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Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable 
for plant growth and development. Successful sexual reproduction in plants requires 
extensive communication between male and female gametophytes, their gametes, and 
with the surrounding sporophytic tissues. In the past decade, it has been well-documented 
that small peptides participate in many important reproductive processes such as self-
incompatibility, pollen tube growth, pollen tube guidance, and gamete interaction. Here, 
we provide a comprehensive overview of the peptides regulating the processes of male-
female crosstalk in plant, aiming at systematizing the knowledge on the sexual reproduction, 
and signaling of plant peptides in future.
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INTRODUCTION

Small peptides refer to proteins that are less than 100 amino acids broadly (Hsu and Benfey, 2018), 
which can be  divided into three categories from the source: processed from the original 
precursor protein; directly translated from an independent small open reading frame (ORF); 
and encoded by a small ORF in the 5' or 3' untranslated region (UTR) within a normal size 
protein. Small peptides used as signals are usually secreted proteins which are mainly divided 
into post-translationally modified small peptides and small cysteine-rich peptides (CRPs; 
Matsubayashi, 2003). High-throughput sequencing has predicted a large number of small 
peptide-encoding genes in a variety of plant genomes, and their functions have gradually 
attracted attention. It is well-established that small peptides are involved in many growth and 
development processes such as cell proliferation (Imin et  al., 2013; Djordjevic et  al., 2015), 
root development (Delay et  al., 2013a,b; Mohd-Radzman et  al., 2015; Taleski et  al., 2016, 2018; 
Patel et  al., 2018), pollen fertility (Okuda et  al., 2009; Takeuchi and Higashiyama, 2012, 2016; 
Higashiyama and Takeuchi, 2015), stomata opening (Takahashi et  al., 2018; Qu et  al., 2019), 
absorption and regulation of mineral elements (Taleski et  al., 2018), resistance to pests and 
diseases (Stotz et  al., 2009a,b; Ziemann et  al., 2018), and environmental adaptation.

Fertilization is a process in which male-female cells interact and fuse with each other in 
plants. Pollen grains fall onto the stigma through pollination and germinate to form a pollen 
tube which transports sperm cells through the stigma and grows into the embryo sac along 
the transmitting tract (Figure  1). A sperm cell fuses with the egg cell to form a zygote which 
develops into an embryo; the other sperm cell fuses with the central cell to form a fertilized 
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polar nucleus which develops into an endosperm 
(Hamamura et al., 2012). The successful completion of fertilization 
relies on the continuous recognition and interaction between 
female and male cells. The basis for completing these processes 
is signal communication.

In recent years, a good many of studies have demonstrated 
the important role of small peptides in male-female crosstalk 
in plants (Kim et  al., 2021). Different small peptides involved 
in pollen grains-stigma recognition, pollen tube germination, 
polar growth and reception, ovule attraction, gamete activation, 
and other processes have been identified. The identification 
and functional analysis of small peptide during male-female 
crosstalks are helpful to reveal the formation mechanism of 
species in plants. Peptide-receptor interaction is the reason 
for the formation of inter-species isolation. Therefore, researches 
in this field have great significance for overcoming the 
reproductive barriers between different species.

SMALL PEPTIDES INVOLVED IN 
IMPORTANT PROCESSES OF PLANT 
REPRODUCTION

Self-Incompatibility
Self-incompatibility is the pre-fertilization reproductive barrier 
of many plants. The pollen grains fall on the stigma and 
recognize with the papilla cells quickly before germination, 
causing interspecific incompatibility and self-incompatibility, 

preventing different species from crossing and selfing decline 
(Takayama and Isogai, 2005). Self-incompatibility includes 
gametophyte self-incompatibility and sporophyte self-
incompatibility. The sporophyte self-incompatibility reaction is 
controlled by the male and female substances encoded by the 
S locus gene, and the interaction of the S locus encoded protein 
of the same haplotype inhibits the growth of pollen (tube). 
Pollen-expressed small peptide ligand S-locus Cys-rich/S-locus 
protein 11 (SCR/SP11) and small peptide receptor kinase (SRK) 
on the stigma (Stein et al., 1991; Schopfer et al., 1999; Takayama 
et  al., 2000) play an important role in the determination of 
sporophyte self-incompatibility in Brassica napus (Figure  2A). 
SCR/SP11 is a small CRP that is secreted into the pollen sac 
after translation, then transferred and adhered to the surface 
of the pollen, and interacted with SRK expressed in the stigma 
papillary cells after being pollinated (Table 1). After SCR/SP11 
binds to SRK, the phosphorylation process of multiple factors 
recruits ubiquitin ligase to degrade the protein Exo70A1 involved 
in water absorption and hydration, and prevents the germination 
of pollen tubes (Samuel et  al., 2009).

