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Wheat blast is a threat to global wheat production, and limited blast-resistant

cultivars are available. The current estimations of wheat spike blast severity rely on

human assessments, but this technique could have limitations. Reliable visual disease

estimations paired with Red Green Blue (RGB) images of wheat spike blast can be used

to train deep convolutional neural networks (CNN) for disease severity (DS) classification.

Inter-rater agreement analysis was used to measure the reliability of who collected and

classified data obtained under controlled conditions. We then trained CNN models to

classify wheat spike blast severity. Inter-rater agreement analysis showed high accuracy

and low bias before model training. Results showed that the CNNmodels trained provide

a promising approach to classify images in the three wheat blast severity categories.

However, the models trained on non-matured and matured spikes images showing the

highest precision, recall, and F1 score when classifying the images. The high classification

accuracy could serve as a basis to facilitate wheat spike blast phenotyping in the future.

Keywords: wheat blast, convolutional neural networks, inter-rater agreement, severity classification, plant disease

phenotyping, breeding, deep learning, controlled conditions

INTRODUCTION

Wheat blast is an emergent disease caused by the Ascomycetous fungus Magnaporthe oryzae
Triticum (MoT). MoT was first detected in Brazil in 1985, with successive spread to Bolivia,
Paraguay, and Argentina (Igarashi et al., 1986; Barea and Toledo, 1996; Viedma, 2005; Cabrera
and Gutiérrez, 2007; Perello et al., 2015). In 2016, a wheat blast outbreak was first reported in
Bangladesh, apparently due to the unintended importation of MoT-infected South American grain
(Aman, 2016; Malaker et al., 2016). Many countries in South Asia are actively monitoring wheat
fields for the presence of MoT (Bhattacharya and Pal, 2017; Mottaleb et al., 2018). In 2020, MoT
presence was reported in Zambia, Africa, which summates another continent to the list (Tembo
et al., 2020). Cruz et al. (2016b) predicted areas at risk in the United States (southern and pacific
northwest states) for MoT establishment and the threat of this pathogen to soft- and hard-red
winter wheat production.
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MoT can infect leaves, stems, and seeds, although the most
remarkable and studied symptoms are associated with the spike
(Igarashi et al., 1986; Cruz et al., 2015; Cruz and Valent, 2017;
Ceresini et al., 2019). The infection by MoT of the spike,
spikelets, or rachis causes the wheat spike blast, inducing partial
or complete bleaching of the spikes (Igarashi, 1986). Infection
can cause shriveled grain reducing the grain quality and yield.
A wide range of disease intensities can occur depending on
the susceptibility of cultivars planted and the prevalent weather
conditions (Goulart and Paiva, 1992).

Warm temperatures, excessive rain, long and frequent spike
wetness, and limited fungicide efficacy exacerbate the intensity
of wheat blast epidemics, especially in susceptible cultivars
(Goulart et al., 2007). The optimum conditions for wheat
blast development include a temperature range between 25
and 30◦C and spike surface wetness between 25 and 40 h
(based on controlled conditions) (Cardoso et al., 2008). Under
conducive field conditions, the fungus can kill up to 100%
of susceptible wheat spikes in a period of 2.5–3 weeks
(Gongora-Canul et al., 2020).

Since 1985, when wheat spike blast was first detected, intense
efforts have been undertaken to identify resistance (Igarashi
et al., 1986; Urashima et al., 2004; Prestes et al., 2007; Cruz
et al., 2016b; Ceresini et al., 2019; Cruppe et al., 2020). Recently,
two new genes, Rmg8 and RmgGR119, were found to generate
resistance to wheat blast (Wang et al., 2018). However, the only
currently effective resistance provided by the 2NVS translocation
from Aegilops ventricosa (Tausch) confers useful yet partial and
environment and/or genetic background-dependent resistance to
wheat blast (Cruz et al., 2016a; Valent, 2016; Cruppe et al., 2019,
2020). Obtaining tissue samples from phenotyped wheat entries
and testing for the presence or absence of the 2NVS segment
is relatively easy and routine (Cruz et al., 2016b; Yasuhara-Bell
et al., 2018; Cruppe et al., 2019). Although there is evidence that
2NVS-based resistance may be overcome, additional sources of
wheat spike blast resistance should be identified (Cruz et al.,
2016b; Cruppe et al., 2019, 2020; Juliana et al., 2020). Thus,
there is a continued need to find new sources of resistance to
wheat blast.

Plant disease estimations, or phytopathometry, refer to
the measurement and quantification of plant disease severity
(DS)or incidence that is essential when studying and analyzing
diseases at organ, plant, or population levels (Large, 1966;
Bock et al., 2010). Plant disease estimations by human raters
are the standard method used for plant disease phenotyping.
Humans are trained to perform visual disease evaluations of
incidence and severity, and their reliability can be improved
with experience. These estimations are helpful, but they are
subjective evaluations that can introduce variability and can
be time-consuming and labor-intensive (Nutter et al., 1993;
Madden et al., 2007; Bock et al., 2010, 2020). Due to issues
associated with an agreement in data acquisition, inter-rater
agreement among other statistical tests can be used to compare
the consensus or agreement between estimations of raters of DS
(Nutter et al., 1993; Madden et al., 2007; Bock et al., 2010, 2020).
These agreement analyses are relevant in plant pathology and
plant breeding since inaccurate disease estimations can cause

imprecision and unreliability leading to incorrect conclusions
(Chiang et al., 2016; Singh et al., 2021).

