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Climate change is a great threat to global biodiversity and has resulted in serious
ecological consequences. Although the potential effects of climate change on genetic
diversity have recently received much research attention, little research has focused on
the impacts of climate change on genetic connectivity and the relationship between
climate stability and genetic divergence. Here, we combined population connectivity
with genetic data to predict the impacts of future climate change on genetic connectivity.
Coupled with climatic variables and genetic data, we used POPS software to create
spatially explicit simulations and predict the dynamics in genetic clusters in response to
climate changes. A generalized additive model was employed to test the correlation
between climatic stability and genetic diversification. Our findings indicated that a
reduction in species distribution due to severe climate change would lead to a
substantial loss of genetic connectivity. More severe future climatic scenarios would
likely cause greater loss of variability or more distinct homogenization in genetic variation
of species. Relatively low interpolated genetic distances are generally associated
with areas of greater losses in climatic suitability from the present to the future.
The displacement of climatic genetic clusters will challenge species adaptation to
future climate change because of the loss of fundamental evolutionary potential.
The persistence capacity of plant species may be weakened in the face of future
climate change.

Keywords: adaptation, climatic suitability, evolutionary potential, range shift, population connectivity

INTRODUCTION

Modern reliance on fossil fuels has caused unprecedented climate change, ushering in extreme
temperatures globally and abnormal precipitation patterns in many regions (the Intergovernmental
Panel on Climate Change, IPCC, 2007; Sheffield and Wood, 2008). These changes have resulted
in serious ecological consequences, such as latitudinal and altitudinal shifts in geographic ranges,
altered phenology, disrupted physiology, and disturbed community dynamics (Harte and Shaw,
1995; Hickling et al., 2006; Parmesan, 2006; Springer and Ward, 2007; Lenoir et al., 2008; Anderson
et al., 2012; Leonardi et al., 2012; Siepielski et al., 2017). Owing to the rapid pace of global
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change, many species have suffered local population extinctions
with low dispersal abilities to track preferred climates, and
habitat fragmentation will likely further impede migration (Davis
and Shaw, 2001; Kremer et al., 2012), leading, in turn, to
potentially further range contraction (Parmesan, 2006; Sinervo
et al., 2010; Cahill et al., 2012). Climate change is considered an
important factor that threatens species persistence and landscape
connectivity (McIntyre et al., 2014). The reduction in population
connectivity will be likely to result in a decrease in dispersal
(Gibbs, 1998; Wasserman et al., 2012) and reduce population
viability and gene flow (Reh and Seitz, 1990; Wilson and Provan,
2003; Wasserman et al., 2012). Therefore, the loss of genetic
diversity associated with decreases in landscape connectivity may
increase the risk of local population extinctions (Hoffmann and
Sgrò, 2011). Thus, landscape connectivity prediction for future
global change may provide valuable information for species
persistence (Brown and Yoder, 2015; Huerta-Ramos et al., 2015;
Inoue and Berg, 2017). Landscape genetics analysis approaches
can contribute to predict genetic patterns in response to climatic
change (Wasserman et al., 2013; Brown and Yoder, 2015; Johnson
et al., 2017; Guan et al., 2019). From a conservation perspective,
it is important to identify areas that both harbor high genetic
diversity and are projected to remain within a climatically suitable
space under future climate change scenarios (Taubmann et al.,
2011). Thus, there is a demand to explore the possibility of
a mechanistic link between climatic fluctuation and genetic
diversity to more completely predict the effects of climate change
on genetic variation.

China harbors the most diverse temperate flora of the world,
with at least 3,000 vascular plant genera, of which a remarkable
8.2% (c. 248) is endemic (Wu et al., 1996; López-Pujol et al., 2006,
2011). These taxa are concentrated mainly in the subtropic and
warm temperate zone across central and southeast China, and
covers over 5,000 km from west to east. The region is highly
sensitive to global change, which greatly affects endemic species
distribution. However, climate change and human activities, such
as rapid urbanization, have posed serious threats to biodiversity
in China over the past several decades (Li and Chen, 2014; Cui
et al., 2016; Sajjad et al., 2018). For instance, the 2008 chilling
event in central and southeast China led to the regional extinction
of many tree species, with a loss of over 1.86 × 107 hm2 of forest
(Chen et al., 2012). It was estimated that in terms of area, 40%
of ecosystems were degraded severely, 15–20% of species were
highly threatened, and genetic diversity suffered greatly from
heavy erosion (Ma et al., 2004; Nie et al., 2014). What is more
worrying is that projects suggest mainland China might continue
to confront particular risks from global warming in the coming
decades, with a rapid rise of the annual mean temperature by 2.3–
3.3◦C and of precipitation by 5–7% by 2050 (Writing Committee
of National Assessment Report on Climate Change, 2014). The
accelerated warming could negatively affect the ability of plant
populations to respond to further climate change (Cao et al.,
2016), and is viewed as the greatest threat to the persistence of
biodiversity in central and eastern China in the future (Dai et al.,
2009; Li X. D. et al., 2011). Although most studies have focused
on the impact of climate warming on spatial and phenological
shifts of species and genetic diversity, relatively little research

