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The accurate classification of crop pests and diseases is essential for their prevention and

control. However, datasets of pest and disease images collected in the field usually exhibit

long-tailed distributions with heavy category imbalance, posing great challenges for a

deep recognition and classification model. This paper proposes a novel convolutional

rebalancing network to classify rice pests and diseases from image datasets collected

in the field. To improve the classification performance, the proposed network includes a

convolutional rebalancing module, an image augmentation module, and a feature fusion

module. In the convolutional rebalancing module, instance-balanced sampling is used

to extract features of the images in the rice pest and disease dataset, while reversed

sampling is used to improve feature extraction of the categories with fewer images in

the dataset. Building on the convolutional rebalancing module, we design an image

augmentation module to augment the training data effectively. To further enhance the

classification performance, a feature fusion module fuses the image features learned

by the convolutional rebalancing module and ensures that the feature extraction of the

imbalanced dataset is more comprehensive. Extensive experiments in the large-scale

imbalanced dataset of rice pests and diseases (18,391 images), publicly available plant

image datasets (Flavia, Swedish Leaf, and UCI Leaf) and pest image datasets (SMALL

and IP102) verify the robustness of the proposed network, and the results demonstrate

its superior performance over state-of-the-art methods, with an accuracy of 97.58%

on rice pest and disease image dataset. We conclude that the proposed network can

provide an important tool for the intelligent control of rice pests and diseases in the field.

Keywords: imbalanced dataset, convolutional neural network, image classification, feature fusion, rice pests

and diseases

INTRODUCTION

In modern agricultural production, the accurate classification of crop pests and diseases is essential
for their prevention and control. China is the largest rice producer and consumer in the world,
accounting for one-third of the global total. Rice is the staple food of more than 65% of the Chinese
people (Deng et al., 2019). However, pests and diseases always accompany the process of rice

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.671134
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.671134&domain=pdf&date_stamp=2021-07-05
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenguipeng1983@163.com
https://doi.org/10.3389/fpls.2021.671134
https://www.frontiersin.org/articles/10.3389/fpls.2021.671134/full


Yang et al. CRN for Classifying Imbalanced Dataset

planting and production (Laha et al., 2017; Castilla et al., 2021).
The prevention and control of rice pests and diseases could be
greatly improved through their accurate classification.

Research on deep learning (DL) technology to classify crop
pest and disease images has been emerging in recent years, and
the relevant experimental results have demonstrated its success in
performing classification (Li et al., 2020; Wang et al., 2020; Yang
et al., 2020b). However, there is no doubt that these experimental
results are inseparable from the high-quality datasets used or
constructed by the researchers. We know that the size of the
dataset can have a significant impact on the accuracy level of the
image classification, because only the use of large-scale datasets
can improve the accuracy of any DL model (Hasan et al., 2020).
Most previous studies use small-scale, roughly balanced rice pest
and disease image datasets created under laboratory conditions
(Bhattacharya et al., 2020; Burhan et al., 2020; Chen et al., 2020,
2021; Kiratiratanapruk et al., 2020; Mathulaprangsan et al., 2020;
Rahman et al., 2020). These datasets are used to emphasize or
reveal the efficiency of the proposed method for diagnosing rice
diseases and pests. Because these datasets contain several rice pest
and disease categories and a small number of images per category,
so the effect on classification is often a better performance.
Compared with these image classification datasets, however,
the distribution of real-world datasets is usually imbalanced
and long-tailed. The number of images varies greatly between
categories, and most image categories occupy only a small part
of the dataset, such as ImageNet-LT (Liu et al., 2019), Places-
LT (Samuel et al., 2021), and iNaturalist (Horn et al., 2018).
Since rice pest and disease images collected in the field are
affected by many practical factors, such as the incidence of
pests and diseases, the region of occurrence, and so on, these
factors often lead to an imbalanced distribution of the dataset,
as shown in Figure 1. When using this dataset, DL methods
cannot achieve high classification accuracy due to the problem
of imbalanced distribution.

Most of the researches on DL for rice pest and disease
classification uses a convolutional neural network (CNN) based
on transfer learning technology (Burhan et al., 2020; Chen
et al., 2020, 2021; Mathulaprangsan et al., 2020). Although these
models have achieved a high level of accuracy in their respective
studies, they rely mainly on two dataset features to achieve
their results. First, the limited size of the dataset: the number
of images ranges from dozens to hundreds, and image labeling
usually requires professional knowledge and much annotation
time. Second, there may be large or small differences in the
number of images for different categories in the dataset. If
these models are applied to real-world datasets, two challenges
will inevitably be encountered. First, simple CNN models have
difficulties learning the distinguishing features of different rice
pests and diseases, and are insensitive to the discriminative
regions in the image. It is difficult to locate the various organ
parts of the pest object, and the small difference between different
diseases will also affect identification of the location distribution.
Second, due to the imbalance of different categories in the
dataset, it is difficult to achieve a high level of classification
accuracy for all rice pests and diseases, using only simple
CNN models.

An effective method of solving the problem of dataset
imbalance is a category-rebalancing strategy, which aims to
alleviate the imbalance of the training data. In general, category
rebalancing strategies can be divided into two groups: re-
sampling (Lee et al., 2016; Shen et al., 2016; Buda et al.,
2018; Pouyanfar et al., 2018) and re-weighting (Huang et al.,
2016, 2020; Wang et al., 2017; Cao et al., 2019; Cui et al.,
2019). Although rebalancing strategies have been shown to
improve accuracy, they have side effects that cannot be ignored.
For instance, such methods can, to some extent, impair the
ability to represent DL features. Specifically, when the data
imbalance is very serious, re-sampling has the risk of over-fitting
the tail data (over-sampling) and under-fitting the entire data
distribution (under-sampling). As for re-weighting, the original
distribution is distorted by directly changing or even reversing
the data presentation, which can damage feature representation.
Experiments have shown that only the classifier should be
rebalanced to rebalance an imbalanced dataset (Kang et al., 2020;
Zhou et al., 2020). The distribution of the original categories
in the dataset should not be used to change the distribution
of image features or the distribution of category labels during
feature learning because they are essentially uncoupled.

In order to improve the performance of rice pest and disease
classification, we propose a convolutional rebalancing network

(CRN), which includes a convolutional rebalancing module
(CRM), an image augmentation module (IAM), and a feature
fusion module (FFM). In the CRM, a uniform sample is used

to extract the features of the images in the dataset, while a
reversed sample is used to improve feature extraction of the
categories with fewer images in the dataset. Based on these two

modules, the IAM is designed to augment the training data
effectively. To further enhance the performance of rice pest and
disease classification, we also design the FFM, which fuses the

image features learned by the CRM and ensures that the feature

extraction of the imbalanced dataset is more comprehensive.
We evaluate the proposed network on the newly established

large-scale dataset collected in the field, the rice pest and disease

image dataset (RPDID), which contains 18,391 wild rice pests and
disease images in 51 categories. Experimental results show that

our network has a better classification performance than other

competing networks on RPDID. In addition, a large number

of verification experiments and ablation studies demonstrate
the effectiveness of customized designs for solving imbalance

problems in the distribution of rice pests and disease images.
The main contributions of this work are the following:

1. Based on the combination of the two sampling methods,
we propose a novel convolutional rebalancing module for
comprehensively extracting the features of the large-scale
imbalanced dataset of rice pests and diseases to exhaustively
boosting classification.