A bottleneck in the identification of novel sources of
resistance is measuring disease intensity (i.e., plant disease
phenotyping), which is considered a limiting factor in the
assessment of genotype performance in plant breeding programs
(Mahlein, 2015; Shakoor et al., 2017). Therefore, innovative and
transformative solutions for the quantification of plant disease
symptoms at the individual and host population levels are needed
(Camargo and Smith, 2009; Kumar et al., 2020). Implementation
of advanced computer vision and machine learning techniques
could reduce the phenotyping bottleneck during breeding and
enhance the understanding of genotype–phenotype relationships
(Fiorani and Schurr, 2013; Kruse et al., 2014; Shakoor et al., 2017;
Yang et al., 2020; Singh et al., 2021).

Computer vision, machine learning, and deep learning
methods have recently been adapted to agriculture due to
increased knowledge of algorithms and model capabilities that
can learn and make predictions from images Red Green Blue
(RGB), multispectral, or hyperspectral (Barbedo, 2016; Kersting
et al., 2016; Mahlein et al., 2018). There are two ways in which
these models are trained, one is supervised learning, which
depends on an annotated dataset, and another is unsupervised
learning, which does not rely on annotations (Mahlein et al.,
2018). The most frequently used deep learning methods are
the Convolutional Neural Networks (CNN). The CNN is
characterized by high-accuracy metrics for image recognition
and image segmentation. Recent studies have further enhanced
the scope of a deep-learning-based approach for classifying,
identifying, and quantifying plant diseases (Mahlein et al., 2018;
Singh et al., 2018; Barbedo, 2019).

A variety of CNN classification models are available for
plant diseases. These include models for bacterial pustule
(Xanthomonas axonopodis pv. glycines), sudden death syndrome
(SDS, Fusarium virguliforme), Septoria brown spot (Septoria
glycines), bacterial blight (Pseudomonas savastanoi pv. glycinea),
and several abiotic stresses in soybean (Ghosal et al., 2018).
In tomato (Solanum lycopersicum), deep-learning models
were developed with and without pre-training models with
images from nine leaf tomato diseases from the website
www.PlantVillage.org, obtaining better performance using
pre-training models (Brahimi et al., 2018). A total of 54,306 leaf
images from several crops with 26 diseases were obtained from
PlantVillage.org and trained using AlexNet and GoogleLeNet
pre-trained models with a leaf-segmented dataset, obtaining
an accuracy of 99.35% (Mohanty et al., 2016). On wheat,
an in-field automatic diagnosis system for powdery mildew
(Blumeria graminis f. sp. tritici), smut (Urocystis agropyri), leaf
blotch (Septoria tritici), black chaff (Xanthomonas campestris
pv. undulosa), stripe rust (Puccinia striiformis f. sp. tritici), and
leaf rust (Puccinia recondita f. sp. tritici) were developed using
deep-learning, and multiple instances–learning techniques
from the Wheat Disease Database 2017 (Lu et al., 2017).
Although this database is a significant contribution to wheat
disease identification based on images, aspects regarding the
reliability of the labeler may be compromised (Lobet, 2017).
It is appropriate that detection and quantification studies of
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plant disease provide evidence of (“true”) estimation agreement
analysis before using the labeled images as a dataset for training
deep-learning models. Currently, phenotyping of wheat spike
blast DS relies on a visual estimation made by humans (Cruz
et al., 2016a). We hypothesized that deep CNN models can be
trained for wheat spike blast severity image classification under
a controlled environment. To test this hypothesis, we focused on
the following objectives:

i) Evaluate the agreement in data acquisition of the human rater
who collected and classified datasets.

ii) Develop an accurate deep CNN model to detect and classify
wheat spike blast symptoms in three severity categories.

MATERIALS AND METHODS

Ethics
A written informed consent was obtained from the individual
for the publication of any potentially identifiable images or data
included in this article.

Plant Cultivation and Genetic Materials
Two experiments were conducted under controlled conditions
in a growth room at the Asociación de Productores de
Oleaginosas y Trigo (ANAPO) research facility in Santa Cruz
de la Sierra, Bolivia. Wheat cultivars were planted in pots of
15 cm diameter, filled with vermicast:silt (3:1 [v/v]), and grown
at 18−25◦C, 14 h light/10 h dark photoperiod, and 50–60%
relative humidity. Plants were fertilized, and insecticides were
sprayed when needed. Plants were arranged in a randomized
complete block design with wheat cultivars having various
levels of resistance to MoT, two inoculation levels (inoculated
and non-inoculated), and four replicates. Wheat cultivars with
a range of sensitivity to the wheat blast were used for the
experiments. Experiment one included Bobwhite and South
American spring cultivars Atlax, BR-18, Motacú, Urubó, AN-
120, Sossego, and San Pablo and for experiment two the
cultivars included BR-18, San Pablo, Bobwhite, and Atlax
(Baldelomar et al., 2015; Fernández-Campos et al., 2020).

Inoculation
Plants were inoculated at the growth-stage Feekes 10.5, when
the spike had completely emerged, with MoT isolate 008-
C (Figure 1A), according to a modified inoculation protocol
previously published (Cruz et al., 2016a). A conidial suspension
was adjusted to 20,000 spores/ml, and each spike received 1ml of
the spore suspension. Immediately after the spikes were sprayed
with the MoT inoculum, plants were moved to a dew chamber
(Figure 1B) to induce MoT infection (i.e., 24–26◦C, 95–98% RH,
and 14 h light photoperiod). Forty-eight hours after inoculation,
plants were removed from the dew chamber and left under
controlled environment room conditions [(24–26◦C and relative
humidity of 50–60%), until day 19 after inoculation; Figure 1B].