has been conducted on the potential effects of climate change
on landscape connectivity and the correlation between climatic
stability and genetic diversification. Thus, a more comprehensive
understanding of the genetic consequences of climate change is
required to evaluate the impacts of climate change on landscape
connectivity and the relationship between climate stability and
genetic divergence.

We chose the small deciduous tree Cornus kousa subsp.
chinensis as our model species. It is broadly distributed across
subtropical and warm-temperate deciduous forests of mainland
China. The species grows on environmental heterogeneities, such
as variation in elevation, precipitation, temperature, moisture,
and soil-nutrient composition, occurring from the subtropical
zone to the temperate zone across its natural distributional
range in central and eastern China (Flora of China Editorial
Committee., 2005). The red globose fruit is about 1–1.5 cm
in diameter and often falls near the mother plant at maturity.
Its main seed dispersers are rodents, which have no ability to
spread seeds over long distances (Li N. et al., 2011). Population
persistence of the species has a profound significance on the
healthy function of forest ecosystems in mountains (Pais et al.,
2017). Here, to examine the potential effects of climate change
on evolutionary potential, we study how climate change could
fragment the genetic landscape and affect genetic clusters. We
conduct landscape genetics analyses to test the correlation
between variation in the level of genetic diversity and climatic
fluctuation and aid our ability to predict the vulnerability of
species in the face of future environmental changes.

MATERIALS AND METHODS

Species Distribution Modeling and
Landscape Connectivity
Projected climate data layers for the current (∼1950–2000)
and the 2080 period (average for 2061–2080) based on 19
bioclimatic variables at a resolution of 2.5 arc-min (ca. 21 km2)
were downloaded from the WorldClim database. Different
general circulation models (GCMs) vary considerably in future
projections (Jayasankar et al., 2015). Therefore, we examined
three GCMs (CCSM4, HadGEM2-ES, and MIROC-ESM) for
future projections of the 2080 period with RCP45 and RCP85.
RCP85 denotes the worst-case scenario, which entails the
highest projected increase in globally averaged greenhouse gas
concentrations, and RCP45 represents the medium-case scenario
(Vuuren et al., 2011). Because some climate variables are
highly correlated with each other, bioclimatic variables with
Pearson correlation above 0.75 were removed to reduce the
autocorrelation of input environmental data. To project future
distributions, the average of the outputs of three GCMs for
each variable was used in building the model to account for
variability between model projections. The Digital Elevation
Model (DEM) dataset was downloaded from the Cold and Arid
Regions Sciences Data Center in Lanzhou, China1. The Chinese
vegetation (VEG) dataset was obtained from the Environmental

1http://www.ncdc.ac.cn
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and Ecological Science Data Center for West China National
Natural Science Foundation of China (see text footnote 1). Land
cover data were obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS)2. To construct species distribution
models (SDMs), we gathered a total of 492 occurrence records of
C. kousa subsp. chinensis covering the entire range known for the
species. These occurrences were mainly collected from the IUCN
Red List Data3, Chinese Virtual Herbarium (CVH)4, and previous
literature. To ensure optimum SDM performance, the occurrence
data must be spatially independent; therefore, the elimination of
spatially auto-correlated occurrence points was crucial for model
evaluation. Spatially independent occurrences can avoid the
prediction over-fitting problem and improve model performance
(Veloz, 2009; Hijmans, 2012; Boria et al., 2014). Hence, a
method that spatially rarefies localities at specified Euclidian
distance was employed according to landscape heterogeneity
(Boria et al., 2014). All the occurrence points were rarefied
at 25 km2 in areas of low climatic heterogeneity. To estimate

2https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1
3http://www.iucnredlist.org/
4http://www.cvh.ac.cn

landscape heterogeneity, we performed a principal component
analysis (PCA) for the environmental variables (Guan et al.,
2016). Finally, together with the weakly correlated environmental
layers, the remaining 129 localities (Supplementary Table 1)
with spatially independent occurrence were used to build the
SDMs (Figure 1).