Pollen Germination
The nonmotile sperm cells must rely on the polar growth of 
the pollen tube to reach the embryo sac. Pollen tube germination 
and polar growth need the support and guidance of pistil 
tissue. The signal from the pollen or carpel is received by the 
receptor on the pollen tube and transmitted to the cell, changing 
the dynamic nature of the cytoskeleton and forming a pattern 
of polar growth (Guan et  al., 2013).

It was found that PCP-Bα/β/γ/δ located in pollen coat are 
important for pollen germination because the pollen of pcp-bα/
β/γ/δ displayed defects in pollen adhesion, pollen hydration, 
and pollen tube growth in vivo (Wang et  al., 2017). In tomato, 
a small CRP LAT52 secreted by pollen is involved in pollen 
germination (Figure  2A). LAT52 can bind to the pollen tube 
receptor kinase LePRK2 specifically (Tang et  al., 2002). This 
binding effect is strongest when the pollen tube germinates, 
and gradually weakens with the extension of the pollen tube. 
After the pollen tube germinates, substances from the carpel 
are needed to promote the growth of the pollen tube.

The small CRP LeSTIG1 expressed on stigma of tomato 
is involved in the regulation of pollen tube growth (Figure 2A). 
Application of LeSTIG1 can promote pollen tube elongation 
in vitro (Tang et  al., 2004). After processing and maturation, 
LeSTIG1 is secreted out of the cell, combined with the receptor 
LePRK2, and enriched in the pollen tube. The intracellular 
domain of LePRK2 interacts with the plant-specific Rop GTPase 
guanylate exchange factor (GEF) family member KPP, and 
may regulate pollen tube growth through downstream ROP 
(Zhang et  al., 2008). It has been discovered that the small 
peptide LeSTIG1 not only binds to receptors, but its C-terminal 
cysteine-rich domain can also bind to phospholipid molecules 
such as PI(3)P and participate in intracellular redox state 
regulation (Huang et  al., 2014). Homologous genes of 
LeSTIG1  in other species may have other functions, such as 
regulating the secretion of petunia and tobacco stigma cells 
(Table  1; Verhoeven et  al., 2005).

FIGURE 1 | The processes from pollination to fertilization. Pollen grains 
interact with stigma and germinate. Pollen tube polar growth along the 
transmitting tract. The pollen tube enters the female gametophyte for 
fertilization.
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Pollen Tube Polar Growth
The polar growth of pollen tube is essential for the transportation 
of sperm cells to embryo sac to complete double fertilization. 
Small peptides can guide the pollen tube to grow in the 
transmitting tract of the style. Several CRPs expressed in pistil, 
such as stigma-style cysteine rich adhesin (SCA; Figure  2A), 
act as an adhesin binding the pollen tubes to the transmitting 
tract of the style (Park et  al., 2000). The combination of SCA 
and pectic polysaccharide is necessary to induce pollen tube 
adhesion to other pollen tubes and to an in vitro style matrix 
(Lord, 2000). SCA is endocytosed into the pollen tube starting 
at the tip and subsequently moves through an endocytic route. 
This may be a process triggered by the ligand-receptor binding, 
but its receptor and the downstream events of the signal have 
not been clarified (Kim et  al., 2006).

In addition, there are gradients formed by plantacyanin 
and other protein in pistil affect pollen tube elongation. 