Data Collection, DS, and Disease
Measurements
Following phytopathometry terminology, we used the term
“estimate” for visual disease estimations made by humans and

FIGURE 1 | Wheat blast image collection flow process: (A) Magnaphorthe

oryzae pathotype Triticum inoculation, (B) After inoculation, plants were moved

to the yellow dew chamber that provided optimal conditions for fungal

infection for 48 h, later transfer to the black trays, (C) wheat spike imaging set

up, and (D) an image was captured perpendicular to the spike.

the term “measurement” for estimations made by image analysis
(Bock et al., 2010; Gongora-Canul et al., 2020). Visual estimate
of DS was obtained by observing the disease area covered in
the spike and assigned a corresponding severity value from 0
to 100%. In this study, image analysis disease measurements
were achieved by manually measuring spike disease area (pixels)
using RGB color threshold segmentation with the image analysis
software Fiji ImageJ v.1.52a (Schindelin et al., 2012; Sibiya and
Sumbwanyambe, 2019). First, the measurement of the total spike
area was obtained, then the diseased area was measured. Finally,
the percentage of diseased severity (DS) of the individual spike
was calculated (Equation 1), where ADiseased is the proportion of
the area of spike that is diseased divided by the total area of the
spike ATotal (See Video 1 in Supplementary Material).

DS =
ADiseased

ATotal
× 100 (1)

Visual estimations of wheat spike blast symptoms were taken
seven times after inoculation in each experiment. In experiment
one, visual estimations and images were collected 4, 6, 9, 12,
14, 16, and 19 days after inoculation (DAI) and in experiment
two, 0, 5, 7, 10, 12, 14, and 19 DAI. Each spike side (four
sides total) was visually estimated for DS by Rater 1 (a plant
pathologist with experience on wheat blast, rice blast, and other
diseases). Simultaneously, an image from each spike side was
captured perpendicular to the spike with a distance of 50 cm
approximately with a DSLR EOS 6D Canon camera (Canon Inc.,
Tokyo, Japan) (Figure 1D) using a photography studio set up

Frontiers in Plant Science | www.frontiersin.org 3 June 2021 | Volume 12 | Article 673505

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Fernández-Campos et al. Wheat Spike Blast CNN Classifier

with umbrellas, lights, and screens (Neewer 2.6m× 3 m/8.5 ft×
10 ft Background Support System and 800W 5,500K Umbrellas
Softbox Continuous Lighting Kit for Photo Studio Product)
that helped create a uniform light and smooth environment
(Figure 1C).

DS Categories
The total spike disease estimations of Rater 1 paired with the
corresponding image were converted to a three-category scale
according to the amount of severity that served to fed training
and testing dataset of CNN model. The category selection was
based on wheat blast results from published work conducted over
the last decade (Baldelomar et al., 2015; Cruz et al., 2016b; Vales
et al., 2018; Cruppe et al., 2020; Fernández-Campos et al., 2020).
Category 1 (healthy spikes) was used as a baseline (i.e., negative
control or fully immune). Category 2 showed 0.1–20% severity
(resistant and moderately resistant/low levels of symptoms)
corresponding to the selected putative population for successive
trials under variable conditions (controlled environment or
field). Category 3 showed 20.1–100% severity (moderately
susceptible and susceptible/intermediate and high levels of
symptoms) corresponding to the plant population that will not
be selected for successive trials because of the high potential to be
or to become susceptible to the disease studied (Figure 2).

Testing Reliability of Rater 1: Inter-rater
Analysis of Wheat Spike Blast Severity
Estimations
Rater 1 played a critical role in estimating DS and classifying into
categories of all the images belonging to Dataset 1 and Dataset
2 (Datasets are described in the section, generation of data sets
according to wheat spike physiological changes). Therefore, an
inter-rater analysis was needed to determine the reliability of
visual estimations of Rater 1. Inter-rater agreement assesses the
degree of agreement between two and more raters who obtain
independent ratings about the characteristics of a set of subjects.
Subjects of interest include people, things, or events that are rated
(Madden et al., 2007; Everitt and Anders, 2010; Bock et al., 2020).

To determine the agreement of disease estimations of Rater
1, we performed an inter-rater analysis including a second-rater,
and ImageJ was used as an image analysis software baseline. Rater
2, is a plant pathologist and expert in the wheat blast. ImageJ
is an image analysis software used to measure plant diseases
from images.

We used the power analysis Wilcoxon signed-rank test to
determine the sample size for the inter-rater agreement studies
of the two training datasets. The test consisted of DS estimations
or measurements of 31 and 29 images from the CNN training
Dataset 1 and training Dataset 2, respectively. From now on,
the 31 images selected from Dataset 1 will be called sample
Dataset 1 and the 29 images from Dataset 2 will be referred to
as sample Dataset 2. Rater 2, who is an experienced researcher
with more than 4 years of working with the wheat blast disease,
visually estimated DS from the sample Dataset 1 and Dataset
2. Additionally, disease measurements were obtained from the
sample Dataset 1 and the sample Dataset 2 using ImageJ software

FIGURE 2 | Examples of images per category: (A–D) healthy wheat spikes no

disease (0% severity, Category 1); (E–H) spikes with moderate severity

(0.1–20%, Category 2); and (I–L) spikes with high severity (20.1–100%,

Category 3).

as indicated above. Ultimately, the DS results of visual disease
estimations of human raters and ImageJ measurements were
compared. The estimated and measured DS values from both
samples were analyzed for inter-rater agreement in two scenarios,
one with a scale of 0–100% DS (continuous data), and the other
with the images divided into three categories of DS (ordinal data).
We, therefore, computed Lin’s Concordance Coefficient, Fleiss
kappa, and weighted kappa statistics.