The SDMs were constructed with R package Biomod2
(Thuiller et al., 2014). Ensemble modeling techniques allow
for the evaluation of the range of projections and enable
more reliable predictions. SDMs require species absence
point data, which we obtained using pseudo-absences (PAs)
methods, to predict suitable species habitat. The distribution of
species was modeled using 10 different algorithms: generalized
additive models (GAMs), generalized linear models (GLMs),
random forest (RF), classification tree analysis (CTA), flexible
discriminant analysis (FDA), artificial neural networks (ANNs),
surface range envelope (SRE), generalized boosted models
(GBMs), multivariate adaptive regression splines (MARSs), and
maximum entropy (MaxEnt). The ensemble models were built
using the true skill statistic (TSS) and the area under the
receiver operating characteristic curve (AUC) for current and
2080 under two greenhouse gas scenarios (RCP45 and RCP85)

FIGURE 1 | Distribution of shared haplotypes and population locations of Cornus kousa subsp. chinensis. Different color circles are designated as haplotypes
H1∼H7, respectively. Letters in the circles are the acronym of the populations.
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(Fielding and Bell, 2002; Marzban, 2004; Howell et al., 2011). All
the 10 models were constructed with 75% training and 25%
testing of occurrence data, which was repeated 10 times for each
model. All the models with thresholds of TSS and AUC above 0.6
were retained for ensemble modeling (Guan et al., 2020). Finally,
the ensemble models of the distribution of C. kousa subsp.
chinensis were produced with the optimum performance models.

We transformed all the ensemble models into binary SDMs
by reclassifying model pixels with the lowest presence threshold
(LPT) (Pearson et al., 2007) via ArcGIS 10.2. Then, we used the
SDM toolbox v1.2 in ArcGIS to calculate the distribution shifts
between the current and future species distribution and forecast
range expansion, contraction, and stability (Brown, 2014).

Plant Materials, DNA Isolation, and
Sanger Sequencing
Leaf material was obtained from 24 populations (Supplementary
Table 2) of C. kousa subsp. chinensis throughout its distribution
across central and eastern China. Whole genomic DNA was
extracted from the dried leaf tissue Plant DNA-Easy kit (Bioteke
Corporation, Beijing, China). For the DNA survey, two intergenic
spacer regions (IGSs) (rpl14-rpl36 and trnL-trnF) of chloroplast
DNA (cpDNA) were sequenced for all C. kousa subsp. chinensis
samples (n = 186). The sequences were edited, assembled,

and aligned in GENEIOUS version 4.8.4 (Drummond et al.,
2010) after generating with an ABI 377XL DNA sequencer. All
the cpDNA haplotype sequences were deposited in GenBank.
Accession numbers were generated (see Supplementary Table 3).

Following the protocols specially developed for Cornus kousa
by Wadl et al. (2010), eight SSR markers (CK007, CK015, CK029,
CK031, CK040, CK043, CK047, and CK048) and amplification
were used for genotyping 215 samples. The PCR products were
purified and then loaded on an ABI 3730XL DNA Analyzer. The
data were scored and compiled using GENEMARKER v.2.2.0
(SoftGenetics, State College, PA, United States).

Evaluating Genetic Data and Parameters
To forecast the impacts of climate change on genetic clusters of
C. kousa subsp. chinensis, we evaluated genetic parameters based
on the cpDNA sequences and nuclear microsatellite loci. For
the microsatellite loci, linkage disequilibrium (LD) was analyzed
using GENEPOP version 4.0.7 (Rousset, 2008). GenAlEx v
6.502 (Peakall and Smouse, 2012) was employed to calculate
the value of Shannon’s Information Index (I), the number of
effective alleles (Ne); expected heterozygosity (He) under Hardy–
Weinberg equilibrium following Nei (1978) for each population.
To avoid underestimating Ne, we removed populations with
sample sizes less than 5 (Table 1). For sequence data, we

TABLE 1 | Genetic diversity of the 24 populations of Cornus kousa subsp. chinensis for microsatellite loci and chloroplast sequences.