Plantacyanins are secreted proteins with a size of about 10 kDa, 
with a distinctive gradient from the stigma to the ovule. The 
distribution may be regulated by the miRNA pathway (Maunoury 
and Vaucheret, 2011). The pollen tube will elongate at random 
in the papilla cells and the polar growth will be  disrupted if 
overexpression of the plantacyanin gene to disrupt the gradient 
distribution pattern. Plantacyanin has properties of copper ion 
binding, which gives it a higher redox potential, and may 
participate in the metabolism of reactive oxygen species (ROS). 
Chemocyanin, the homologous protein of plantacyanin in Lily, 
is a similar chemotactic factor, which affects the polar growth 
of pollen tube (Kim et  al., 2006).

Flowering plants in the breeding period are particularly 
susceptible to temperature. CLV3/ESR-related 45 (CLE45), a 
small modified peptide post-translationally, is involved in the 
process of maintaining seed yield under high temperature 
conditions. CLE45 is expressed in the stigma mainly at 22°C, 

A B

C D

FIGURE 2 | Peptides and receptors involved in double fertilization. (A) Pollen-stigma interaction; (B) ovule attraction; (C) pollen tube reception; and (D) gamete 
activation.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Small Peptides in Male-Female Interaction

Frontiers in Plant Science | www.frontiersin.org 4 April 2021 | Volume 12 | Article 671196

but its expression expands to the transmitting tract upon 
temperature rise to 30°C. The synthetic CLE domain of CLE45 
promotes pollen tube elongation in vitro at 30°C. In vivo, 
CLE45 cannot promote elongation, but can prolong the time 
of pollen tube growth. CLE45 binds the leucine-rich repeat 
receptor-like kinase STERILITY-REGULATING KINASE 
MEMBER1 (SKM1) and STERILITY-REGULATING KINASE 
MEMBER2 (SKM2; Figure  2A). The activity of pollen is 
maintained through the CLE45-SKM1/SKM2 signaling pathway 
under high temperature to ensure successful double fertilization 
(Table  1; Endo et  al., 2013).

Attraction to Ovules
In recent years, it has been confirmed that pollen tubes are 
attracted by guidance signals from the embryo sac (Palanivelu 
and Preuss, 2000; Hepler et  al., 2001). With the help of 
laser ablation, Higashiyama et  al. observed that a single 
pollen tube penetrated a synergid cell and discharged its 
two gametes into the embryo sac as the synergid cell ruptured 
in Torenia fournieri. At the same time, it was found that 
the effective attracting distance of the synergid cells was 
100–200  μm. It implies that the attracting substance has a 
short diffusible distance and may be  secreted small peptides 
(Higashiyama et  al., 2001). LURE1 and LURE2 expressed in 
the synergid cell abundantly and predominantly are secreted 
to the surface of the egg apparatus (Figure  2B). LUREs 
contain six conserved cysteines and are about 65 amino 
acids in length (~9  KDa). Injection of morpholino antisense 
oligomers against the LUREs impaired pollen tube attraction, 
demonstrating that LUREs are the attractants derived from 
the synergid cells of T. fournieri (Okuda et  al., 2009).

Studies found that there are more than 300 defensin-like 
(DEFL) genes involving in cell-to-cell communication during 
male-female gametes interactions in Arabidopsis. AtLURE1 
peptides, expressed in egg-accompanying synergid cells 
specifically, and secreted toward the funicular surface through 
the micropyle, are pollen tube attractants guiding pollen tubes 
to the ovular micropyle (Takeuchi and Higashiyama, 2012). 
In addition, there are still a certain percentage of pollen tubes 
can be fertilized normally in AtLURE1 RNAi transgenic plants, 
suggesting that there are other substances involved in pollen 
tube guidance. Lost In Pollen tube guidance 1 (LIP1) and 2 
(LIP2) expressed in the membrane of pollen tube, interacted 
with PRK6 (Figure  2B), perceive the female signal AtLURE1 
for micropylar pollen tube guidance (Liu et  al., 2013). MALE 
DISCOVERER1-MDIS1 INTERACTING RECEPTOR LIKE 
KINASE1 (MDIS1-MIK; Figure  2B), a cell-surface receptor 
heteromer, was identified to perceive AtLURE1  in Arabidopsis 
(Wang et  al., 2016).