The Lin’s concordance coefficient (ρc or CCC) is used to
estimate the accuracy1 between two raters using continuous data.
From the analysis, we obtained the estimation of accuracy1,
precision1, and bias of the disease estimations and disease
measurements between the two raters (Lin, 1989; Madden et al.,
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2007; Bock et al., 2010). For accuracy1 (ρc) and precision1 (r),
values range from 0 to 1; values close to 1 indicate high accuracy1
and precision1. Bias (Cb) ranges from 0 to 1, and values close to
1 indicate less bias (Nita et al., 2003). Lin’s concordance analysis
was performed by using PROG REGALL procedure on SAS v.9.4
(Cary, NC), based on the macro developed by Lawrence Lin and
verified by Min Yang (Lin et al., 2002).

To determine the degree of association between the estimation
of categorical information provided by the two raters (inter-
rater agreement), the weighted kappa statistics were computed
(Chmura, 1992; Graham and Jackson, 1993; Nelson and Edwards,
2015). The Fleiss kappa coefficient was used to compare
the agreement of categorical information among all raters,
(i.e., Rater 1, Rater 2, and ImageJ) (Fleiss et al., 2003).
The values of both the weighted kappa and Fleiss kappa
coefficients range from 0 to 1. Values from 0.5 to 1 indicate
that the agreement is better than what is expected by chance
(Nelson and Edwards, 2015; Tang et al., 2015; Mitani et al.,
2017; Gamer et al., 2019). The Fleiss kappa statistics and
weighted kappa were computed with the irr package of the R
software (Team, 2017).

Generation of Datasets According to
Wheat Spike Physiological Changes
Wheat was inoculated at the growth-stage Feekes 10.5 (spike
completely emerged) of the host plant. Approximately every
2 days after the inoculation, the spike images were collected
to capture the changes developed. Indirectly, progressive
physiological changes in spikes were recorded, as maturing
begins at wheat growth-stage Feekes10.5.4 (kernels watery ripe)
and continues through the growth-stage Feekes 11.4 (mature
kernels) (Large, 1954; Wise et al., 2011). During this period, the
kernel hardened, and the green spike lose its color (maturing),
which mimic the typically bleached spikes caused by wheat spike
blast symptoms.

Two datasets were generated considering the (color)
physiological changes that can lead to confusion when training
the CNN model. Dataset 1, included maturing and non-matured
wheat spikes; and Dataset 2 included only non-matured spikes
(data available at: https://purr.purdue.edu/publications/3772/1).
The proposed CNN model was trained using the two datasets.
Each dataset was randomly separated into the training and
testing datasets. The CNN model automatically extracted the
features of each image in the training dataset to learn a good
classifier, whereas the testing dataset was used to evaluate the
performance of the trained CNN model. In general, an unseen
dataset was applied to evaluate the CNN model to ensure that
the model was not under-fitting or over-fitting. In this research,
80% of the images were categorized and used as the training set,
and the remaining 20% as the testing set. Table 1 lists the original
distribution of the number of images in Dataset 1 and Dataset 2.
Although Category 3 covers a large variability, it does not mean
the number of the data in Category 3 is larger than the other two
categories. The number of images in each category was extremely
imbalanced and using them indiscriminately could have resulted

TABLE 1 | Training and testing data distribution and the number of images used

in Dataset 1 and Dataset 2.

Sets Category 1 Category 2 Category 3

Dataset 1 (Maturing and non-matured spikes)

Training 1,595 640 402

Augmented training 1,595 1,920 1,608

Testing 381 178 110

Dataset 2 (Non-matured spikes only)

Training 1,430 386 307

Augmented training 1,430 1,544 1,535

Testing 327 120 90

Category 1: 0% severity, Category 2: 0.1–20% severity, Category 3: 20.1–100% severity.

in a biased model. Fortunately, there are several viable methods
to cope with the disproportionate training data in each category.

Data augmentation is a common technique providing a
viable solution to data shortage issues by adding copies of
original images with modification or noise (Boulent et al.,
2019). Data augmentation was used in this study to balance
the number of images in each category. In this study, images
were randomly flipped horizontally and vertically in order to
increase the number of images in Categories 2 and 3. Thus,
for Dataset 1, training data were triplicated in Category 2 and
quadrupled in Category 3 (Table 1). For Dataset 2, training data
were quadrupled in Category 2 and quintupled in Category 3
(Table 1).

Deep CNN Model
In recent years, the feasibility of using artificial intelligence, in
particular deep learning, has been expanded into a variety of
applications (Atha and Jahanshahi, 2018; Chen and Jahanshahi,
2018; Kumar et al., 2018; Wu and Jahanshahi, 2019). Deep
learning is a subset of machine learning that enables computers
to automatically extract features from a huge amount of data and
learn to classify data.