2. We design an image augmentation module, which mainly
generates attention maps to represent the spatial distribution
of discriminative regions, and extracts local features to
improve the classification effect. Based on attention maps, we
propose two methods of a region crop and a region cover
to augment the training data effectively. Correspondingly,
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FIGURE 1 | The imbalanced phenomenon of rice pest and disease images collected in the field.

a feature fusion module is developed for adjusting feature
learning and classifier learning, combined with the training
of our network.

3. Experiments in the large-scale imbalanced dataset of rice pests
and diseases and five related benchmark visual classification
datasets demonstrate our proposed network can significantly
improve the classification accuracy of imbalanced image
datasets, which surpasses previous competing approaches.

RELATED WORK

In this section, we review related work on image classification
of rice pests and diseases, imbalanced datasets, and
image augmentation.

Image Classification of Rice Pests and
Diseases
The classification of rice pests and diseases has always been a hot
topic for researchers, and many methods have been designed to
identify different pests and diseases. In recent years, researchers
have tended to use convolutional neural networks to solve the
problem of identification and classification.

Most of this research has been concerned with only a few
rice disease or pest categories (Bhattacharya et al., 2020; Chen
et al., 2020, 2021; Kiratiratanapruk et al., 2020; Mathulaprangsan
et al., 2020). Only Rahman et al. (2020) studied simultaneously
five categories of rice diseases and three categories of rice pests,
but these are far from covering common rice pest and disease
categories. In addition, it should be noted that the datasets
used in these studies are small, generally hundreds to no more
than a thousand. Moreover, experimental results show that these
methods can only achieve an ordinary classification performance.

This is because, without a special network design, it is difficult for
them to overcome the impact of an imbalanced dataset on the
classification results and the difficulty of locating discriminative
regions. We conclude that experiments based on small-scale
datasets always achieve ordinary classification results, and, also,
that the generalization of the model is often poor.

Among the methods used to identify and classify rice pests
and diseases, there are traditional multilayer convolutional
neural networks (Lu et al., 2017) and the fine-tuning methods
of VGG-16, Inception-V3, DenseNet, and so on, based on
transfer learning (Burhan et al., 2020; Chen et al., 2020, 2021;
Mathulaprangsan et al., 2020). There is also the direct use of the
popular object detection algorithms Faster R-CNN, RetinaNet,
YOLOv3, and Mask RCNN, either to experiment with rice pests
and diseases or to optimize these algorithms before performing
experiments. However, these object detection algorithms depend
on the location of parts or related annotations (Kiratiratanapruk
et al., 2020). A two-stage strategy has recently been developed to
perform a more refined classification of rice pests and diseases
(Bhattacharya et al., 2020; Rahman et al., 2020). However, the
classification performance of these methods is mostly average,
because, without a special design, it is difficult for these methods
to locate discriminative regions and to classify pest categories
accurately. It is noteworthy that these studies did not investigate
whether the balance of the dataset had an impact on the
classification results.

Imbalanced Datasets
The most effective method of solving the problem of dataset
imbalance is the category rebalancing strategy. As one of the
most important category rebalancing strategies, the resampling
method is used to achieve a sample balance on the training
set. The resampling method can be divided into oversampling
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of few samples (Shen et al., 2016; Pouyanfar et al., 2018) and
undersampling of multiple samples (Lee et al., 2016; Buda et al.,
2018). However, oversampling can overfit a category containing
a small number of images (a minor category) and cannot
easily learn more robust generalization features; therefore, it
often performs worse on a seriously imbalanced dataset. On
the other hand, undersampling causes serious information loss
in categories, containing a large number of images (a major
category), leading to underfitting.

The re-weighting method focuses on training loss and is
another important category rebalancing strategy. Re-weighting
sets different weights for different categories of loss, setting larger
weights for minor category loss, for example, and the weights can
be adaptive (Huang et al., 2016; Wang et al., 2017). Among the
many variants of this kind of method, the simplest is weighting
according to the inverse of the number of categories (Huang et al.,
2020); weighting according to the number of “effective” samples
(Cui et al., 2019); and weighting according to the number of
samples to optimize the classification interval (Cao et al., 2019).
However, re-weighting is very sensitive to hyperparameters to
a certain extent, which often leads to optimization difficulties,
and re-weighting also has difficulties in handling large-scale
real-world scenarios with imbalanced data (Mikolov et al., 2013).

In dealing with the problem of dataset imbalance, we can also
learn from other learning strategies. With meta learning (domain
adaptation), minor categories and major categories are processed
differently to learn how to reweight adaptively (Shu et al., 2019),
or to formulate domain adaptation problems (Jamal et al., 2020).
Metric learning essentially models the boundary/margin near
minor categories, with the aim of learning better embedding
(Huang et al., 2016; Zhang et al., 2017). With transfer learning,
major category samples andminor category samples are modeled
separately, and the learned informativeness, representation, and
knowledge of major category samples are transferred to minor
category use (Liu et al., 2019; Yin et al., 2019). The data synthesis
method generates “new” data similar to minor category samples
(Chawla et al., 2002; Zhang et al., 2018). Decoupling features and
classifier strategies can also be used. Recent studies have found
out that feature learning and classifier learning can be decoupled,
so that imbalanced learning can be divided into two stages.
Normal sampling in the feature learning stage and balanced
sampling in the classifier learning stage can bring better learning
results (Kang et al., 2020; Zhou et al., 2020). This method of
learning is the approach adopted in this work.

Image Augmentation
Current random space image augmentation methods, such as
image cropping and dropping, have a proven ability to improve
effectively the accuracy of crop leaf disease classification. Recent
studies have evaluated the image augmentation of image-based
crop pest and disease classification, and explored the applicability
of the image augmentation effect on specific datasets (Barbedo,
2019; Li et al., 2019). However, random image augmentation faces
low efficiency and generatesmuch uncontrolled noise, whichmay
reduce training efficiency or affect feature extraction, such as
dropping rice leaf regions, or cropping rice leaf backgrounds.

When using imbalanced datasets in the field of crop pests
and diseases, some studies adopt simple image augmentation
methods to augment images and balance datasets (Pandian et al.,
2019; Kusrini et al., 2020), while other studies adopt GAN to
generate related images and balance datasets (Douarre et al.,
2019; Cap et al., 2020; Nazki et al., 2020; Zhu et al., 2020). Our
image augmentation method focuses on spatially augmenting
images of rice pests and diseases.

METHOD

In this section, we describe the proposed CRN in detail. First,
to achieve feature learning and imbalance classification, we
designed a CRM. The module proceeds as follows: Let x denotes
the training sample and y the corresponding category label. Two
sets of samples (xi, yi) and (xr , yr) are obtained by instance-
balanced sampling and reversed sampling; these samples are then
used as the input image of CRN. The corresponding feature
maps are obtained after feature extraction, and attention maps
are generated. At the same time, in order to augment images
during training, we design an IAM. An attention map is chosen
randomly to augment the image, including Region Cover and
Region Crop. The samples of the two sampling methods and
augmented images are used as input data for training. The
feature maps undergo global average pooling (GAP) to obtain the
corresponding feature vectors fi and fr . Additionally, we design
a FFM to fuse feature vectors. Finally, CRN uses SoftMax for
predictive classification. The general structure of CRN is shown
in Figure 2.