Microsatellites Sequences Suitability

Pop N I Ne He N h πT Nh Current Future RCP45 Future RCP85

AF 6 0.79 2.2 0.450 4 0.5 0.0037 2 0.358 0.391 0.461

BTM 14 1.12 3.0 0.559 8 0.25 0.0018 2 0.701 0.623 0.505

CA 5 1.24 3.5 0.653 6 0.33 0.0003 2 0.927 0.969 0.923

CK 5 1.2 3.3 0.635 9 0.22 0.00016 2 0.875 0.447 0.513

DJY 7 0.87 2.4 0.491 8 0.25 0.0018 2 0.666 0.310 0.532

EMS 15 0.84 2.6 0.441 6 0.33 0.0002 2 0.571 0.502 0.394

HS 10 1.09 3.0 0.557 12 0.30 0.0002 2 0.813 0.854 0.692

JGS 9 1.27 3.9 0.606 12 0.35 0.0004 2 0.850 0.442 0.688

LD 10 1.10 2.7 0.554 6 0.6 0.0029 2 0.466 0.240 0.220

LS 5 1.28 3.7 0.658 10 0 0 1 0.946 0.970 0.887

LiS 5 1.08 3.0 0.605 4 0 0 1 0.896 0.372 0.289

NS 7 0.91 2.6 0.491 9 0.57 0.0004 2 0.950 0.746 0.550

TBS 10 1.13 2.8 0.602 8 0.57 0.0054 2 0.600 0.587 0.457

TMS 11 1.18 3.2 0.612 9 0.5 0.0004 2 0.955 0.894 0.819

TTS 5 0.87 2.7 0.504 4 0.67 0.0005 2 0.848 0.944 0.785

TTZ 11 1.33 3.8 0.645 10 0.47 0.0003 2 0.968 0.873 0.875

WDS 5 0.79 2.1 0.450 4 0 0 1 0.904 0.768 0.545

XE 16 1.06 3.0 0.556 11 0.33 0.0002 2 0.920 0.899 0.795

XJZ 10 1.56 4.9 0.714 4 0.67 0.0005 2 0.832 0.931 0.766

XTM 7 1.10 3.1 0.557 7 0.57 0.0004 2 0.828 0.942 0.831

YL 11 1.05 3.3 0.509 9 0.22 0.0002 2 0.934 0.972 0.853

ZP 5 1.15 3.2 0.617 4 0 0 1 0.534 0.617 0.558

LJS 13 0.77 2.0 0.458 15 0.13 0.0039 2 0.432 0.234 0.376

WWS 13 0.45 1.6 0.286 10 0 0 1 0.330 0.203 0.232

Pop, population; N, number of individuals; I, Shannon’s Information Index; Ne, number of effective alleles; He, expected heterozygosity; h, gene diversity; πT , nucleotide
diversity; Nh, number of haplotypes. Suitability represents the environmental suitability obtained by species distribution modeling.
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calculated the nucleotide diversity (πT), gene diversity (h), and
the number of haplotypes (Nh) (Nei, 1987) for each population.
The analyses were performed with the software DnaSP 5.10
(Librado and Rozas, 2009).

We assumed that a displacement of climatically suitable
habitats for the species in a geographical space will occur
in response to climate change and, consequently, that only
populations located in areas above the lowest presence threshold
(LPT) of habitat suitability will persist and generate the gene
pool of individuals for the next generation. To predict the
genetic diversity of C. kousa subsp. chinensis in the future,
we recalculated the genetic parameters of diversity mentioned
above using LPT for both future climate change scenarios
(RCP45 and RCP85). For nuclear microsatellites, the simulations
were executed for each locus and overall loci with the
software GenAlex 6.502 (Peakall and Smouse, 2012), whereas for
sequence data, we performed data simulation with DnaSP 5.10
(Librado and Rozas, 2009).

Modeling the Landscape Connectivity
To determine whether environmental suitability is responsible
for shaping patterns of genetic connectivity among populations,
we performed Mantel and partial Mantel tests with software
Zt version 1.1 (Bonnet and Van de Peer, 2002). Genetic
divergence was calculated in the ARLEQUIN v3.5 package
(Excoffier et al., 2005) based on linearized Fst values [Fst/(1−Fst)].
Landscape resistance values were exacted from a friction
layer from inverted SDMs. Then, the matrices were generated
with GenAlEx v 6.5 (Peakall and Smouse, 2012). Genetic
distance matrices were correlated against the landscape resistance
matrices with competing for Euclidian distance partialed-out in
partial Mantel tests.

