et al. (2012).

Early experiments with β-Glc-Yariv reagent, which interacts
with AGPs, precipitates them from solution and disrupts their
activity (Yariv et al., 1967; McCartney et al., 2003), indicated a
significant role for AGPs in root growth. The β-Glc-Y-enriched
medium strongly reduced growth of both the root and the shoot,
but the compound itself accumulated only in root. Shoot growth
inhibition thus seems to be a secondary effect of the affected root
system (Willats and Knox, 1996). The impaired cell elongation
of the cortical cells and the bulging of the rhizodermal cells
within the elongation and differentiation zones are the primary
effects of the treatment (Willats and Knox, 1996; Ding and Zhu,
1997). The ability of β-Glc-Yariv to trigger cell bulging and
disorganization of cortical microtubules in roots of A. thaliana
was later confirmed by Nguema-Ona et al. (2007). Although
not specific for a particular AGP, β-Glc-Yariv highlighted the
importance of AGPs in root growth and cell differentiation.

A more focused classification of functional mechanisms
comes from the study of particular mutants. Disturbances of
polysaccharide metabolism and AGP carbohydrate moieties were
associated with reduced primary root growth in reb1/rhd1
(root epidermal bulger 1/root hair defective 1), a galactose

biosynthesis mutant of A. thaliana (see below) (Baskin et al.,
1992; Nguema-Ona et al., 2006). Its phenotype can be suppressed
by supplementing growth media with 10 mM galactose, which
recovered root cell expansion and anisotropic growth of control
(Nguema-Ona et al., 2006). Other evidence supporting the
role of AGPs and their sugar moieties in root elongation
came from the mur1 (murus 1) mutant of A. thaliana with
reduced fucosylation (see below), which induces a significant
reduction of root elongation, and more interestingly, earlier
and more frequent lateral root development (Van Hengel and
Roberts, 2002). Developing primordia of mur1 do not label for
fucose-containing epitopes (Freshour et al., 2003). Unfortunately,
neither of those experiment identified affected phase of lateral
root development.

The protein SOS5/AtFLA4 (SALT OVERLY SENSITIVE
5/FLA ARABINOGALACTAN PROTEIN 4) is one of the best
characterized AGP members. A. thaliana sos5/fla4 mutant, with
point mutation in the FAS domain of AtFLA4, displays reduced
root growth under high salinity. This phenotype is caused by
defected cell expansion (for more details see below) (Shi et al.,
2003) and can be suppressed by external ABA application (Seifert
et al., 2014). Another non-classical AGP influencing root growth
and development is AtAGP30, which is not anchored by GPI
into plasma membrane. The atagp30 mutant of A. thaliana
fails to initiate adventitious roots from a callus culture, but
growth of already established roots, lateral roots and root hairs
are apparently unaffected (Van Hengel and Roberts, 2003; Van
Hengel et al., 2004). AtAGP30 transcription starts in the primary
root with germination, occurs mostly in the root tip and decreases
as tissue differentiate (Van Hengel and Roberts, 2003; Van
Hengel et al., 2004). Interestingly, its ectopic overexpression is
detrimental for shoot development and stable overexpression
transformants are not viable (Van Hengel and Roberts, 2003).
A recent study linked AtAGP30 with restriction of cadmium (Cd)
entrance and root tip tolerance to this stressor (Jing et al., 2019).
It seems that the ability to maintain AtAGP30 expression under
Cd stress is proportional to the level of Cd tolerance (Jing et al.,
2019). Unfortunately, it is a pure speculation whether for example
Cd retention in the cell wall or membrane protection due to
AtAGP30 presence is involved.