Convolutional Rebalancing Module
We often encounter imbalanced datasets in our work on rice pest
and disease classification. For this reason, we designed a CRM to
improve classification performance.

Data Sampling
The CRM adopts instance-balanced sampling and reversed
sampling to balance the impact of an imbalanced dataset.
In instance-balanced sampling, each sample in the training
set is only sampled once in an epoch with the same
probability. Instance-balanced sampling retains the distribution
characteristics of the data in the original dataset, so it is conducive
to feature representation learning. Reversed sampling aims to
alleviate the extreme imbalance between data samples and to
improve the classification accuracy of minor categories. In
reversed sampling, the sampling probability of each category
is proportional to the inverse of the sample size; the smaller
the sample size of a category, the greater the probability of
being sampled.

We assume that there are a total of D categories in the dataset.
The sample size of category i is Si, and the largest sample size
in all categories is Smax. For instance-balanced sampling, the
probability pi that each sample in the training set is sampled is
as follows:

pi=
Si

∑D
j= 1 Sj

(1)

Frontiers in Plant Science | www.frontiersin.org 4 July 2021 | Volume 12 | Article 671134

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. CRN for Classifying Imbalanced Dataset

FIGURE 2 | Overview of CRN.

For reversed sampling, we first calculated the sampling

probability p
′

i of the i-th category according to the number of
samples, as follows:

p
′

i=

Smax
Si

∑D
j= 1

Smax
Sj

(2)

We then sampled randomly a category according to p
′

i, and finally
took a sample from the i-th category to replace it. By repeating
this reversed sampling process, we can obtain a mini-batch of
training data.

Attention Representation
Here, we introduce the attention mechanism and increase the
weight of the attention mechanism in the hidden layer of the
neural network to accurately locate disease regions and the
components of the pest object in the rice pest image (i.e., the
spatial distribution of pest organs). Additionally, discriminative
partial features are extracted to solve the classification problem.
Our method first predicts partial regions where rice pests and
diseases occur. Based on the attention mechanism, only image-
level category annotations are used to predict the location of pests
and diseases.

We use an advanced pre-trained CNN (EfficientNet-B0) as
our backbone and choose the MBConv6 (stage6) layer as feature
maps. We denote F ∈ RH×W×C as feature maps, where H, W,
and C represent the height, width, and number of channels of
the feature layer, respectively. Attention maps are obtained by
1 × 1 convolutional kernel. The attention maps A ∈ RH×W×M

obtained from F represent the location distribution of rice pests
and diseases, as follows:

A= f (F) =

M
⋃

k= 1

Ak (3)

In (3), f (·) is a convolution function, and AK ∈ RH×W represents
a part of the rice pest or a visual graphic, such as the pest’s head
or another organ, and the diseased regions on the leaves. The
number of attention maps isM.

We use attention maps instead of a region proposal network
(Ren et al., 2017; Sun et al., 2018; Tang et al., 2018) to propose
regions where pests and diseases occur in the image, because
attention maps are flexible and can be more easily trained
end-to-end in rice pest and disease classification tasks.

Image Augmentation Module
Since the attention mechanism is used to better locate diseased
regions and the position of the organ parts of the pest object
in the image, the classification performance on images collected
in the field is enhanced. At the same time, in order to further
enhance performance, we design an IAM, which performs two
kinds of processing: Region Crop and Region Cover. After the
above processing, the raw image and augmented images will be
trained as input data.

Augmentation Map
When there is a small number of regions where rice pests and
diseases occur, the efficiency of random image augmentation is
low, and a higher proportion of background noise is introduced.
We use attention maps to augment the training data more
effectively. Specifically, for each training image, we randomly
select one of its attention maps Ak to guide image augmentation
and normalize it as follows to the k-th augmentation map A

∗

k
∈

RH×W , as follows:

A∗
k =

Ak−min (Ak)

max (Ak)−min (Ak)
(4)

Region Crop
Based on the augmentation map A

∗

k
, Region Crop randomly

crops the discriminative region in the rice pest image and adjusts
the size of the region to further extract its features. We obtain the
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croppingmask Ck fromA
∗

k
. IfA

∗

k
(i, j) is greater than the threshold

θC ∈ [0, 1], and then Ck is set to one; if less than or equal to the
threshold, and then Ck is set to zero as in (5).

Ck

(

i, j
)

= 1, if A
∗

k

(

i, j
)

>θC (5)

We then set a bounding box that can cover Ck, and enlarge the
region from the original image as the augmented input image.
As the proportion of regions in the rice pest and disease images
increases, it is possible to better extract more features from the
regions where rice pests and diseases occur.

Region Cover
The attention regularization loss function, described below
(Section Loss Function), supervises each attention map Ak ∈

RH×W in representing the k-th region in the rice pest and disease
images, but different attention maps may pay attention to regions
where similar pests and diseases occur. To encourage attention
maps to represent multiple occurrence regions of different pests
and diseases, we propose Region Cover. Region Cover randomly
covers a discriminative region in the rice pest and disease image,
and then the image processed by the Region Cover operation
is trained again. After that, when extracting features again, the
features of other discriminative regions can be extracted, thereby
prompting the model to extract more comprehensive feature.

Specifically, in order to obtain the Region Cover mask C
′

k
, we set

C
′

k
to zero if A

∗

k

(

i, j
)

is greater than the threshold θC′ ∈ [0, 1];
otherwise, it is set to one.

C
′

k

(

i, j
)

= 0, if A
∗

k

(

i, j
)

>θC′ (6)

We use C
′

k
to cover the k-th region in the rice pest and

disease images. Since the k-th region is covered, the IAM is
required to propose other discriminative partial regions so that
the robustness and location accuracy of the image classification
can be improved.

Feature Fusion Module
To fuse the features after GAP, we designed a novel FFM. The
module controls the feature weight and classification loss L
generated by the CRM and the IAM. The CRN first learns the
features of the images in the RPDID according to the original
distribution (instance-balanced sampling), and then gradually
learns the features of the images in minor categories. Although,
on the whole, feature representation, learning, and classifier
learning should have the same importance, we believe that
discriminative feature representation provides a basis for training
a more robust classifier. Therefore, we introduce adaptive
hyperparameters µ1 and µ2 into the training phase, where
µ1 + µ2 = 1. We multiplied the image feature fi extracted by
instance-balanced sampling and image augmentation by µ1, and
multiplied the image feature fr extracted by inversed sampling
and image augmentation by µ2. It should be noted that µ1 and
µ2 are changed according to training epochs as in (7), where the
current number of training epochs is defined as E and the total
number of training epochs as Etotal.

µ1= 1−(
E

Etotal
)3 (7)

As the number of training epochs increases, µ1 gradually
decreases, causing CRN to gradually shift its focus from feature
learning to classifier learning, which can exhaustively improve
long-tailed classification accuracy; that is, from instance-
balanced sampling to reversed sampling. Therefore, introducing
the adaptive hyperparameters µ1 and µ2 into the entire training
process enables CRN to fully focus on all categories of rice
pests and diseases, and to further overcome the impact of an
imbalanced dataset on the classification results.