Ecological dispersal networks for species were created by
applying categories of the least-cost paths (LCPs) method, which
computed the least dispersal costs between two localities. In
this approach, we inverted the SDMs produced by Biomod2 to
obtain a friction layer (dispersal cost layer) for the current and
future (2080) periods. That is, areas of high suitability had a
low dispersal cost through the landscape, whereas regions with
low or no probability of occurrence were converted to areas of
high dispersal costs. Subsequently, we used the friction layer to
generate a cost distance layer for each locality. Finally, based
on the cost distance layer, we created pairwise populations and
shared a cpDNA haplotype network by adding the LCPs between
two populations. The models were generated using SDM toolbox
version 1.2 in ArcMap 10.2 (Brown, 2014).

Predicting Dynamics in Genetic Clusters
Under Future Scenarios
We used the POPS software (Jay et al., 2015) to execute spatially
explicit simulations in order to predict dynamics in genetic
clusters in response to climate change (Jay et al., 2012). The
software carries out Bayesian clustering algorithms based on
genetic, geographical, and environmental variables, and assigns
individuals or genes to different genetic groups after simulating
the impacts of environmental variables on individuals and

admixture proportions. The three climate variables (annual mean
temperature, precipitation in the driest month, and annual
precipitation) with higher variance among populations were
selected to model the effect on genetic clusters. Combining
climatic variables and genetic data, we launched POPS to
simulate genetic clusters under current climatic conditions (Jay
et al., 2015) with the Markov chain Monte Carlo (MCMC)
estimation algorithm. The run used 20,000 sweeps following a
burn-in period of 2,000 sweeps using models with admixture.
The simulations were implemented four times for each value
of the maximum number of cluster K ranging between 2 and
20. We selected a subset of runs minimizing the deviance
information criterion (DIC, Spiegelhalter et al., 2002). Only the
runs with the lowest DIC values were retained; other runs were
discarded. We then predicted the genetic clusters for the RCP45
and RCP85 scenarios modeling genetic coancestry in response
to future climate change. Finally, we computed correlation
coefficients measuring the relationship between matrices of
current and projected ancestry coefficients for the RCP45 and
RCP85 scenarios. The correlation facilitates understanding of the
effects of climate change on spatial genetic structure. The closer
the correlation is to 1, the smaller the expected changes in spatial
genetic structure.

Examining the Relationship Between
Genetic Diversity and Climatic Stability
We used the Genetic Landscapes Toolbox (Vandergast et al.,
2011) to generate divergence landscapes in ArcGIS 10.2. Pairwise
genetic distance was visualized as genetic landscapes and mapped
to the geographic midpoints between collection locations with
the Single Species Genetic Divergence Tool. A continuous
layer was interpolated from the geographic midpoints with
Inverse Distance Weighted (IDW) interpolation in grid cell size
1 km2 (power = 2, variable search radius with 12 points). To
avoid extrapolating beyond the original sample locations, the
raster was clipped to the spatial extent of sample locations.
High values represent areas of high genetic differentiation
between sampled locations, and low values mean relatively low
genetic divergence between collection locations. A generalized
additive model (GAM) was used in R 3.6.1 to test the
correlation between climatic stability and genetic diversification.
Interpolated genetic distance was used as the response variable,
and change between the present and the future was used as the
predictor variable. These values were calculated by extracting
the value of the difference between the current and present
climatic suitability at each point at which an interpolated genetic
distance was calculated.

RESULTS

Genetic Data and Parameters
The total alignment of the two chloroplast regions (trnL-trnF
and rpl14-rpl36) was surveyed across the 186 individuals of
C. kousa subsp. chinensis was 1,566 bp in length, including four
indels and 31 substitutions. Together, all the polymorphisms
identified seven chloroplast haplotypes (chlorotypes, H1–7)
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(Supplementary Table 3) across the 24 populations (Figure 1).
At the species level, the cpDNA data revealed that nucleotide
diversity (πT) was 1.08 × 10−3 and that haplotype diversity
(Hd) was 0.447. Microsatellite data were obtained across the
215 individuals of C. kousa subsp. chinensis genotyped at eight
microsatellite loci (Table 1 and Figure 1). All eight microsatellite
loci displayed polymorphism. On average, He, Ne, and I were 0.55
(range: 0.29–0.714), 2.98 (range: 1.6–4.9), and 1.05 (range: 0.45–
1.56), respectively (Table 1). There was no significant linkage
disequilibrium (LD) detected between any pair of loci.