AGP presence during lateral root development was indicated
by positive antibody labeling in e.g., Musa spp. (Wu et al.,
2017) or Solanum lycopersicum (Sala et al., 2017). However,
there are not many reports connecting AGPs with lateral root
development. Mutant atfla1 of A. thaliana produces a higher
number of lateral roots compared to the wild type, which suggests
the role of AtFLA1 in early events of lateral root development
(Johnson et al., 2011). The phase of lateral root primordia
development (initiation, development and outgrowth) which is
affected in atfla1 and can cause the observed phenotype has not
been defined. However, peculiar differences in pericycle division
of atfla1 on callus inducing medium hint at initiation and/or
starting divisions. AtFLA1 expression is not root-specific but
was detected in the elongation zone of primary roots, and in
the meristem and vasculature of lateral roots (Johnson et al.,
2011). Cell division as well as cell expansion were affected also
in atagp19 mutant (Yang et al., 2007; Zhang et al., 2011) resulting
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in plants with fewer lateral roots, and a smaller vascular cylinder
of the primary root due to the lower number of procambial
cells. Unfortunately, this is mentioned without any details (Yang
et al., 2007), only later commented by Zhang et al. (2011).
AtAGP19 along with AtAGP17 and AtAGP18 are members of a
subfamily of lysine-rich classical AGPs. AGP19 is abundant in the
central cylinder of roots (Yang et al., 2007, 2011). Interestingly,
decreasing the arabinogalactosylation of AGPs reduces primary
root growth (Gille et al., 2013), but induces longer lateral roots
in A. thaliana (Ogawa-Ohnishi and Matsubayashi, 2015). It is
possible that altered carbohydrate side chains of AGPs modify
their ability to crosslink in muro resulting in changes to cell
wall mechanical properties that manifests during cell expansion
and organ growth.

Several other AGPs are linked with root growth. AtFLA3 is
barely expressed in the mature roots of wild-type A. thaliana, but
its ectopic overexpression stimulates primary root growth and
triggers the formation of abnormal root cap cells (Li et al., 2010).
In contrast, ectopic overexpression of AtAGP18 significantly
inhibits root growth (Zhang et al., 2011). AtAGP18 regulates
megaspore development (Demesa-Arevalo and Vielle-Calzada,
2013) but it is expressed also in roots, mostly in vascular tissues
(Yang and Showalter, 2007), and its expression is under the
control of ABA (Zhang et al., 2011). The AtAGP18-RNAi silenced
lines have a high rate of seed abortion. Root growth phenotype
was not observed in the same study but it was not analyzed
in details (Acosta-García and Vielle-Calzada, 2004). AtAGP18
would therefore be an interesting candidate for future root-
focused studies.

ROOT HAIRS

Several pieces of evidence implicate some AGPs in the
regulation of root hair initiation and growth. Aberrant root-
hair development in atagp21 is connected with contiguous
root hair formation and high root hair density (Borassi et al.,
2020). AtAGP21 is a part of the brassinosteroid regulatory
circuits upstream of GL2 (GLABRA2), RHD6 (ROOT HAIR
DEFECTIVE 6) and other downstream transcription factors
determining the development of epidermal cells into root
hairs. AtAGP21 itself is positively regulated by the BZR1
transcription factor and acts as a suppressor of GL2 (Borassi
et al., 2020). A root-hair phenotype similar to atagp21 also
occurs in other A. thaliana mutants with altered AGP content,
such as O-glycosylation, fucosylation, or arabinosylation of
AGPs, e.g., atagp15, hpgt (Ogawa-Ohnishi and Matsubayashi,
2015; Borassi et al., 2020). The hpgt1-1 hpgt2-1 hpgt3-1 triple-
mutant is defective in O-glycosylation of AGPs due to the
disruption of hydroxyproline galactosyltransferase 1–3 and forms
longer and more dense root hairs compared to wild-type plants
(Ogawa-Ohnishi and Matsubayashi, 2015). O-glycosylation of
AtAGP21 is essential for its function, particularly secretion and
cellular targeting (Borassi et al., 2020). Contiguous root hair
development can also be triggered by β-Glc-Y (α-Man-Y has
no effect) crosslinking AGPs and limiting their action in the
cell wall, providing additional evidence for the role of AGPs

in determining rhizodermal-cell fate in A. thaliana (Borassi
et al., 2020). Another piece of evidence linking AGPs and
root hair growth is a long-hair phenotype of agp14 mutant of
A. thaliana (Lin et al., 2011) and a short-hair phenotype of
higher-order glcat14 (β-glucuronosyl-transferases 14A-C) mutants
of A. thaliana with increased AGP contents (Zhang et al., 2020).