Testing Phase
In the testing process, rice pest and disease images with an
unknown category are first sent to the CRM, and the feature
vectors fi and fr are generated after GAP.We then set bothµ1 and
µ2 to 0.5 in FFM to balance the influence of different sampling
methods on the prediction results. Additionally, features of equal
weight are sent to their corresponding classifiers to obtain two
predicted logits, and the two logits are aggregated by element-
wise addition. Finally, the result is input into SoftMax to obtain
the category of rice pests and diseases to which the image belongs.

Loss Function
We define x as the training sample and y as the corresponding
category label, where y ∈ {1, 2, · · · ,D}, and D represents the
total number of categories. First, we used the two sets of samples
(xi, yi) and (xr , yr) obtained by instance-balanced sampling and
reversed sampling as the input data of CRN. Then, after feature
extraction, the corresponding feature maps were obtained and
further attention maps were generated.

At the same time, the IAM augmented the image data during
training. We randomly selected an attention map to augment
the image, including Region Cover and Region Crop. Generally
speaking, the samples were sampled in two ways, and the
augmented data were used as input data for training. GAP was
then performed on feature maps to obtain the corresponding
feature vectors fi and fr . Center loss has been proposed as a
method of solving the problem of face recognition (Wen et al.,
2016, 2019). Based on center loss, we designed a novel attention
regularization loss function to supervise attention learning. We
penalized variances of features belonging to partial regions of the
same rice pest, which means that the partial features fi and fr can
be close to the global feature center ck ∈ R1×N , while attention
map Ak can be activated at the same k-th partial region. The loss
function of the IAM can be defined as follows:

LA=

M
∑

k=1

∥

∥(fi, fr)−ck
∥

∥

2

2
(8)

In (8), ck is the feature center of a partial region. We initialized ck
as zero and updated as follows:

ck+1= ck+β
(

(fi, fr)−ck
)

(9)

In (9), β adjusts the update rate of ck. The attention regularization
loss function is merely applied to the original image.

As described above, the FFM fuses the features after GAP,
where the adaptive hyperparameters are defined as µ1 and µ2.
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TABLE 1 | RPDID dataset of rice pest and disease images collected in the field.

Category Type Names of diseases and pests Number of images Category Type Names of diseases and pests Number of images

1 Disease Rice blast 1,498 27 Pest Laodelphax striatellus 206

2 Pest Cotton leafworm 1,143 28 Pest Black-tipped leafhopper 195

3 Disease Bacterial leaf streak 1,060 29 Pest Chinese rice grasshopper 195

4 Pest Riptortus pedestris fabricius 999 30 Pest Empoasca vitis gothe 182

5 Disease Brown spot 971 31 Pest Smaller green leafhopper 150

6 Pest Green stink bug 792 32 Pest Black rice bug 148

7 Pest Rice leaf caterpillar 787 33 Disease Rice kernel smut 147

8 Disease Rice sclerotial stem rots 684 34 Disease Stripe disease 145

9 Disease Rice false smut 627 35 Pest White backed planthopper 144

10 Pest Pink rice borer 544 36 Pest Eysarcoris montivagus dis. 144

11 Pest Diostrombus politus uhler 509 37 Pest Aelia nasuta wagner 139

12 Pest Rice leaf roller 495 38 Pest Rice spittle bug 137

13 Disease Sheath blight 479 39 Pest Parnara guttata brener 134

14 Pest Chauliops fallax scott 473 40 Pest Rice plant hoppers 125

15 Pest Atractomorpha sinensis bolivar 453 41 Disease Rice akagare 117

16 Pest Psammotettix striatus l. 439 42 Pest Rhopalus maculatus 114

17 Pest Halyomorpha halys 426 43 Pest Cotton grasshopper 112

18 Pest Leptocorisa acuta 399 44 Disease Sheath rot disease 105

19 Pest Dolycoris baccarum 395 45 Pest Cifuna locuples walker 105

20 Pest Abidama liuensis metcalf 303 46 Pest Recilia dorsalis 103

21 Pest Oriental armyworm 292 47 Pest Eysacoris guttiger 96

22 Disease Leaf smut 283 48 Pest Ricania taeniata cercopidae 92

23 Pest Rice spiny coreid 280 49 Pest Saccharosydne procerus matsumura 87

24 Pest Chilo suppressalis 273 50 Pest Clavigralla horrens dohrn 85

25 Pest Rice leafhopper 255 51 Pest Nisia afrovenosa meenoplidae 81

26 Pest Rice hispa 244

Total 18,391

The weighted feature vectors µ1fi and µ2f r are sent to the
corresponding classifiers Wi ∈ RD×C and Wr ∈ RD×C, and
the two outputs integrated together by element-wise addition.
Therefore, the output logits l can be formulated as follows:

l=µ1W
T
i f i+µ2W

T
r f r (10)

CRN then uses SoftMax to calculate and output probability
distribution as p = [p1, p2, . . . , pD]

T. We employed cross-
entropy loss as classification loss:

LF =−

D
∑

y= 1

log(py) (11)

In summary, the loss function of CRN can be defined as (12),
where λ is a hyperparameter (In our settings, λ = 1).

LCRN = λLA+µ1LF(yi)+µ2LF(yr) (12)

The overall algorithm is summarized in Algorithm 1. We used
the stochastic gradient method to optimize LCRN .

EXPERIMENTS

Datasets
As China is the world’s largest rice producer and consumer, the
accurate classification of rice pests and diseases is particularly
important for their prevention and control. To identify accurately
the categories of rice pests and diseases in the field, we
constructed the RPDID1 based on rice pests and disease
images collected by the Institute of Agricultural Economy and
Information, Anhui Academy of Agricultural Sciences, China. It
contains 18,391 images of rice pests and diseases collected in the
field and 51 categories, each with hundreds to thousands of high-
quality images. Because the size of the original images is too large,
we preprocess each RPDID image into a 512 × 512 size. Table 1
shows a statistical breakdown of the RPDID dataset. Figure 3
shows examples of rice pests and diseases in RPDID.

Implementation Details
For comparison, our CRN uses EfficientNet-B0 as the backbone
network for all experiments by standard mini-batch stochastic

1RPDID is non-public. For data sources, please contact the Institute of Agricultural

Economy and Information, Anhui Academy of Agricultural Sciences’ website at:

http://jxs.aaas.org.cn/.
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FIGURE 3 | Examples of rice pests and diseases in RPDID. The number under each image corresponds to the category in Table 1, indicating the category to which

the image belongs.

gradient descent with a momentum of 0.9 and a weight decay of 1
× 104. For different pretrained networks, RPDID is preprocessed
into the input sizes required by different networks (224 × 224;
299 × 299; 380 × 380). Except for the original division of

the IP102 dataset, RPDID and other datasets are divided into
a common distribution (80% for the training set and 20% for
the test set). The attention maps are obtained through a 1 × 1
convolution kernel. We use GAP as the feature pooling function,
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FIGURE 4 | Accuracy and loss during CRN training and testing.

Algorithm 1: CRN algorithm.