Species Distribution Models and
Landscape Connectivity
All the ensemble forecasting models had an AUC and a TSS above
0.6, indicating the effectiveness of these in distinguishing suitable
and unsuitable habitats. The mean AUC and TSS values for 10
algorithms calculated in the models are listed in Supplementary
Table 4. The presence probability of C. kousa subsp. Chinensis
was highly related to annual mean temperature and precipitation
in the driest month (Supplementary Table 5), whereas the
importance of land cover and vegetation affecting the SDMs was
very low. The annual mean temperature was the most important
environmental variable affecting species distribution, from 0.351
to 0.964 with a mean of 0.592. Precipitation in the driest month
had importance from 0.239 to 0.798 with a mean of 0.419.

The SDMs showed high levels of suitability for C. kousa
subsp. chinensis throughout most of central China and parts of
eastern China, except for the Sichuan Basin and middle-lower
Yangtze plain. For future scenarios, the species was likely to lose
its climatic suitability at most of its ranges, especially the west
of its range. By comparing the species ranges under the two
future scenarios, we predicted that the effect of climate change
on species ranges under the RCP85 scenario would be more
drastic than that under the RCP45 scenario. Under the future
scenarios, species ranges contracted in the west and expanded
in the east (Figures 2A,B), while the species showed a main
range contraction as a whole. Range sizes of C. kousa subsp.

chinensis were predicted to decrease by 127,513 km2, a reduction
of about 15.56%, under the RCP85 scenario, and by 78,689.5 km2,
a reduction of about 9.05%, under RCP45. Our findings also
predicted larger range size changes between current conditions
and the RCP85 scenario than RCP45 (Figures 2A,B).

Mantel tests revealed that landscape resistance during the
present and future periods were both statistically significantly
correlated with genetic distance within a 95% confidence interval.
The correlation values of the present, RCP45, and RCP85
were 0.359, 0.345, and 0.389, respectively. The correlation
coefficient of 0.16 between Euclidian distance and genetic
distance was not significantly different from zero with a p-value
of 0.119. Partial mantel tests showed that there was a significant
correlation between landscape resistance and genetic distance,
independently from geographical distances. The correlation
values were 0.427,0.346, and 0.479, with an associated p-value
smaller than 0.05.

The predictions showed that the five western populations
(DJY, LD, EMS, LJS, and WWS) had no genetic connectivity
with the central and eastern populations from the present to
the year 2080 (Figure 3). Although a little increase in genetic
connectivity was predicted for the potential dispersal network
among the eastern populations (YL, CA, and XTM), the decline
in genetic connectivity was likely to occur among most other
populations, especially among the populations distributed in
Qingling and Daba Mts. Under the climate warming scenario,
LCP models of pairwise populations in central and eastern China
revealed similar population connectivity patterns with genetic
connectivity patterns (Figure 3). The difference is that the low
population connectivity exists between five western populations
and other populations in central and eastern China from the
present to the year 2080.

Dynamics in Genetic Clusters in Future
Scenarios
For microsatellite data, the optimal number of genetic clusters
in response to climatic variables was K = 7 with a DIC value of

FIGURE 2 | Range shifts of C. kousa subsp. chinensis in relation to time intervals from the current period to the year 2080. The areas with red, blue, and green
colors designate range expansion, range stability, and range contraction, respectively. (A) RCP45 scenario. (B) RCP85 scenario.
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FIGURE 3 | Potential genetic connectivity and population connectivity of C. kousa subsp. chinensis in relation to two general time periods [the present
(∼1950–2000) and the year 2080]. (A–C) represent the genetic connectivity of the current period, RCP45 scenario, and RCP85 scenario. (D–F) represent the
population connectivity of the current period, RCP45 scenario, and RCP85 scenario.