The role of AGPs in the determination of rhizodermal-cell
fate is further supported by studies on other plant species. In
Zea mays and Hordeum vulgare, specific AGP epitopes were
detected on the surface of trichoblasts and root hairs, which
differed from those of atrichoblasts (Šamaj et al., 1999; Marzec
et al., 2015). Moreover, epitopes detected by LM2, LM14, and
MAC207 antibodies, which are normally present at the surface
of trichoblasts in H. vulgare, were absent in the rhizodermis
of barley root-hairless mutant 1 (Marzec et al., 2015). In
Brassica carinata, downregulation of BcFLA1, encoding a FLA
AGP, via CRISPR/Cas9 significantly reduced root-hair length in
phosphate-deficient conditions (Kirchner et al., 2018). BcFLA1
expression was enhanced by Pi deficiency, specifically in the low-
P efficient cultivar of B. carinata. This cultivar is efficient in
Pi uptake and increases the length of root hairs in Pi-deficient
conditions considerably (Kirchner et al., 2018).

Interestingly, extensin related modifications of
O-glycosylation did affect the root hair growth but not cell
fate (Velasquez et al., 2015). Proline-rich extensin-like receptor
kinase 13 (PERK13) was shown to provide negative control of
root hair growth. A. thaliana mutant rhs10/perk13 (root hair
specific 10/proline-rich extensin-like receptor kinase 13) has longer
root hairs. PERK13 has AGP motifs in its extracellular domain,
which may be important for its regulatory function (Hwang
et al., 2016). It is proposed that AGP motifs sense the cell-wall
integrity, triggering down-stream signal transduction (Cho,
2016). These results taken together indicate that AGPs might
affect root hair formation via sensing or modification of cell wall
properties, and can participate in signaling pathways controlling
root-hair cell fate by an interaction with other proteins or cell
wall components, e.g., receptor-like kinases or pectins.

ROOT CELL EXPANSION,
DIFFERENTIATION, AND CELL-WALL
PROPERTIES

As for other plant organs, the growth of roots is determined by
cell division, elongation, and differentiation, which are tightly
connected with cell wall characteristics. Cell wall composition
and mechanical properties are developmentally regulated and
respond to environmental factors (Cosgrove, 2005; Caffall and
Mohnen, 2009; Somssich et al., 2016; Rui and Dinneny, 2020).
Localization of GPI-anchored AGPs on the outer surface of
the plasma membrane and their linkage to other cell wall
components make them putative linkers of protoplast and the
cell wall. β-D-glucosyl units of “active Yariv” reagent (Yariv
et al., 1967) bind and precipitate AGPs, disrupting their
action. Such treatment, similar to anti-AGP antibodies, induces
rearrangement of microtubule cortical arrays in rhizodermal cells
within minutes (Nguema-Ona et al., 2007) and stimulates an
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intense swelling of epidermal cells in the elongation zone in the
longer term in A. thaliana (Ding and Zhu, 1997; Nguema-Ona
et al., 2007). The impaired cell elongation was also observed in cell
suspension cultures of Daucus carota (Willats and Knox, 1996).

A similar effect of AGPs on cell volume expansion is
induced if the AGP glycosylation machinery is affected.
Mutations in AGP-specific O-galactosyltransferases lead to
defects in cell expansion. The galt2 galt5 (hydroxyproline-O-
galactosyltransferase 2,5) mutant of A. thaliana has two disrupted
AGP-specific galactosyltransferases, which are important for
binding the galactose to the protein backbone and initializing
O-glycosylation (Basu et al., 2013, 2015). Together with the lower
glycosylation status of AGPs, the mutant displays reduced seed-
coat cellulose content, swollen root-tip cells, and other root
growth defects, e.g., inhibition of root growth, reduction of root
hair length and density (Basu et al., 2015). Shorter roots were
observed also in the quintuple mutant galt2 galt3 galt4 galt5
galt6, but surprisingly this mutant formed longer root hairs
compared to wild type (Zhang et al., 2021). All these observations
highlight the importance of O-glycosylation in cell growth and
cell wall deposition (Basu et al., 2015; Showalter and Basu,
2016). In addition, the disruption of two Golgi-localized exo-
β-1,3-galactosidases of glycoside hydroxylase family 43 (GH3)
in the gh43 mutant of A. thaliana increases the content of
cell-wall bound AGPs and triggers serious defects in root cell
expansion and adhesion, e.g., root epidermal cell swelling and
loss of anisotropic growth (Nibbering et al., 2020). These exo-
β-1,3-galactosidases are putatively involved in the processing
of AGPs during their maturation in the Golgi, regulating the
length of the β-1,3-galactan backbone of AGPs, and altering
the affinity of mature AGPs to other cell wall components
(Nibbering et al., 2020).