Input:training set Ts, hyper-parametersM
Output: predict probability p

1 for E=1, Etotal do
2 Take training set= Ts
3 Two samplers (xi, yi), (xr , yr) generate from

instance-balanced sampling (Ts) and reversed
sampling (Ts)

4 Each image xi or xr , generate feature maps F and

attention maps A = f (F) =
⋃M

k=1 Ak

5 Randomly select Ak, and normalize it A∗
k
, then attention

cropping (Equation 5) and attention drop (Equation 6)
6 The original data (Ts) and enhanced image are trained as

input data, then features are extracted by backbone
network

7 Obtain feature vectors (fi, fr) by GAP
8 Let adaptive hyperparameters µ1,µ2 update from

Equation 7, output logits l = µ1W
T
i f i + µ2W

T
r f r

9 p= SoftMax(l)
10 Calculate LCRN from Eqn. 12
11 Update parameters by minimizing LCRN
12 end

and the thresholds θC and θC′ of Region Cover and Region Crop
are both set to 0.5. We train all the models on multiple NVIDIA
P100 GPUs for 500 epochs with a batch size of 32. The initial
learning rate is set to 0.001, with exponential decay of 0.9 after
every 10 epochs.

RESULTS

We have conducted extensive experiments on RPDID under
imbalanced real-world scenarios. Figure 4 shows the accuracy
and loss of our proposed CRN during training and testing. For
the test set, when the number of epochs is 48, the loss converges

TABLE 2 | Comparison with benchmarks and state-of-the-art methods on the

test dataset.

Methods Accuracy (%)

ResNet-50 81.31

Inception-V3 86.03

EfficientNet-B0 92.61

EfficientNet-B4 94.57

SpineNet-143 (Du et al., 2020) 95.82

FixSENet-154 (Touvron et al., 2019) 96.79

BiT-L (Kolesnikov et al., 2020) 97.16

EffNet-L2 (SAM) (Foret et al., 2021) 97.42

CRN 97.58

to 0.09, and the accuracy is 97.58%. We find that CRN can
achieve convergence and a higher level of accuracy in fewer
epochs compared with state-of-the-art models, which proves that
CRN has a strong ability to classify rice pest and disease images
collected in the field.

Comparison Methods
We fine-tune the pretrained ResNet-50, Inception-V3,
EfficientNet-B0, and EfficientNet-B4 as benchmarks for
comparison. Due to the lack of publicly available large-scale
field crop pest and disease image datasets, we also compare
our method with the latest methods on publicly available plant
and pest image datasets. The results are shown in Table 2.
It can be seen that our CRN has reached the latest level
of accuracy on RPDID. In particular, compared with the
backbone EfficientNet-B0, we have significantly improved the
classification accuracy.

To further evaluate the performance of CRN, we conducted
experiments on the publicly available plant image datasets Flavia
(Wu et al., 2007), Swedish Leaf (Söderkvist, 2001) and UCI Leaf
(Silva et al., 2013), and pest image dataset SMALL (Deng et al.,
2018) and IP102 (Wu et al., 2019). Statistical information on
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TABLE 3 | Dataset statistics.

Datasets Categories Training Testing

Flavia 32 1,526 381

Swedish Leaf 15 900 225

UCI Leaf 40 356 87

SMALL 10 450 113

IP102 102 52,603 (Train: 45,095 and Val: 7,508) 22,619

TABLE 4 | Accuracy of CRN on plant image datasets (Flavia, Swedish Leaf, and

UCI Leaf) and pest image datasets (SMALL and IP102).

Studies Datasets Accuracy (%) Methods

Murat et al. (2017) Flavia 95.25 HOG, Moments,

ANN, RF, SVM

Swedish Leaf 99.89

Saleem et al. (2019) Flavia 99.48 AlexNet

Turkoglu and Hanbay (2019) Flavia 98.94 Improved LBP

Swedish Leaf 99.46

Kaya et al. (2019) Flavia 99.00 DF -

VGG16/LDA

Swedish 98.80 CNN - RNN

UCI Leaf 96.20 DF -

AlexNet/LDA

Nanni et al. (2020) SMALL 92.43 Ensemble

(AllSum)

IP102 61.93

Ayan et al. (2020) SMALL 95.16 GAEnsemble

IP102 67.13

Our Flavia 99.63 CRN

Swedish Leaf 99.91

UCI Leaf 98.45

SMALL 97.36

IP102 70.42

the datasets is shown in Table 3. We used the training/test split
described in section Implementation Details.

As Table 4 shows, our method outperforms current state-
of-the-art methods on five datasets. Regardless of the dataset
size, CRN can obtain a higher level of classification accuracy.
Furthermore, it is proved that CRN has better performance
across datasets.

Ablation Studies
Samplers for the CRM
To better understand CRN, we conducted experiments on
different samplers used in the CRM. The classification accuracy
of the models trained on RPDIDwith different samplers is shown
in Table 5.

We used the following samplers. (1) Instance-balanced
sampling, where every training sample has an equal chance of
being selected. (2) Class-balanced sampling, where each category
has the same probability of being selected. Each category is
selected fairly, and samples are selected from the category

TABLE 5 | Ablation study of different samplers used in CRM on RPDID.

Samplers Accuracy (%)

Instance-balanced 95.13

Class-balanced 95.84

Reversed 94.65

CRN method 97.58

TABLE 6 | Contribution of proposed components and their combinations.

Modules Accuracy(%)

EfficientNet-B0 and CE 94.57

CRM and FFM 96.04

CRM and RIA and FFM 96.43

CRM and IAM and FFM 97.58

TABLE 7 | Classification accuracy of different numbers of attention maps on

RPDID.

M Accuracy(%)

4 96.17

8 96.93

16 97.58

32 97.72

to construct mini-batch training data. (3) Reversed sampling,
where the sampling probability of each category is inversely
proportional to the sample size. The smaller the sample size of a
certain category, the more likely it is to be sampled. (4) Our CRM
combines instance-balanced sampling and reversed sampling.

We can find from Table 5 that when a better sampling strategy
is used, the performance can be better. The sampling method
we use can provide better results than single instance-balanced
sampling. We believe that instance-balanced sampling provides
general feature representation.With adaptive hyperparameterµ1

decreasing, the main emphasis of the CMR in CRN turns from
the feature learning to the classifier learning (from instance-
balanced sampling to reversed sampling), then the reversed
sampling can be more concerned with minor categories. Our
results for different sampling strategies on training validate our
works that try to design a better image sampling method.

Accuracy Contribution
The proposed CRN is composed of three modules: CRM, IAM,
and FFM. To study the contribution of the three modules
to classification accuracy, we conducted related experiments
on RPDID. We fine-tune the pretrained EfficientNet-B0 and
use cross entropy (CE) for training to use it as a baseline.
Accordingly, we add and adjust other modules for comparison.
As shown in Table 6, the results prove that all three modules of
our CRN can improve effectively the classification accuracy of
rice pests and disease images, and that the attention-guided IAM
is more effective than random image augmentation (RIA).
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FIGURE 5 | Visualization of the effect of image augmentation in CRN on rice pest and disease images. (A) rice pests. (B) rice diseases.