In this study, wheat spike blast symptoms were automatically
detected and classified into three severity categories using a pre-
trained CNN model. This model may be more efficient than
classifying images visually. To obtain a general and reliable CNN
model, the network needed to be trained using a large labeled
training dataset. The performance of the CNN model is highly
dependent on the number and quality of the training data.
However, it was hard to collect a wheat blast dataset having a
million images in a short time. The performance CNN model
can easily lead to under- or over-fitting due to the lack of a
large dataset for training. To address this issue, transfer learning
was used as a practical solution where a network was trained
using a typically different larger dataset such as ImageNet. A
major advantage of using transfer learning is that it can adapt
the parameters trained from an abundant number of images.
Transfer learning starts with a pre-trained model, e.g., VGG16
model, and replaces the fully-connected (FC) layers of the model
with new FC layers. A network trained on the ImageNet dataset
was used to initialize the network parameters, and the whole
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network was fine-tuned since the nature of our dataset was very
different from the ImageNet dataset. In this study, an FC layer
that consisted of three nodes, representing three categories, were
appended to the end of the network. A residual neural network
architecture (ResNet101), a CNN model with 101 layers with
recurrent connection trained on ImageNet data (He et al., 2015,
2016), was selected as the pre-trained model. Furthermore, as
shown in Table 1, it was extremely difficult to obtain a large
number of images in each category. An unbalanced dataset
can result in a biased CNN model. To address this issue in
the dataset, the loss function, which was used to optimize the
parameter in a neural network, was transformed into a weighted
loss function (Equation 2) by assigning individual weights to each
category. Equation (2) defines the cross-entropy loss function in
the CNN model, where ωcategory is the assigned weight to each
of the categories, the first term in Equation (2) is a negative
log-likelihood loss, and the second term in Equation (2) is log-
softmax. Four cases of study were tested with an individual
weight set to the loss functions assigned to different categories. In
the experiments, “cases” refer to specific combinations of weight
loss functions for each of the three DS categories (Table 2). Case
1 was the non-weight set [1, 1, 1], with all categories sharing
the same class weight. Case 2 used [1, 10, 1] class weights in the
loss function, meaning that the highest weight was for Category
2, which includes plants at early disease stages and low levels
of disease symptoms. Case 3 used [2, 5, 1] class weights in the
loss function, meaning that the higher weight was assigned to
Categories 1 (no symptoms) and 2 (early stages and low levels
of disease symptoms). Case 4 had class weights [2, 1, 1] in the loss
function, assigning a higher weight to category 1 (no symptoms)
(Table 2).

loss
(

x, category
)

= −ωcategory ∗ log
excategory
∑N

j=1 e
xj

= −ωcategory (−xcategory + log





∑

j

exp(xj)



) (2)

The network was trained for 15 epochs using a stochastic gradient
descent optimizer (Bottou, 2010), a learning rate of 0.0001 was
used, and the batch size was 16. Additionally, 5-folds cross-
validation was applied to the training process. The training took
place on a Linux server with Ubuntu 14.04. The server included
two Intel Xeon E5-2620 v4 CPUs, 256-GB DDR4 memories, and
four NVIDIA Titan X Pascal GPUs. Pytorch (Paszke et al., 2017)
was used to implement the CNN.

Model Performance Evaluation
The performance of the CNN model was evaluated via the
classified results of the testing dataset. A 3 × 3 confusion matrix
was used to describe the prediction result of the model. Each row
of the confusion matrix represented the ground truth of the data,
and each matrix column corresponded to a predicted category
by the CNN model. Thus, the diagonal elements of the matrix,
called true positive (TP), were the number of wheat images
correctly classified into the ground truth. The false positive (FP)
for each Category was the sum of all errors in that column. For

TABLE 2 | Two datasets trained the CNN model with four cases of the study

through different weights in loss functions for each category.

Values of weighted loss function per category [1, 2, 3]

Model Dataset 1 (Maturing and

non-matured spikes)

Dataset 2

(Non-matured spikes)

Case 1 [1, 1, 1] [1, 1, 1]

Case 2 [1, 10, 1] [1, 10, 1]

Case 3 [2, 5, 1] [2, 5, 1]

Case 4 [2, 1, 1] [2, 1, 1]

[Category 1: 0% severity, Category 2: 0.1–20% severity, Category 3: 20.1–100% severity].

example, the FP of Category 1 was the number of Category 2 and
Category 3 severities that were incorrectly classified as Category
1. Based on the confusion matrix, additional evaluation metrics
were calculated.

Accuracy2 was defined as the total number of TP among
three categories divided by the total number of the predictions.
Precision2 was defined as the total number of the TP instances
divided by the total number of predicted positive examples,
which was the summation of TP and FP instances in the binary
classification task (Equation 3). Similarly, the precision2 of the
multi-classes task illustrates the number of instances that were
correctly predicted given all the predicted labels for a given
category. Recall was defined as the TP instance divided by all the
positive samples (TP and FN) (Equation 4). F1 score is a single
metric that encompasses both precision2 and recall (Equation 5).
Accuracy2, precision2, recall, and F1 score metrics ranged from
0 to 1, where higher values indicate the high predictive ability of
the model.

Precision2 =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1score = 2 ×
precision × recall

precision+ recall
(5)

RESULTS

Cultivar Response to Wheat Spike Blast
Under Controlled Conditions
The final wheat spike blast severity was at day 19 after inoculation
when cultivar Atlax reached 100% average DS, followed by
Bobwhite (99.7%), San Pablo (32.9%), BR-18 (8.7%), Motacú
(3.7%), AN-120 (3.31%), Urubó (1.9%), and Sossego (0.83%).
Wheat spike blast symptoms developed on all tested cultivars,
with reactions to MoT infection consistent with previous reports,
except for cultivar San Pablo that showed moderate susceptibility
(Baldelomar et al., 2015; Cruz et al., 2016b; Cruppe et al., 2020;
Fernández-Campos et al., 2020; Gongora-Canul et al., 2020).
Cultivar Atlax exhibited the highest DS of all the cultivars and
had a high level of susceptibility to wheat spike blast.
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FIGURE 3 | Regression analysis of wheat spike blast DS estimations made by Rater 1 (responsible to estimate the severity of total image dataset) vs. Rater 2 (expert

in wheat blast) and ImageJ DS measurements (image analysis software). Graphs show accuracy (ρc), precision(r), bias (Cb), scale shift (ν), and location shift (u) for

wheat spike blast continuous Dataset 1 (A–C) (n = 31 images) and Dataset 2 (D–F) (n = 29 images). (A) Disease estimation comparison from images Dataset 1

between Rater 1 and Rater 2. (B) Disease estimation and disease measurement comparison from images Dataset 1 between Rater 1 and ImageJ. (C) Disease

estimation and disease measurement comparison from images Dataset 1 between Rater 2 and ImageJ. (D) Disease estimation comparison from images Dataset 2

between Rater 1 and Rater 2. (E) Disease estimation and disease measurement comparison from images Dataset 2 between Rater 1 and ImageJ. (F) Disease

estimation and disease measurement comparison from images Dataset 2 between Rater 2 and ImageJ.
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TABLE 3 | Values of weighted Kappa (κ) analysis for inter-rater agreement

between raters and ImageJ in Dataset 1 (maturing and non-matured spikes) and

Dataset 2 (non-matured spikes) of wheat spike blast under controlled environment.