The connection between AGP glycosylation and regulation of
root cell expansion and cell wall properties is highlighted in other
studies, where galactosylation and fucosylation are modified,
affecting AGPs along with pectins and hemicelluloses. The
A. thaliana mutant mur1 with a disrupted GDP-D-mannose-4,6-
dehydratase enzyme of the GDP-L-fucose biosynthetic pathway
contains less L-fucose in cell walls (Reiter et al., 1993; Bonin
et al., 1997). L-fucose is a minor component of AGPs (Silva J.
et al., 2020) as well as xyloglucans (Somssich et al., 2016). The L-
fucose deficient mutant shows reduced root elongation by more
than half compared to the wild type, and swollen root tips. Root
growth inhibition is caused by a significant reduction in cell
elongation, while the activity of root apical meristem is normal
(Bonin et al., 1997; Van Hengel and Roberts, 2002). Alteration
of root cell anisotropic growth occurs also in the reb1/rhd1
mutant (Baskin et al., 1992). Reduced root elongation and bulging
trichoblasts observed in this mutant (Baskin et al., 1992; Andème-
Onzighi et al., 2002) seem related to altered galactosylation of
cell-wall xyloglucans (Nguema-Ona et al., 2006). The mutant has
defective UDP D-galactose 4-epimerase enzyme (Seifert et al.,
2002) and makes structurally different cell wall xyloglucans,
which are devoid of galactose and fucose residues (Nguema-
Ona et al., 2006). There is also an obvious link to AGPs and
cytoskeletal structures, as the trichoblasts of reb1/rhd1 have
disorganized microtubules and lack AGPs detectable by JIM14

and LM2 antibodies (Andème-Onzighi et al., 2002). However, the
functional link is currently not known.

Mutant dim/dwf1 (diminuto/dwarf1) of A. thaliana in the
brassinosteroid biosynthesis gene DIM/DWF1 (Klahre et al.,
1998) is strongly affected in cell elongation and has reduced
cellulose and lignin content (Hossain et al., 2012). The dim/dwf1
phenotype correlates with the amount of AGPs in the tissue,
highlighting the role of AGPs in cell expansion (Takahashi
et al., 1995) and implicating them in an executive part of the
brassinosteroid signaling circuit (Jia et al., 2020).

Stress-Enhanced Developmental
Response
Arabinogalactan protein-related growth defects often manifest
strongly in the presence of high salinity or other stress factors,
and are linked to cell wall integrity, maintenance, and adjustment
of mechanical properties (Rui and Dinneny, 2020). Synthesis
of L-arabinose, which is incorporated into AGPs, EXTs and
some cell wall polysaccharides, depend on the MUR4/HSR8
(MURUS4/HIGH SUGAR RESPONSE 8) Golgi-localized UDP-
D-xylose 4-epimerase. Plants of mur4/hsr8 show a significant
reduction of L-arabinose (Reiter et al., 1997; Burget and Reiter,
1999; Burget et al., 2003) and a strong short-root phenotype
under salinity, but not in either standard or osmotic stress
(mannitol treatment) growth conditions (Zhao et al., 2019).
Analysis of mur4/hsr8 mutant indicates defective cell wall
structure but not signaling. This phenotype results in decreased
root elongation and also cell-cell adhesion, resulting in epidermal
discontinuity and bursting of cells (Zhao et al., 2019). Described
defects were rescued by exogenous arabinose, but not glucose
or xylose, confirming UDP-Ara biosynthesis consequence and
affecting the level of AGP staining in roots (Zhao et al., 2019).
Other enzymes affecting cell-wall AGPs are FUT4 and FUT6
(α-1,2-fucosyltransferases 4, 6), which are responsible for their
fucosylation. Double mutant of A. thaliana fut4 fut6 has lower
content of fucose and xylose in AGP extracts and short-root
phenotype under conditions of salt stress (Tryfona et al., 2014).

The role of AGPs as pectin plasticizers and regulators of cell-
wall extensibility under salt stress was proposed rather early
(Zhu et al., 1993; Lamport et al., 2006; Olmos et al., 2017).
Interestingly, AGPs isolated from roots (and other organs) of the
seagrass Zostera marina reportedly had specific characteristics,
distinguishing them from the AGPs of land plants (high degree
of branching, high content of terminal α-L-arabinose), which
might enhance the salt tolerance of this marine species (Pfeifer
et al., 2020). In Urochloa decumbens, AGP epitopes accumulated
in root cell walls of after aluminum treatment to maintain cell
wall flexibility and increase the high-aluminum tolerance of
this tropical grass (Silva T.F. et al., 2020). A recently proposed
alternative model of AGP action under salinity stress is their
function as carriers, binding Na+ ions and transferring them into
the vacuole via vesicle trafficking (Olmos et al., 2017).