In the monocotyledonous maize, Zea mays EGG 
APPARATUS1 (ZmEA1; Figure  2B) expressed in the egg cell 
and two synergids, is required for pollen tube attraction by 
the female gametophyte. Transgenic downregulation of the 
ZmEA1 gene led to ovule sterility caused by loss of close-range 
pollen tube guidance to the micropyle (Marton et  al., 2005). 
ZmEA1 is recognized specifically by the pollen tube after being 
secreted by egg apparatus and degraded subsequently (Table 1; 
Marton et  al., 2012).

Pollen Tube Reception
The synergid cells not only are required for pollen tube guidance, 
but also regulate the reception of the pollen tube. The pollen 
tube enters the female gametophyte by growing into one of 
the synergid cell which undergoes programmed cell death to 
burst and release sperm cells (Weterings and Russell, 2004).

The receptor-like serine-threonine kinase FERONIA/SIRENE 
(FER/SRN) is located on the cell membrane of the synergid 
cell (Figure  2C). In feronia (Huck et  al., 2003) and sirene 
(Rotman et  al., 2003), pollen tubes of wild-type can enter the 
embryo sac but fail to cease growth, rupture, and release their 
contents. Similar pollen tube overgrowths occur in interspecific 
crosses of Rhododendron and in the in vitro Torenia system 
(Higashiyama et al., 1998). It was found that ANXUR1 (ANX1) 
and ANXUR2 (ANX2; Figure 2C), the pollen-expressed homologs 
most closely related to FER, function redundantly to control 
the timing of pollen tube discharge. The pollen tubes of the 
double-mutant anx1 anx2 cease growth and burst in vitro and 
fail to reach the embryo sac in vivo (Boisson-Dernier et al., 2009; 
Miyazaki et  al., 2009).

Rapid alkalinization factor (RALF), a secreted peptide, 
suppresses cell elongation of the primary root by activating 
the cell surface receptor FER in Arabidopsis (Haruta et  al., 
2014). It was found that RALF can induce the signal of Ca2+, 
suggesting an important role in the reception of pollen tubes 
(Pearce et  al., 2001; Haruta and Constabel, 2003; Haruta et  al., 
2008). BUDDHA’S PAPER SEAL1 and 2 (BUPS1/2) and their 
peptide ligands RALF4/19 (Figure 2C), are pollen tube-expressed 
and are required to maintain pollen tube integrity since 

TABLE 1 | Peptides and receptors involved in double fertilization.

Biological process Small peptide Receptor References

Self-incompatibility SCR/SP11 SRK
Schopfer et al., 1999; 
Takayama et al., 2000

Pollen germination LAT52 LePRK2 Tang et al., 2002
PCP-Bα/β/γ/δ Unknown Wang et al., 2017

Pollen tube polar 
growth

LeSTIG1 LePRK2 Tang et al., 2004

SCA Unknown
Lord, 2000; Chae 
et al., 2010

Plantacyanin Unknown
Maunoury and 
Vaucheret, 2011

Chemocyanin Unknown Kim et al., 2006
CLE45 SKM1/2 Endo et al., 2013

Ovule attraction LUREs
MDIS1-MIK; 
LIP1/2

Okuda et al., 2009; 
Takeuchi and 
Higashiyama, 2012; 
Liu et al., 2013; Wang 
et al., 2016

ZmEA1 Unknown
Marton et al., 2005, 
2012

Pollen tube 
reception

RALFs BUPS/ANX

Pearce et al., 2001; 
Haruta and Constabel, 
2003; Haruta et al., 
2008; Ge et al., 2017

ZmES1-4 Unknown Amien et al., 2010
Gamete activation EC1 Unknown Sprunck et al., 2012
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ralf4 ralf19 double mutants show pollen tube precocious rupture 
similar to anx1 anx2 mutants. Exogenous application of RALF34 
peptide induced pollen tube burst (Ge et  al., 2017).

Zea mays embryo sac (ZmES1-4; Figure 2C), four defensin-
like peptides, expressed in synergid cells exclusively, is involved 
in pollen tube growth arrest, burst, and explosive sperm release. 
Application of ZmES1-4 results in pollen tube plasma membrane 
depolarization and sperm cells discharge in maize. The pollen 
tube-expressed K+ channel KZM1 as a target of ZmES1-4, which 
opens after ZmES1-4 treatment and probably leads to K+ influx 
and sperm release after osmotic burst (Table 1; Amien et al., 2010).