Effect of Number of Attention Maps
Discriminative regions usually help to represent the object;
hence, a larger number of discriminative regions can help to
improve the classification performance (Wang et al., 2019; Yang
et al., 2020a). We use different numbers of attention maps
(M) for experiments, as shown in Table 7. It can be seen
that as M increases, the classification accuracy also increases.
When M reaches 32, the classification accuracy rate reaches
97.72%. However, if M continues to increase, the increase in
classification accuracy is limited and the feature dimensionality of
a discriminative region almost doubles. IAM in CRN can set the
number of discriminative partial regions in rice pest and disease
images, and increase M within a certain range to obtain more
accurate classification results.

Visualization of the Effect of IAM
To analyze the image augmentation effect of IAM in CRN,
we draw discriminative regions predicted by IAM through
Region Cover and Region Crop. In Figure 5, we perform image
augmentation on rice pest and disease images. All images in the
first row are original images; all images in the second row are
attention maps; the images in the third row are augmentation
maps after attention learning; and the images in the fourth
and fifth rows are images after image augmentation operations
(Region Crop and Region Cover).

We can see that where pests and diseases occur in
certain regions; these discriminative regions are highlighted in
augmentation maps. From the fourth row in Figure 5A, we
can clearly see that the discriminative region in the image after
Region Crop is enlarged. From the fifth row in Figure 5A,
the discriminative regions of the pest are the head and body
parts, which is consistent with human perception. From the
fourth row in Figure 5B, we can see that, although it is quite
difficult to identify rice disease regions in the field, IAM can
still find discriminative regions from the image. From the fifth
row in Figure 5B, we can see that IAM can accurately cover
some discriminative regions, thereby prompting CRN to find
more discriminative regions, which is especially helpful to the
classification effect.

CONCLUSION

This paper has proposed a CRN in order to study the
classification of rice pest and disease images in imbalanced
datasets. The results show that the combination of the CRM,
IAM, and FFM enhances the classification of rice pests and
disease images collected in the field. Extensive experiments on
common plant datasets and RPDID for imbalanced classification
have demonstrated that CRN outperforms state-of-the-art
methods. CRN can be further applied in production practice
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to provide support for the intelligent control of rice pests
and diseases.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: Our data is protected by copyright. For data
sources, please contact the Institute of Agricultural Economy and
Information, Anhui Academy of Agricultural Sciences’ website at:
http://jxs.aaas.org.cn/.

AUTHOR CONTRIBUTIONS

GY and GC: conceptualization, methodology, software, formal
analysis, data curation, writing, original draft preparation,

and visualization. GY, GC, and CL: validation. GY and YG:
investigation. GC, CL, and JF: resources, supervision, and
project administration. GY and HL: writing, review, and editing.
All the authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by grants from the Jiangxi
Province Research Collaborative Innovation Special Project
for Modern Agriculture (Grant Nos. JXXTCX201801-
03 and JXXTCXNLTS202106) and the National Key
Research and Development Program of China (Grant
No. 2018YFD0301105).

REFERENCES

Ayan, E., Erbay, H., and Varçin, F. (2020). Crop pest classification with a genetic

algorithm-based weighted ensemble of deep convolutional neural networks.

Comput. Electron. Agric. 179:105809. doi: 10.1016/j.compag.2020.105809

Barbedo, J. G. A. (2019). Plant disease identification from individual

lesions and spots using deep learning. Biosyst. Eng. 180, 96–107.

doi: 10.1016/j.biosystemseng.2019.02.002

Bhattacharya, S., Mukherjee, A., and Phadikar, S. (2020). “A deep learning

approach for the classification of rice leaf diseases,” in Intelligence Enabled

Research. Advances in Intelligent Systems and Computing, Vol. 1109, eds

S. Bhattacharyya, S. Mitra, and P. Dutta (Singapore: Springer), 61–69.

doi: 10.1007/978-981-15-2021-1_8

Buda, M., Maki, A., and Mazurowski, M. A. (2018). A systematic study of the

class imbalance problem in convolutional neural networks. Neural Netw. 106,

249–259. doi: 10.1016/j.neunet.2018.07.011

Burhan, S. A., Minhas, S., Tariq, A., and Hassan, M. N. (2020). “Comparative study

of deep learning algorithms for disease and pest detection in rice crops,” in

Electronics, Computers and Artificial Intelligence (ECAI) (Bucharest: IEEE), 1–5.

doi: 10.1109/ECAI50035.2020.9223239

Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma, T. (2019). “Learning

imbalanced datasets with label-distribution-aware margin loss,” in Neural

Information Processing Systems (NeurlPS), Vol. 32 (Vancouver, BC: MIT),

1567–1578.

Cap, Q. H., Uga, H., Kagiwada, S., and Iyatomi, H. (2020). LeafGAN: an effective

data augmentation method for practical plant disease diagnosis. IEEE Transac.

Automat. Sci. Eng. 1–10. doi: 10.1109/TASE.2020.3041499. [Epub ahead of

print].

Castilla, N. P., Macasero, J. B., Villa, J., Sparks, A. H., Willocquet, L., and

Savary, S. (2021). “The impact of rice diseases in tropical Asia,” in Plant

Diseases and Food Security in the 21st Century, Vol. 10 (Springer), 97–126.

doi: 10.1007/978-3-030-57899-2_6

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:

synthetic minority over-sampling technique. J. Artif. Intellig. Res. 16, 321–357.

doi: 10.1613/jair.953

Chen, J., Zhang, D., Nanehkaran, Y. A., and Li, D. (2020). Detection of rice plant

diseases based on deep transfer learning. J. Sci. Food Agric. 100, 3246–3256.

doi: 10.1002/jsfa.10365

Chen, J., Zhang, D., Zeb, A., and Nanehkaran, Y. A. (2021). Identification of

rice plant diseases using lightweight attention networks. Expert Syst. Appl.

169:114514. doi: 10.1016/j.eswa.2020.114514

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. (2019). “Class-

balanced loss based on effective number of samples,” in Computer Vision

and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 9268–9277.

doi: 10.1109/CVPR.2019.00949

Deng, L., Wang, Y., Han, Z., and Yu, R. (2018). Research on insect

pest image detection and recognition based on bio-inspired methods.

Biosyst. Eng. 169, 139–148. doi: 10.1016/j.biosystemseng.2018.

02.008

Deng, N., Grassini, P., Yang, H., Huang, J., Cassman, K. G., and Peng, S. (2019).

Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1–9.

doi: 10.1038/s41467-019-09447-9

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Tougne, L., and Rousseau,

D. (2019). Novel data augmentation strategies to boost supervised

segmentation of plant disease. Comput. Electr. Agric. 165:104967.

doi: 10.1016/j.compag.2019.104967

Du, X., Lin, T.-Y., Jin, P., Ghiasi, G., Tan, M., Cui, Y., et al. (2020).

“SpineNet: learning scale-permuted backbone for recognition and localization,”

in Computer Vision and Pattern Recognition (CVPR) (Seattle, WA: IEEE),

11592–11601. doi: 10.1109/CVPR42600.2020.01161

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2021). “Sharpness-

aware minimization for efficiently improving generalization,” in International

Conference on Learning Representations (ICLR) (Vienna).

Hasan, R. I., Yusuf, S. M., and Alzubaidi, L. (2020). Review of the state of the art of

deep learning for plant diseases: a broad analysis and discussion. Plants 9:1302.

doi: 10.3390/plants9101302

Horn, G. V., Aodha, O. M., Song, Y., Cui, Y., Sun, C., Shepard, A., et al. (2018).