9,676 (Supplementary Tables 6–8), the most likely number of
genetic clusters was K = 3 with a DIC of 709 for sequence data
(Supplementary Tables 9, 10). The correlation was computed
between the inferred admixture coefficients and those predicted
from future climatic covariates. The correlation values of 0.96
for microsatellites and 0.92 for sequence data indicated that the
forecasts from the climatic variables were very accurate. Spatially
explicit simulations presented loss of variation in climatic clusters
due to climate changes (Figures 4, 5), especially under the
RCP85 scenario. For microsatellites, climatic clusters are lost in
both future scenarios, resulting in homogenization of genetic
diversity, such as clusters 2 and 7 for RCP45 (Figure 4B)
and 1, 2, and 7 for RCP85 (Figure 4C). Moreover, most
populations at the central range of C. kousa subsp. chinensis
were assigned to a common climatic genetic cluster (Figure 4C)
because of climate change. For sequence data, cluster 3 is lost
for the RCP85 scenario (Figure 5C), while all the clusters
were retained under the RCP45 scenario. Moreover, climate
change leads to homogenization of genetic variability under
both scenarios RCP45 (Figure 5B) and RCP85 (Figure 5C). The
simulations showed that genetic variations were more likely to
be homogenized under RCP85 than under RCP45 regardless
of molecular markers. A turnover analysis also demonstrated
that climate change strongly affected the spatial genetic structure
of C. kousa subsp. chinensis; however, different genetic clusters
presented varying responses (Figure 6). For microsatellite data,
clusters 1, 2, 3, and 7 dropped drastically in ancestry for both
future climate scenarios (Figure 6A), whereas the correlation

remained larger than 50% in clusters 4 and 5, and cluster 6
showed a moderate shift. For DNA sequences, all three clusters
presented significant declines in ancestry under the RCP85
scenario (Figure 6B). However, the correlation cores remained
larger than 60% in clusters 1 and 2 under the RCP45 scenario. On
the whole, all the genetic clusters presented a higher variation in
ancestry for RCP85 than for RCP45.

Testing the Relationship Between
Genetic Diversity and Climatic Stability
We performed the GAM analysis of all interpolated genetic
distance values in R 3.6.1. The results reveal that areas expected
to experience future climate stability are relatively high in
genetic diversity and those areas expected to experience
future climate fluctuation are relatively low in genetic
diversity. The areas expected to lose suitability under future
climate change predicted for 2080 in both scenarios are
of relatively low interpolated genetic distances, while the
regions expected to gain most climatic stability are high
in interpolated genetic distances (R2 = 0.508, p < 0.001,
threshold = 0.289, under RCP85, Figure 7A; R2 = 0.571,
p < 0.001, threshold = 0.6, under RCP85, Figure 7B; R2 = 0.642,
p < 0.001, threshold = 0.289, under RCP45, Figure 7C;
R2 = 0.547, p < 0.001, threshold = 0.6, under RCP45, Figure 7D).
To summarize, relatively high genetic diversity was associated
with lower loss in suitability between the future and the
present, and relatively low genetic diversity was generally
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FIGURE 4 | Spatial distribution of genetic clusters in response to climatic variables modeled for C. kousa subsp. chinensis, for microsatellite loci. (A) Current;
(B) RCP45 scenario; (C) RCP85 scenario. (D) Each color set corresponds to a cluster in the figure legend. Black dots designate the 24 sampled populations.

associated with regions of climatic instability between the future
and the present.

DISCUSSION

Prediction of Range Shifts
Under both climate scenarios, the distributed range size in central
and western China may decline, while the distributed areas in
eastern China may increase a little (Figure 2) where coastal
natural areas were lost to land reclamation and infrastructure
construction between 1950 and 2014 because of economic

development and rapid urbanization (Cui et al., 2016). Although
previous studies have reported that 52 of the 65 plant taxa
in central and eastern China have experienced northward
range shifts with an average of 3.37◦ over the past three
decades, correlating with recent climate changes (Song et al.,
2016), our results predict that C. kousa subsp. chinensis may
expand to eastern China under both future scenarios examined
here. Such contrasting results may be caused by the strong
variation among plant species, as different species may not
respond to climate change in the same way. In addition, the
inconsistent findings of this study compared with earlier studies
may stem from the research methods used. Previous studies
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FIGURE 5 | Spatial distribution of genetic clusters in response to climatic variables simulated for C. kousa subsp. chinensis, for sequence data. (A) Current;
(B) RCP45 scenario; (C) RCP85 scenario. (D) Each color set corresponds to a cluster in the figure legend. Black dots designate the 24 sampled populations.

FIGURE 6 | (A) Changes in ancestry for the seven genetic clusters simulated with microsatellite data. (B) Changes in ancestry for the three genetic clusters
simulated with DNA sequence data.

analyzed the range changes of these species by comparing the
original occurrence records; for this project, we constructed
the models using 3 AOGCM and 10 SDM algorithms in an
ensemble method (Araujo and New, 2007; Diniz-Filho et al.,
2009), which is considered more reliable than other approaches
(Gama et al., 2017).