Dataset 1 Dataset 2

Categories κ z κ z

Rater 1x vs. ImageJz 0.882** 4.93 0.822** 4.45

Rater 2y vs. ImageJ 0.727** 4.13 0.776** 4.32

Rater 1 vs. Rater 2 0.747** 4.32 0.849** 4.65

**p < 0.01.
xRater 1: Responsible to estimate the severity of the total image dataset.
yRater 2: Expert in the wheat blast.
z ImageJ: Image analysis software.

Inter-rater Agreement Analysis
The Lin’s concordance correlation analysis showed a high
accuracy1 (ρc = 0.89–0.91), high precision1 (r = 0.91–0.94), and
less bias (Cb = 0.95–0.99) in the sample Dataset 2 than in the
sample Dataset 1 (ρc = 0.77–0.85, precision1 r = 0.80–0.87, and
bias Cb = 0.93–0.98) (Figure 3). In the sample Dataset 1, the
highest accuracy1 was between Rater 1 and Rater 2 (ρc = 0.85)
and between Rater 1 and ImageJ (ρc = 0.85). In the sample
Dataset 2, the highest accuracy1 value was between Rater 1 and
ImageJ (ρc = 0.92), followed by between Rater 1 and Rater 2
(ρc = 0.91). In both sample datasets, strong accuracy1, high
precision1, and low bias involved Rater 1, providing evidence
that ratings of disease based on continuous data were done
correctly for further classification of the images into categories
for model training.

The weighted kappa statistics (κ), used to quantify inter-rater
agreement, were higher in the sample Dataset 1 than in the
sample Dataset 2, with κ = 0.72–0.88 (p < 0.01) and κ = 0.78–
0.85 (p < 0.01), respectively (Table 3). In the sample Dataset 1,
the highest agreement occurred between Rater 1 and ImageJ (κ
= 0.88), and in the sample Dataset 2, the highest agreement was
between Rater 1 and Rater 2 (κ = 0.85). In both sample datasets,
the substantial agreement involved the ground truth (Rater 1),
providing evidence that ratings were done correctly for further
classification of the images into categories for model training.

The Fleiss kappa coefficient (Fκ), which compared the
association of ordinal categorical information of two or more
raters, showed an Fκ = 0.771 (n = 31, z = 9.26, p < 0.001) for
the sample Dataset 1 and 0.697 (n = 29, z = 8.1, p < 0.001) for
the sample Dataset 2, indicating substantial agreement among
the human raters and ImageJ in both datasets. However, the
sample Dataset 1 possessed a higher Fleiss kappa coefficient index
than the sample Dataset 2, both presented substantial agreement
between the rates and ImageJ. Yet, the evidence supported the
fact that the three raters correctly estimated the amount of the
disease from the same image.

Deep CNNs Model Performance
To train the proposed CNN model, two different datasets were
used. As mentioned above in the section Generation of Datasets
According toWheat Spike Physiological Changes, testing reliability

of Rater 1, Dataset 1 included matured and non-matured
wheat spikes and Dataset 2 included only non-matured spikes
(Table 1). Four cases applied different weight set of loss functions
in both Datasets (Table 2, Supplementary Figures 1, 2). The
performance of the CNN model was evaluated via the classified
result of the testing data.

The testing accuracy2 of the model trained with Dataset 1
was 90.1% in Case 1, 90.4% in Case 2, 90.0% in Case 3, and
87.7% in Case 4. The testing accuracy2 of Dataset 2 was 98.4%
in Case 1, 93.9% in Case 2, 95.0% in Case 3, and 94.2% in Case 4.
Dataset 2 presented higher accuracy2 values compared to Dataset
1, suggesting that the model was accurate. However, it was not
sufficient to claim that the model was reliable based on accuracy2
alone since the dataset in this study was unbalanced. In addition
to accuracy2, other metrics can help evaluate the performance of
the CNN model, such as precision2, recall, and F1 score.

Precision2 indicates the ability to correctly classify an instance
in all predicted positive instances. The focus was on the
performance of the CNN model in Category 2 as this was
the category that breeders and pathologists will concentrate on
for breeding purposes. Dataset 1 Case 2 showed the lowest
precision2 (75.4%) among all cases values (Table 4). Moreover,
the confusion matrix of Dataset 1 Case 2 showed that the model
misclassified 38 images of Category 1 (no symptoms) as Category
2 (early disease stages and low levels of disease symptoms), which
was the highest number of wrongly classified images among
all the cases (Figure 4B). This suggested that the class weight
of Category 2 might be too high since its misclassified images
that belonged to other categories as Category 2. Hence, the
class weight combination was modified by lowering the weight
in Category 2 and increasing the weight in Category 1 as to
not overemphasize the impact from Category 2. Precision2 of
Category 2 significantly increased from 75.4% in Case 2 to
84.1% in Case 3, and to 85.0% in Case 4 (Table 4). In Case 2,
precision2 of Category 2 significantly increased from 75.4% in
Dataset 1 to 90.2% in Dataset 2 (Table 4). Precision2 of Category
2 significantly increased from 90.2% in Case 2 to 92.7% in Case 3
and from 90.2% in Case 2 to 94.1% in Case 4 (Table 4).