“The iNaturalist species classification and detection dataset,” in Computer

Vision and Pattern Recognition (CVPR) (Salt Lake City, UT: IEEE), 8769–8778.

doi: 10.1109/CVPR.2018.00914

Huang, C., Li, Y., Loy, C. C., and Tang, X. (2016). “Learning deep representation for

imbalanced classification,” in Computer Vision and Pattern Recognition (CVPR)

(Las Vegas, NV: IEEE), 5375–5384. doi: 10.1109/CVPR.2016.580

Huang, C., Li, Y., Loy, C. C., and Tang, X. (2020). Deep imbalanced learning

for face recognition and attribute prediction. IEEE Trans. Pattern Anal. Mach.

Intell. 42, 2781–2794. doi: 10.1109/TPAMI.2019.2914680

Jamal, M. A., Brown, M., Yang, M.-H., Wang, L., and Gong, B. (2020). “Rethinking

class-balanced methods for long-tailed visual recognition from a domain

adaptation perspective,” in Computer Vision and Pattern Recognition (CVPR)

(Seattle, WA: IEEE), 7610–7619. doi: 10.1109/CVPR42600.2020.00763

Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., et al. (2020).

“Decoupling representation and classifier for long-tailed recognition,” in

International Conference on Learning Representations (ICLR) (Addis Ababa).

Kaya, A., Keceli, A. S., Catal, C., Yalic, H. Y., Temucin, H., and Tekinerdogan,

B. (2019). Analysis of transfer learning for deep neural network

based plant classification models. Comput. Electr. Agric. 158, 20–29.

doi: 10.1016/j.compag.2019.01.041

Kiratiratanapruk, K., Temniranrat, P., Kitvimonrat, A., Sinthupinyo, W., and

Patarapuwadol, S. (2020). “Using deep learning techniques to detect rice

diseases from images of rice fields,” in Industrial, Engineering and Other

Applications of Applied Intelligent Systems (IEA/AIE 2019) (Graz: Springer),

225–237. doi: 10.1007/978-3-030-55789-8_20

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., et al.

(2020). “Big Transfer (BiT): general visual representation learning,” in

Frontiers in Plant Science | www.frontiersin.org 12 July 2021 | Volume 12 | Article 671134

http://jxs.aaas.org.cn/
https://doi.org/10.1016/j.compag.2020.105809
https://doi.org/10.1016/j.biosystemseng.2019.02.002
https://doi.org/10.1007/978-981-15-2021-1_8
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1109/ECAI50035.2020.9223239
https://doi.org/10.1109/TASE.2020.3041499
https://doi.org/10.1007/978-3-030-57899-2_6
https://doi.org/10.1613/jair.953
https://doi.org/10.1002/jsfa.10365
https://doi.org/10.1016/j.eswa.2020.114514
https://doi.org/10.1109/CVPR.2019.00949
https://doi.org/10.1016/j.biosystemseng.2018.02.008
https://doi.org/10.1038/s41467-019-09447-9
https://doi.org/10.1016/j.compag.2019.104967
https://doi.org/10.1109/CVPR42600.2020.01161
https://doi.org/10.3390/plants9101302
https://doi.org/10.1109/CVPR.2018.00914
https://doi.org/10.1109/CVPR.2016.580
https://doi.org/10.1109/TPAMI.2019.2914680
https://doi.org/10.1109/CVPR42600.2020.00763
https://doi.org/10.1016/j.compag.2019.01.041
https://doi.org/10.1007/978-3-030-55789-8_20
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. CRN for Classifying Imbalanced Dataset

European Conference on Computer Vision (ECCV) (Glasgow: Springer), 491–

507. doi: 10.1007/978-3-030-58558-7_29

Kusrini, K., Suputa, S., Setyanto, A., Agastya, I. M. A., Priantoro, H.,

Chandramouli, K., et al. (2020). Data augmentation for automated

pest classification in Mango farms. Comput. Electr. Agric. 179:105842.

doi: 10.1016/j.compag.2020.105842

Laha, G. S., Singh, R., Ladhalakshmi, D., Sunder, S., Prasad, M. S., Dagar,

C. S., et al. (2017). “Importance and management of rice diseases: a

global perspective,” in Rice Production Worldwide (Springer), 303–360.

doi: 10.1007/978-3-319-47516-5_13

Lee, H., Park, M., and Kim, J. (2016). “Plankton classification on imbalanced

large scale database via convolutional neural networks with transfer learning,”

in International Conference on Image Processing (ICIP) (Phoenix, AZ: IEEE),

3713–3717. doi: 10.1109/ICIP.2016.7533053

Li, R., Jia, X., Hu, M., Zhou, M., Li, D., Liu, W., et al. (2019). An effective data

augmentation strategy for CNN-based pest localization and recognition in the

field. IEEE Access 7, 160274–160283. doi: 10.1109/ACCESS.2019.2949852

Li, Y., Wang, H., Dang, L. M., Sadeghi-Niaraki, A., andMoon, H. (2020). Crop pest

recognition in natural scenes using convolutional neural networks. Comput.

Electr. Agric. 169:105174. doi: 10.1016/j.compag.2019.105174

Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., and Yu, S. X. (2019).

“Large-scale long-tailed recognition in an open world,” in Computer Vision

and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 2537–2546.

doi: 10.1109/CVPR.2019.00264

Lu, Y., Yi, S., Zeng, N., Liu, Y., and Zhang, Y. (2017). Identification of rice diseases

using deep convolutional neural networks. Neurocomputing 267, 378–384.

doi: 10.1016/j.neucom.2017.06.023

Mathulaprangsan, S., Lanthong, K., Jetpipattanapong, D., Sateanpattanakul, S.,

and Patarapuwadol, S. (2020). “Rice diseases recognition using effective

deep learning models,” in Digital Arts, Media and Technology With

ECTI Northern Section Conference on Electrical, Electronics, Computer

and Telecommunications Engineering (ECTI DAMT & NCON) (Pattaya,

Thailand: IEEE), 386–389. doi: 10.1109/ECTIDAMTNCON48261.2020.90

90709

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).

“Distributed representations of words and phrases and their compositionality,”

in Neural Information Processing Systems (NIPS), Vol. 26 (Lake Tahoe, NV:

MIT), 3111–3119.

Murat, M., Chang, S.-W., Abu, A., Yap, H. J., and Yong, K.-T. (2017). Automated

classification of tropical shrub species: a hybrid of leaf shape and machine

learning approach. PeerJ 5:e3792. doi: 10.7717/peerj.3792

Nanni, L., Maguolo, G., and Pancino, F. (2020). Insect pest image detection

and recognition based on bio-inspired methods. Ecol. Inform. 57:101089.

doi: 10.1016/j.ecoinf.2020.101089

Nazki, H., Yoon, S., Fuentes, A., and Park, D. S. (2020). Unsupervised

image translation using adversarial networks for improved plant disease

recognition. Comput. Electr. Agric. 168:105117. doi: 10.1016/j.compag.2019.