One of the best characterized AGPs in the context of salinity is
SOS5/FLA4. The salt-sensitive mutant sos5/fla4 of A. thaliana has
swollen root-tip cells due to abnormal cell expansion occurring
under salt stress (Shi et al., 2003). Cell walls of sos5/fla4 have
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an altered structure. The pectin-rich middle lamella, essential
for intercellular adhesion, is reduced and primary cell walls
are thinner and less organized compared to the wild type
(Shi et al., 2003). Interestingly, the hypertensive sos5/fla4 root
phenotype under salt stress is milder in ABA-oversensitive
mutants and suppressible by exogenous application of ABA
(Seifert et al., 2014; Acet and Kadioglu, 2020). The protein might
act synergistically with ABA as a putative modulator of ABA
signaling upstream of cell wall biosynthesis (Seifert et al., 2014)
and independent of the RBOHD and RBOHF (RESPIRATORY
BURST OXIDASE HOMOLOG D,F) NADH oxidases (Xue and
Seifert, 2015) of the ABA-signaling pathway controlling root
growth (Jiao et al., 2013).

Interaction between ABA and SOS5/FLA4 modulates the
content of H2O2 under salt stress (Acet and Kadioglu, 2020),
indicating a more significant signaling rather than structural role
for SOS5/FLA4. This is consistent with an identical phenotype
reported previously for two AGP-specific galactosyltransferases
(GALT2 and GALT5), fasciclin-like AGP (SOS5/FLA4) and two
leucine rich repeat receptor kinases (FEI1 and FEI2) (Shi et al.,
2003; Xu et al., 2008; Basu et al., 2015), which placed those
components into a single regulatory pathway (Basu et al., 2016)
and derived speculation that SOS5/FLA4 might act as a sensor of
conditions in the apoplast via FEI kinases (Turupcu et al., 2018;
Seifert, 2021). SOS5/FLA4 tagged with GFP was detected on the
plasma membrane, soluble in the apoplast, and in endosomes
(Xue et al., 2017). Its C-terminal fasciclin 1 domain (Fas1-
2) is essential for its function, possibly involved in molecular
interactions. The N-terminal Fas1 domain (Fas1-1) stabilizes
proteins in the plasma-membrane (Xue et al., 2017), and it is
a putative negative regulator of Fas1-2 binding to FEI1 kinase,
which might augment the regulation of root growth according to
environmental conditions (Turupcu et al., 2018; Seifert, 2021).

The roles of other individual AGPs and their subtypes still
remain to be elucidated, but there is extensive experimental
evidence (often coming from organs other than roots) which
supports their role in cell wall biochemistry, deposition, and
signaling. Modulation of EgrFLA1,2,3 expression levels in
Eucalyptus grandis (MacMillan et al., 2010, 2015), PtFLA6
in Populus (Wang et al., 2015), AtFLA11, AtFLA12, and
AtFLA16 in A. thaliana (MacMillan et al., 2010; Liu et al.,
2020) altered stem cell-wall polysaccharide composition, cell-
wall thickness, and stem mechanical properties. GhAGP3 and
GhAGP4 are specifically expressed during the transition between
cell elongation to the secondary cell wall deposition in developing
cotton (Gossypium hirsutum) fibers, highlighting their roles
during secondary cell wall formation (Liu et al., 2008). In
Physcomitrella patens, application of AGP binding β-Glc-Yariv
or the downregulation of AGP1 reduced the expansion of the
protonema apical cell (Lee et al., 2005).

ROOT INTERACTIONS WITH OTHER
ORGANISMS

Roots provide an interface for interaction with rhizosphere
biota. AGPs, putative environment-cell-wall-protoplast signal

transductors (Seifert and Roberts, 2007), are important
components of root exudates and root cell walls, especially
in the root-cap and root-associated, cap-derived cells (Vicré
et al., 2005; Cannesan et al., 2012; Koroney et al., 2016; Swamy
et al., 2016; Driouich et al., 2019) and aid in the formation of
the rhizosheath (Galloway et al., 2020). As such, they are likely
mediators of root-microorganism interactions, participating
in the attraction, recognition, and colonization of roots by
beneficial microorganisms as well as in root responses to
microbial pathogens (Nguema-Ona et al., 2012, 2013, 2014;
Mareri et al., 2018) and parasites (Bozbuga et al., 2018).