Landscape Connectivity and Genetic
Diversity
Because of the rapid pace of global change, species will not have
the dispersal abilities to track preferred climates, and landscape
fragmentation will likely further impede migration (Davis and
Shaw, 2001; Kremer et al., 2012). The landscape connectivity of

C. kousa subsp. chinensis may decline in most areas, with the
exception of eastern China. The high levels of fragmentation and
landscape connectivity decline among populations may hamper
population migration and persistence. Thus, the persistence of
C. kousa subsp. chinensis under the climate change scenarios
discussed in this study may be threatened despite a little increase
of distribution area in eastern China. The shrinkage of the
landscape connectivity between central and eastern China may
lead to a reduction in effective population size and then result
in disruption of the genetic process. Moreover, a decline in
genetic connectivity would limit gene flow among populations
and cause genetic drift. The species with a decrease in genetic
connectivity would face a risk of reduction in adaptative
genetic variation, which represents fundamental evolutionary
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FIGURE 7 | Changes in climatic suitability between the present and the year 2080. (A) Threshold = 0.289 (LTP), under RCP85. (B) Threshold = 0.6, under RCP85.
(C) Threshold = 0.289 (LTP), under RCP45. (D) Threshold = 0.6, under RCP45. Plotted against interpolated genetic distances at each point at which a value was
interpolated.

potential. Great reductions in genetic connectivity may impede
the adaptation of species to ongoing climate change, raising
the risk of local population extinction (Willis et al., 2008;
Wright et al., 2008; Taubmann et al., 2011). Having no genetic
connectivity with central and eastern populations, western
populations may experience genetic drift and then a reduction
in evolutionary potential.

Potential Impact of Climate Change on
Genetic Clusters and Genetic Diversity
Cornus kousa subsp. chinensis prefers to grow in warm,
shaded, and moist places. IPCC expert projections forecast that
environmental conditions may change drastically during the
following decades. The annual mean temperature is predicted to
rise by 2.5◦C, and precipitation is also likely to increase under
the RCP85 scenario in most parts of China, while precipitation
in the driest month is predicted to decline remarkably in eastern
and southern China in the coming decades (Xu et al., 2006).
This will result in spatial transformation of climatic conditions,
which will lead climatic clusters to disappear under both future
climate scenarios examined here, and shift adaptive landscapes
(Wang et al., 2010). Loss of climatic clusters in future scenarios,
particularly in the RCP85 scenario, will cause homogenization
of genetic diversity. Therefore, we forecast that changes in these
climate variables would affect the genetic diversity of species,
and could dramatically reduce their fitness. Our prediction is

supported by the results of genetic simulations demonstrating a
loss of variation among populations and climatic genetic clusters
under both future climate scenarios discussed in this project,
especially the RCP85 scenario. Most populations from central
China are predicted to have shared genetic ancestry as individuals
are assigned to the same climatic genetic cluster because of the
expectation that annual mean temperatures will rise in these
areas. Moreover, a more severe future climatic scenario would
be likely to cause greater loss of variation or more distinct
homogenization in the genetic diversity of species and, therefore,
reduce their fitness. Although preferred to track their ancestral
climatic regime under future climate changes, populations with
no dispersal abilities (Li N. et al., 2011) must adapt and
alter environmental tolerance to respond to varying climatic
conditions (Wiens and Graham, 2005). However, adaptation may
be insufficient when individuals face severe future climate change
(Anderson et al., 2012). Therefore, because of the decline in
evolutionary potential, C. kousa subsp. chinensis may be at risk
of local population extinction under future climate change.

Our predictions show areas projected to experience stable
climate in the future will overlap with areas of high genetic
divergence. Although other factors unrelated to climates, such
as land use and habitat fragmentation, are likely to drive
variation in levels of genetic diversity and genetic patterns
across a distribution of species; this positive correlation can
still contribute to identifying areas of high genetic value and
high risk of local extinction due to losses in climatic suitability,
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and enhance our ability to further predict the evolutionary
potential of species and local population persistence under
future climate change.

CONCLUSION

By combining landscape connectivity predictions with genetic
simulations, the study shows how to forecast the genetic
vulnerability of species and local populations’ persistence in the
face of future environmental change. Our findings indicate that
the accelerated climatic changes we currently confront may result
in the range contraction of C. kousa subsp. chinensis and affect the
genetic connectivity across the landscape, and could potentially
lead to a great loss of genetic variation. The displacement of
climatic genetic clusters will challenge species adaptation to new
environmental conditions because of the loss of fundamental
evolutionary potential under climate change.
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