The recall metric for evaluating the CNNmodel that indicates
the ability to correctly recognize a category was also used.
In datasets 1 and 2, the recall of Category 2 was the lowest,
illustrating the challenge of the model to classify images of
Category 2 (early disease stages and low levels of disease
symptoms) (Table 4). The highest recall of Dataset 1 Category
2 was 86.0% in Case 2, and the lowest was 74.2% in Case 1
(Table 4). This was expected given that Case 2 had a higher
weight in the loss function of Category 2 compared to Case 1
(non-weighted loss function). In Case 2, Dataset 1, the recall
values were similar among the three categories (Table 4). In
Dataset 2 Category 2, the lowest recall was 75.0% in Case 1,
and the highest recall was 84.2% in cases 2 and 3 (Table 4).
The model in these two cases had the highest weight in loss
function of Category 2 (early disease stages and low levels of
disease symptoms).

F1 score is a common indicator of the overall performance of
the CNN model. In datasets 1 and 2, the F1 score of Category 2
was the lowest, reaffirming the difficulty of classifying images of
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TABLE 4 | Classification performance of the CNN model when classifying the testing set of Dataset 1 (maturing and non-matured spikes) and Dataset 2 (non-matured

spikes) in the cases of the study presented different weights in the loss function [weight in Category 1, weight in Category 2, weight in Category 3].

Dataset 1 Dataset 2

Model Performance Index Category 1 Category 2 Category 3 Category 1 Category 2 Category 3

Case 1(A) Precision 0.891 0.852 0.955 0.923 0.918 0.967

Recall 0.945 0.742 0.955 0.985 0.750 0.967

F-1 score 0.917 0.793 0.955 0.953 0.826 0.967

Case 2(B) Precision 0.926 0.754 0.950 0.952 0.902 0.936

Recall 0.890 0.860 0.864 0.963 0.842 0.978

F-1 score 0.908 0.803 0.905 0.957 0.871 0.957

Case 3(C) Precision 0.915 0.841 0.938 0.953 0.927 0.967

Recall 0.929 0.803 0.955 0.985 0.842 0.967

F-1 score 0.922 0.822 0.946 0.968 0.882 0.967

Case 4(D) Precision 0.915 0.850 0.946 0.942 0.941 0.946

Recall 0.937 0.798 0.964 0.991 0.792 0.967

F-1 score 0.926 0.823 0.955 0.966 0.860 0.956

(A) Case 1 [1, 1, 1], (B) Case 2 [1, 10, 1], (C) Case 3 [2, 5, 1], and (D) Case 4 [2, 1, 1]. The performance measures per class considered were precision, recall, and F1 score.

FIGURE 4 | Confusion matrix of the images of Dataset 1 (non-matured spikes only) showing “true” categories by Rater 1 (y-axis) and predicted categories by the CNN

model (x-axis). Category 1: contained images with 0% severity, Category 2: 0.1–20% severity, Category 3: 20.1–100% severity. The cases of study presented different

weights in the loss function [weight in Category 1, weight in Category 2, weight in Category 3]. (A) Case 1 [1, 1, 1], (B) Case 2 [1, 10, 1], (C) Case 3 [2, 5, 1], and (D)

Case 4 [2, 1, 1]. Values and color intensity represent number of images.

Category 2 by the model (Table 4). The lowest F1 score of Dataset
1 Category 2, was 79.3% in Case 1, while the highest was 82% in
both Case 3 and Case 4 (Table 4). In Dataset 2 Category 2, the
lowest F1 score was 82.6% in Case 1, and the highest F1 score was
88.2% in Case 3 followed by Case 2 with 87.1% (Table 4).

A comparison of outcomes revealed that Category 2 was
the most difficult category to classify correctly (Figure 4). This
difficulty was attributed to the disease symptoms being barely
visible at the early stage of infection, and some wheat spikes
in Category 1 were maturing, and their color was similar to

Frontiers in Plant Science | www.frontiersin.org 9 June 2021 | Volume 12 | Article 673505

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Fernández-Campos et al. Wheat Spike Blast CNN Classifier

FIGURE 5 | Confusion matrix of the images of Dataset 2 (non-matured spikes only) showing “true” categories by Rater 1 (y-axis) and the predicted categories by the

CNN model (x-axis). Category 1: contained images with 0% severity, Category 2: 0.1–20% severity, Category 3: 20.1–100% severity. The cases of study presented

different weights in the loss function [weight in Category 1, weight in Category 2, and weight in Category 3]. (A) Case 1 [1, 1, 1], (B) Case 2 [1, 10, 1], (C) Case 3 [2, 5,

1], and (D) Case 4 [2, 1, 1]. Values and color intensity represent number of images.

that of MoT infected spikes. We observed that the highest
number of images exactly classified as Category 2 was obtained
with the Case 2 Dataset 1 (Figure 4B). These results suggested
that Case 2 was the most appropriate to classify wheat spike
blast images in Dataset 1 because it was capable of detecting
the infection at an early stage. Even though Case 2 had a
slightly lower precision, this is considered the usual trade-
off between precision2 and recall for disease classification
purposes. The recall, precision2, and F1 score increased after
the images of maturing spikes were omitted when training
the model with Dataset 2 (Figure 5). The cases 2 and 3 of
Dataset 2 presented the highest number of images exactly
classified as Category 2 (Figures 5B,C). Cases 2 and 3 were
the most appropriate to detect the wheat spike blast in Dataset
2 because the model was capable of detecting the infection
in the early stages. Additionally, in all the cases, the model
was more stable predicting Category 3, which is relevant
because it covers DS from 20.1 to 100%, potentially aiding
breeders and pathologists to discern higher levels of susceptibility
among cultivars. Although the CNN model misclassified some
images of Category 2, it still provided a promising approach
to classify the severity of the disease. It demonstrated that
the CNN model is potentially a good method for breeders
and pathologists.