Mutualistic Interactions
AGPs and chimeric arabinogalactan protein-extensins (AGPEs)
take part in the mutual interactions between roots and
microorganisms. AGP-epitopes were found at arbuscular
mycorrhiza symbiotic interfaces (Gollotte et al., 1995;
Balestrini and Lanfranco, 2006). The involvement of MtAMA1
(ARBUSCULAR MYCORRHIZA AGP 1) in arbuscular
mycorrhiza is indicated by the specific expression of the
MtAMA1 gene exclusively in arbuscule containing cortical cells
of Medicago truncatula (Schultz and Harrison, 2008). Its mode
of operation in the plant-fungi interface is still unknown, but
signaling feedback from the cell wall might be anticipated. The
authors speculate about a possible coreceptor on the plasma
membrane or a mobile signaling molecule after its release from
plasma membrane by the cleavage of the GPI anchor (Schultz
and Harrison, 2008). Interestingly, two AGP-like (AGL) proteins
were identified in the genome of Glomus intraradices, with a
specific structure not found in plants or non-mycorrhizal fungi.
These GiAGLs contain repeat domains that can form polyproline
II helices with positively and negatively charged faces. The
authors suggest their role in the interaction with host cell wall
surface (Schultz and Harrison, 2008). Unfortunately, there are
few recent references on this particular topic.

A symbiont as a source of AGPs at the host interface was
recorded also from free-living cyanobacteria Nostoc, containing
a putative AGP peptide genes (classical AGP, AG peptide, and
FLA class) and cell surface epitopes responsive to AGP antibodies
were detected at the Nostoc-Gunnera interface (Jackson et al.,
2012). Their discovery suggests that the role of AGPs in the
host-symbiont interface might develop from rather ancient cell
surface interaction processes and AGP role might evolutionarily
originate from very early symbioses (Jackson et al., 2012).

Interaction via AGPs during symbiotic infection by nitrogen-
fixing rhizobia has been repeatedly proven, for review see
Brewin (2004), Brewin et al. (2008), Nguema-Ona et al. (2013),
Rashid (2016). Formation of new lateral root organs - nodules
colonized by rhizobia, is a tightly orchestrated process, which
is mainly initiated by microbial entry via an infection thread
(Coba de la Pena et al., 2017; Ferguson et al., 2019). Rhizobia
traveling through infection threads are embedded in a matrix
containing AGPEs and other glycoproteins (Rathbun et al.,
2002; Brewin, 2004; Reguera et al., 2010). Abnormal infection
thread development in Pisum sativum mutants (sym33; sym
40) is associated with disrupted targeting of AGPEs (MAC265
antibody) exocytosis and authors speculate that this might be
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correlated with inefficient symbiosome formation in mutants
(Tsyganova et al., 2009). Cell wall remodeling that takes place
during onset of the symbiosome (Coba de la Pena et al.,
2017; Tsyganova et al., 2019) is the potentially affected process.
AGPs (localized with JIM1 antibody) are present in the nodule
membranes during the maturation of symbiosomes in Pisum
(Tsyganova et al., 2019). Their significance is still unclear but
their presence was not observed in nodules of the sym31 mutant
(Tsyganova et al., 2019) with undifferentiated bacterioids and
symbiosome membranes staying in the juvenile state (Borisov
et al., 1997). This indicates that AGPs play a role in symbiosome
maturation and ontogeny (Tsyganova et al., 2019). AGPs are
abundant also in the actinorhizal nodules of Alnus, especially
during early nodulation stages (Berry et al., 2002).

In addition, AGP-encoding genes are upregulated in Oryza
sativa roots upon colonization by Piriformospora indica (Nivedita
et al., 2020), a beneficial growth-promoting fungal endophyte
that improves salt-stress tolerance in many plant species (Waller
et al., 2005; Trivedi et al., 2013). In Triticum aestivum,
AGP-epitopes (detected by JIM14) occur abundantly in roots
infected by Trichoderma ssp., a beneficial fungal antagonist of
phytopathogens (Basińska-Barczak et al., 2020). These recent
observations indicate that AGPs may also promote root
interaction with beneficial endophytes.