Gamete Activation
Two sperm cells are released after the pollen tube ruptures. 
One sperm cell fuses with the egg cell, the other sperm cell 
fuses with the central cell. This process involved in a large 
amount of signal transduction, is the last step in establishing 
species isolation, including cell migration, gamete recognition, 
cytoplasmic fusion, and nuclear fusion. EGG CELL 1 (EC1; 
Figure  2D), a small CRP, accumulated in storage vesicles of 
the egg cell, plays an important role in gamete activation 
(Table  1). Upon sperm arrival, EC1-containing vesicles are 
exocytosed. The sperm endomembrane system responds to 
exogenously applied EC1 peptides by redistributing the potential 
gamete fusogen HAPLESS 2/GENERATIVE CELL SPECIFIC 
1 (HAP2/GCS1) to the cell surface (Sprunck et  al., 2012). 
HAP2/GCS1 located in the inner membrane system of sperm 
cells is a critical fertilization factor involving in gamete fusion 
in Arabidopsis. Sperm cells of hap2/gcs1 mutants can be released 
normally, but cannot fuse with the female gametes, resulting 
in sterility (Mori et  al., 2006; von Besser et  al., 2006).

Is there the same mechanism in the central cell? The 
Arabidopsis female gametophytic mutant glauce (glc) exhibit 
one sperm cell fuses with the egg cell successfully but the 
second sperm cell fails to fuse with the central cell, resulting 
in single fertilization (Leshem et al., 2012). The BAHD transferase 
involved in secondary metabolism can rescue the fertilization 
defect of glc mutant, implying there may be signals that function 
similar to EC1  in central cell.

CONCLUSION AND PERSPECTIVES

During the past decade, it has been established that small peptides 
play an essential role in many developmental processes in plants, 
such as cell proliferation, maintenance of stem cells, nodule 
formation, and male-female interaction during plant reproduction 
(Katsir et al., 2011). Here, we provide a comprehensive overview 
of the small peptides regulating the processes of male-female 
crosstalk, including self-incompatibility, pollen tube germination, 
polar growth and reception, attraction to ovules, and gamete 
activation (Table  1). Precise interaction between small peptides 
and the corresponding receptors is essential for reproduction, 
such as SCR/SP11-SRK regulate self-incompatibility in B. napus, 
LAT52-LePRK2 regulate pollen germination in tomato, 
CLE45-SKM1/2 regulate pollen tube polar growth, and LUREs-
MDIS1/MIK/LIP regulate attraction to ovules.

At present, there are many similar family members of small 
peptides involved in the process of male-female crosstalk. All 
or some of them have the same expression pattern, and each 
of them can bind to the corresponding receptor and function 
redundantly. However, it is difficult to identify small peptides 
through traditional genetic and biochemical methods due to 
the small molecular weight, low content, and high redundancy. 
More small peptides will be  identified with the development 
of high-throughput sequencing technologies, such as genomics, 
transcriptomics, and peptidomics.

Small peptides are usually used as ligands and perceived 
by receptors in male-female communication. The binding of 
receptor and ligand may cause autophosphorylation of receptor 
and intracellular phosphorylation cascades. However, many 
receptors have not been identified yet. It is difficult to identify 
the corresponding receptors because the ligand is small and 
the interaction with the receptor is transient. With the great 
progress of gene editing technology such as CRISPR in recent 
years, it can be  predicted that the research of small peptide 
will be  developed rapidly. In addition, researchers are also 
interested in how to transfer the signal to the cell after the 
small peptide and receptor binds.

Fertilization is the premise of seed production. Improving the 
success rate of fertilization may help to improve crop yield. 
Understanding the mechanism of male-female crosstalk in the 
process of reproduction can help solve the problem of self-
incompatibility and cross-incompatibility and provide strong support 
for breeding. The concentration of small peptides to exert their 
physiological functions is very low. Unlike traditional plant 
hormones, small peptides are composed of amino acids essentially, 
and exogenous application will not pose a risk to the environment. 
The application of small peptides in agricultural production can 
reduce the amount of pesticides and fertilizers to protect the 
ecological environment, serving modern green agriculture.
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