DISCUSSION

Wheat blast is spreading worldwide, the identification of durable
and broad-spectrum resistance is urgently needed (Valent et al.,
2021). There are a few known sources of effective resistance, and
therefore it is crucial to identify more genetic resources. Plant
disease phenotyping is a bottleneck in the identification of novel
sources of resistance. We developed the first deep CNNs model
for wheat spike blast phenotyping under controlled environment.

This study results demonstrated that the agreement between
disease estimations and disease measurements was more
significant than what could have been expected to occur by
chance. Rater 1 (a pathologist with expertise in multiple diseases
besides blast) consistently obtained the higher kappa coefficient
(substantial agreement), higher accuracy, and lower bias in all
the performed analyses than disease estimations of an expert
(Rater 2) in the wheat blast and the disease measurements
of ImageJ software. These results are relevant because Rater 1
estimated the DS and classified the entire image dataset into
three categories. Therefore, the agreement analysis supports
an accurate classification of the images before they were used
to train and test the CNN model. The inter-rater agreement
analysis also showed that accuracy, precision, and bias are highly
dependent on the nature of the dataset. Dataset 1 included images
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showing disease symptoms and natural plant physiological
changes. However, although Dataset 2 was preferred due to
higher concordance, results showed that DS assessments among
raters were never perfect.

In the present study, the applicability of CNNs for wheat
spike blast severity classification from spring wheat images
was investigated. Currently, the CNN approach can classify
three severity levels (0%, 0.1–20%, and 20.1–100% severity)
and was trained using a reliable wheat spike blast dataset. The
advantage of this three categories CNN model is that it detects
the infected wheat spike and provides further information on
the corresponding blast severity level. It is useful to have such
a model to classify different infection levels and identify the
resistant cultivars from the susceptible ones. Despite the wheat
blast dataset comprising of imbalanced data that could have
led to a biased CNN model, two techniques, including data
augmentation and weighted loss function, were applied to the
training process. The loss function is a function map of the
difference between the ground truth and predicted output of
the model. The importance of a category with a larger error
can be enhanced by assigning a weighted variable in the loss
function. The results indicate that the performance of the
model has a significant improvement when the weighted loss
function is applied. In particular, the model has gained the
ability to detect Category 2 using a weighted loss function. These
encouraging results demonstrate that the proposed CNN model
can distinguish Category 1 and Category 2 even though there
is a relatively little difference between both the categories. More
significant, the CNN could classify the images of Category 3 with
low error, which contained infected spikes with severities higher
than 20%.

The results showed that the CNN models trained in both
datasets (Fernandez-Campos et al., 2021) presented good
performance classifying the wheat spike blast images in the
corresponding severity categories. However, the models trained
without images of wheat maturing spikes showed higher
precision2, recall, and F1 score when classifying the images than
the models trained with maturing and not matured wheat spikes.
The performance of the model trained with maturing and non-
matured spikes is a critical finding from a biological/physiological
point of view. These symptoms on spikes are often reported
when wheat has reached the medium milk-to-dough growth
stage (Cruz et al., 2016b). The reason why the rating is often
stopped at the milk-to-dough stage is that from that point
forward, physiological maturity starts to kick in. Our findings
will serve to provide future and explicit guidelines to potential
users of the preferred model. Users will need to acknowledge the
natural wheat maturity process (which alters spike color from
green to yellow/white), which can confuse the CNN model. This
statement applies when phenotyping for wheat blast or similar
diseases with symptoms characterized by spike bleaching [e.g.,
Fusarium graminearum (Fusarium head blight)].

Different software based on image analysis are currently
available to measure DS (Lamari, 2002; Vale et al., 2003). We
used ImageJ, a free image-processing software, and manually
thresholded images to measure wheat spike blast severity. de
Melo et al. (2020) indicated the inevitable error when delineating
the disease area with image analysis software (Bock et al., 2008).

This is a challenge that future research needs to address when
disease symptoms are not well-defined.

Researchers could benefit from the proposed approach
promising for wheat spike blast severity measurements under
controlled environmental conditions. Results are supported by
a substantial agreement with “true” data obtained from Rater
1, compared against disease estimations of Rater 2, and disease
measurements of ImageJ. In collaboration with data scientists,
breeders could pre-select wheat cultivars under controlled
environments by automatically analyzing and classifying images
using the wheat spike blast CNN model preferably trained with
Dataset 2. Next, the breeders can focus on the cultivars that fall
into categories 1 and 2, which in general terms, are considered
resistant or moderately resistant. This may reduce the high
number of cultivars tested under field conditions, accelerating
the cultivar screening process. A limitation of the study is that
the CNN was trained to classify only images of wheat spike blast
(spring wheat) under controlled conditions. Further research
is required to improve the generalizability of the CNN model
using a greater wheat spike blast dataset consisting of controlled
and field images. In addition, the results in this study show an
opportunity that could be applied similar to other pathogens.

The next step in this research is to validate the model with
other images with a similar background and deploy it in a
Web application. This future option might allow breeders and
pathologists to submit their images and have the model classify
them by categories automatically. As more images of various
cultivars infected with different isolates can be added to the
dataset, increasing symptom variability, a more refined and
robust model can be developed. To our knowledge, this is the
first study presenting a deep CNN model trained to detect and
classify wheat spike blast symptoms. The model might help in the
pre-screening of wheat cultivars against the blast fungus under
controlled conditions in the future.
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