Response to Pathogens and Parasites
Analyzing the role of AGPs in root response to pathogens, a
suppressive role to early infection by microbial pathogens was
demonstrated by AGPs extracted from border cells (BC) of Pisum
sativum and border-like cells (BLC) of Brassica napus (Cannesan
et al., 2012). AGPs from BL and BLC attracted zoospores of
oomycete Aphanomyces euteiches and induced their encystment
(loss of the motility due to loss of the flagella). The attraction was
far more efficient for P. sativum extract in agreement with the
fact that A. euteiches is the pathogen of P. sativum not B. napus.
Root exudates, but not extracted AGPs, then strongly stimulated
their germination (Cannesan et al., 2012). Root-associated, cap-
derived cells (BC and BLC) thus act as a blind target, trapping
the pathogen (extracellular root trap) and preventing its contact
with the root proper (Hawes et al., 2000; Driouich et al., 2019;
Ropitaux et al., 2020).

There is also substantial evidence that the composition of
AGPs in roots or root exudates changes in response to pathogens
or parasites. In Solanum tuberosum, AGPs (detected with LM2
and JIM15 antibodies) were upregulated in root exudates in
response to elicitors derived from Pectobacterium atrosepticum,
the pathogen causing soft rot disease in potato (Koroney et al.,
2016). In Musa spp. roots, AGPs were upregulated by Fusarium
oxysporum f. sp. cubense infection (Wu et al., 2017). Changes
in AGP levels occurred in the roots of A. thaliana infected
by Plasmodiophora brassiace, which caused clubroot disease.
In this case, AGPs were mostly downregulated, but FLA5 was
upregulated together with many cell-wall-modifying enzymes,
alpha-expansins in particular (Irani et al., 2018). In the roots of
Glycine max, repression of FLA encoding genes was induced by
the fungal pathogen Macrophomina phaseolina (Marquez et al.,
2018) trying to seize root tissues. Besides microbial pathogens,

animal parasites induce changes in root AGP levels as well. In
roots of a resistant cultivar of Glycine max, the upregulation
of FLAs is triggered by the attack of root-knot nematodes
(Beneventi et al., 2013).

Fluctuation of AGP levels occurs also during the attack of
parasitic plant species of Cuscuta genus on the host-plant stems.
Epidermal contact of Cuscuta reflexa stimulates the secretion of
AGPs by the host plant, Lycopersicon esculentum, to enhance
its adhesion to the host stem in the early phase of interaction
(Albert et al., 2006). Downregulation of attAGP (attachment
AGP) expression decreased the attachment capability of the
parasite (Albert et al., 2006). The presence of AGPs in attachment
“cement” was recorded on the surface (holdfast epidermal
cells) of C. campestris and C. japonica stems (Hozumi et al.,
2017) supporting the role of AGPs in parasite-host attachment.
Accumulation of AGPs in the tip of developing haustoria
appear after penetration of the host stem (Hozumi et al.,
2017; Shimizu and Aoki, 2019) and expression analysis of
Cuscuta developing haustoria identified them as FLAs. On the
contrary, the later intrusive growth of Cuscuta haustorium
triggers the depletion of AGPs in stem tissues facing the
attack, which was shown for Pelargonium zonale penetrated by
C. reflexa (Striberny and Krause, 2015). In Orobanchaceae root
parasites, AGPs accumulate in the hyaline body, a specialized
parenchymatous central core of the parasitic haustorium. The
functional significance of this accumulation is, however, unclear
(Pielach et al., 2014).

Mechanisms of AGP action in root biotic interaction are still
unresolved and puzzling. Several mechanisms were proposed,
including the recognition and attachment of microbes, formation
of a protective biofilm against degradation of cell wall by
pathogenic organisms, or antimicrobial action, for review see
Nguema-Ona et al. (2013) and Mareri et al. (2018). In addition,
the significance of AGPs in response to pathogens is frequently
inconclusive. They may act together with EXTs to modify the cell
wall cross-linking in response to pathogens, for review see Rashid
(2016). In some studies, EXTs seemed more important. Among
others, EXTs rather than AGPs correlated with the resistance to
F. oxysporum f. sp. cubense, in spite of the pathogen-induced
changes in AGP levels in Musa spp. cultivars (Wu et al., 2017). β-
Glc-Y reagent failed to affect the interaction with Pectobacterium
atrosepticum, although AGPs were upregulated in response to
this pathogen in Solanum tuberosum roots. Root exudate pre-
incubated with β-Glc-Y promoted the growth of the pathogen
in a very similar way as non-incubated one (Koroney et al.,
2016). Higher levels of AGPs and also EXTs were detected in
roots of a Benincasa hispida cultivar resistant to F. oxysporum
f. sp. Benincaseae (Xie et al., 2011). Various studies indicate
that other cell-wall glycoproteins (EXTs or AGPEs), are at least
equally important and change their levels in roots in response
to pathogens or symbionts (Shailasree et al., 2004; Plancot et al.,
2013; Wu et al., 2017; Castilleux et al., 2020).

Further and more conclusive functional characterization of
AGPs roles in root-pathogen interactions thus requires direct
evidence based e.g., on modulation of AGP-genes expression
and analyses of induced phenotypes. There are only few studies
revealing the role of individual AGPs in this process. A. thaliana
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rat1/agp17 (resistant to Agrobacterium transformation 1) mutant,
defective in arabinogalactan protein AtAGP17, is resistant to
Agrobacterium transformations of root segments (Nam et al.,
1999; Gaspar et al., 2004). In spite of the difficulties with AtAGP17
transcript detection in roots (Gaspar et al., 2004; Yang et al., 2007,
2011), the protein seems highly abundant in root tissues (Yang
et al., 2011). It affects the attachment of Agrobacterium to the root
surface and modulates the systemic acquired resistance, which
allows for successful infection (Gaspar et al., 2004). Two other
AGPs, AtAGP12, and AtAGP24, enhanced their expression in the
roots of A. thaliana after infection of Plectosphaerella cucumerina,
a necrotrophic fungal pathogen. AtAGP24-GFP localized in
close proximity to plasma membrane and the overexpression of
AtAGP24 strongly increased the susceptibility to P. cucumerina,
which is evidence for its involvement in the pathogen response
(Dobon et al., 2015).

There is also direct evidence of the involvement of a particular
AGP gene in root defense against animal parasites. The knock-
out of AtAGP8 gene in A. thaliana leads to a significantly
increased susceptibility toward root-knot nematode Meloidogyne
incognita (Bozbuga et al., 2018). The susceptibility seems related
to the cell wall composition and resistance of root tissue to
form specific feeding sites, giant cells. These hypertrophied
multinucleate cells re-differentiate from a small number of
root cells being pierced by a nematode stylet. Their cells walls
contain AGPs and are enriched with highly methyl-esterified
homogalacturonans, xyloglucans and arabinans, allowing for
plasticity and cell expansion (Bozbuga et al., 2018). Increased
susceptibility to root cyst nematode was also observed in
reb1/rhd1 mutant (Baum et al., 2000; Wubben et al., 2004)
with lower AGP levels in roots (Ding and Zhu, 1997). Besides
the atagp8 and reb1/rhd1 mutants, increased susceptibility to
nematodes was found in two rhamnogalacturonan I pectin
deficient mutants of A. thaliana (arabinan deficient 1,2), while
mutants with suppressed mannan and galactan epitopes (mannan
synthesis-related 1 and β-galactosidase 5) were more resistant
(Gantulga et al., 2008; Harholt et al., 2012; Wang et al., 2013;
Bozbuga et al., 2018).

CONCLUSION

Cell-wall localized AGPs work as modulators of cell expansion
and differentiation, signal transductors on the cell surface,
and effectors of responses to environmental conditions and
other organisms. In roots, the multifaceted roles of AGPs are
emphasized due to the requirement for high growth plasticity
and constant exchange of signals with the environment. The data
gained from observing plants with altered expression of AGPs
or carbohydrate composition of cell wall, immunohistochemical
studies, and structural analyses clearly link AGPs and their
glycosylation status with cell wall properties, cell expansion
and organ growth.

Despite the obvious significance of AGPs, we still have
limited information about the roles of individual AGPs in roots
and the whole plant. Abundance of AGPs, the complexity of
their functions, and their obvious redundancy make this issue
challenging. A detailed focus on loss-of-function mutants can
move us ahead in understanding the mechanisms of AGP action
in roots. Characterization of AGP mutants were summarized
in this review alongside other studies on cell wall chemistry to
provide an overview of the current state of this topic.
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