105117

Pandian, J. A., Geetharamani, G., and Annette, B. (2019). “Data

augmentation on plant leaf disease image dataset using image

manipulation and deep learning techniques,” in International Conference

on Advanced Computing (IACC) (Tiruchirappalli, India: IEEE), 199–204.

doi: 10.1109/IACC48062.2019.8971580

Pouyanfar, S., Tao, Y., Mohan, A., Tian, H., Kaseb, A. S., Gauen, K., et al. (2018).

“Dynamic sampling in convolutional neural networks for imbalanced data

classification,” in Multimedia Information Processing and Retrieval (MIPR)

(Miami, FL: IEEE), 112–117. doi: 10.1109/MIPR.2018.00027

Rahman, C. R., Arko, P. S., Ali, M. E., Khan, M. A. I., Apon, S. H.,

Nowrin, F., et al. (2020). Identification and recognition of rice diseases

and pests using convolutional neural networks. Biosyst. Eng. 194, 112–120.

doi: 10.1016/j.biosystemseng.2020.03.020

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: towards

real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.25

77031

Saleem, G., Akhtar, M., Ahmed, N., and Qureshi, W. S. (2019). Automated analysis

of visual leaf shape features for plant classification. Comput. Electr. Agric. 157,

270–280. doi: 10.1016/j.compag.2018.12.038

Samuel, D., Atzmon, Y., and Chechik, G. (2021). “From generalized zero-

shot learning to long-tail with class descriptors,” in Winter Conference on

Applications of Computer Vision (WACV) (IEEE), 286–295.

Shen, L., Lin, Z., and Huang, Q. (2016). “Relay backpropagation for

effective learning of deep convolutional neural networks,” in European

Conference on Computer Vision (ECCV) (Amsterdam: Springer), 467–482.

doi: 10.1007/978-3-319-46478-7_29

Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., et al. (2019). “Meta-weight-

net: learning an explicit mapping for sample weighting,” in Neural Information

Processing Systems (NeurlPS), Vol. 32 (Vancouver, BC: MIT), 1919–1930.

Silva, P. F. B., Marçal, A. R. S., and Silva, R. M. A., da (2013). “Evaluation of

features for leaf discrimination,” in International Conference Image Analysis and

Recognition (Berlin; Heidelberg), 197–204.

Söderkvist, O. (2001). Computer Vision Classification of Leaves From Swedish Trees.

Master’ thesis, Linkoeping University, Linköping, Sweden.

Sun, X., Wu, P., and Hoi, S. C. H. (2018). Face detection using deep

learning: an improved faster RCNN approach. Neurocomputing 299, 42–50.

doi: 10.1016/j.neucom.2018.03.030

Tang, P., Wang, X., Wang, A., Yan, Y., Liu, W., Huang, J., et al. (2018).

“Weakly supervised region proposal network and object detection,” in

European Conference on Computer Vision (ECCV) (Munich: Springer), 370–

386. doi: 10.1007/978-3-030-01252-6_22

Touvron, H., Vedaldi, A., Douze, M., and Jegou, H. (2019). “Fixing the train-test

resolution discrepancy,” in Neural Information Processing Systems (NeurlPS),

Vol. 32 (Vancouver, BC: MIT), 8252–8262.

Turkoglu, M., and Hanbay, D. (2019). Leaf-based plant species recognition

based on improved local binary pattern and extreme learning machine.

Phys. A Stat. Mech. Appl. 527:121297. doi: 10.1016/j.physa.2019.

121297

Wang, F., Wang, R., Xie, C., Yang, P., and Liu, L. (2020). Fusing multi-

scale context-aware information representation for automatic in-field

pest detection and recognition. Comput. Electr. Agric. 169:105222.

doi: 10.1016/j.compag.2020.105222

Wang, J., Chen, K., Yang, S., Loy, C. C., and Lin, D. (2019). “Region

proposal by guided anchoring,” in Computer Vision and Pattern Recognition

(CVPR) (Long Beach, CA: IEEE), 2960–2969. doi: 10.1109/CVPR.2019.

00308

Wang, Y.-X., Ramanan, D., and Hebert, M. (2017). “Learning to model the tail,” in

Neural Information Processing Systems (NIPS), Vol. 30 (Long Beach, CA: MIT),

7029–7039.

Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). “A discriminative

feature learning approach for deep face recognition,” in European

Conference on Computer Vision (ECCV) (Amsterdam: Springer), 499–515.

doi: 10.1007/978-3-319-46478-7_31

Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2019). A comprehensive study on

center loss for deep face recognition. Int. J. Comput. Vis. 127, 668–683.

doi: 10.1007/s11263-018-01142-4

Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y.-X., Chang, Y.-F., and Xiang, Q.-L. (2007).

“A leaf recognition algorithm for plant classification using probabilistic neural

network,” in International Symposium on Signal Processing and Information

Technology (ISSPIT) (Giza: IEEE), 11–16. doi: 10.1109/ISSPIT.2007.4458016

Wu, X., Zhan, C., Lai, Y.-K., Cheng, M.-M., and Yang, J. (2019). “IP102:

a large-scale benchmark dataset for insect pest recognition,” in Computer

Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 8787–8796.

doi: 10.1109/CVPR.2019.00899

Yang, G., Chen, G., He, Y., Yan, Z., Guo, Y., and Ding, J. (2020a). Self-supervised

collaborative multi-network for fine-grained visual categorization of tomato

diseases. IEEE Access 8, 211912–211923. doi: 10.1109/ACCESS.2020.3039345

Yang, G., He, Y., Yang, Y., and Xu, B. (2020b). Fine-grained image classification

for crop disease based on attention mechanism. Front. Plant Sci 11:2077.

doi: 10.3389/fpls.2020.600854

Yin, X., Yu, X., Sohn, K., Liu, X., and Chandraker, M. (2019). “Feature transfer

learning for face recognition with under-represented data,” in Computer

Vision and Pattern Recognition (CVPR) (Long Beach, CA: IEEE), 5704–5713.

doi: 10.1109/CVPR.2019.00585

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2018). “Mixup:

beyond empirical risk minimization,” in International Conference on Learning

Representations (ICLR) (Vancouver, BC).

Frontiers in Plant Science | www.frontiersin.org 13 July 2021 | Volume 12 | Article 671134

https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1016/j.compag.2020.105842
https://doi.org/10.1007/978-3-319-47516-5_13
https://doi.org/10.1109/ICIP.2016.7533053
https://doi.org/10.1109/ACCESS.2019.2949852
https://doi.org/10.1016/j.compag.2019.105174
https://doi.org/10.1109/CVPR.2019.00264
https://doi.org/10.1016/j.neucom.2017.06.023
https://doi.org/10.1109/ECTIDAMTNCON48261.2020.9090709
https://doi.org/10.7717/peerj.3792
https://doi.org/10.1016/j.ecoinf.2020.101089
https://doi.org/10.1016/j.compag.2019.105117
https://doi.org/10.1109/IACC48062.2019.8971580
https://doi.org/10.1109/MIPR.2018.00027
https://doi.org/10.1016/j.biosystemseng.2020.03.020
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/j.compag.2018.12.038
https://doi.org/10.1007/978-3-319-46478-7_29
https://doi.org/10.1016/j.neucom.2018.03.030
https://doi.org/10.1007/978-3-030-01252-6_22
https://doi.org/10.1016/j.physa.2019.121297
https://doi.org/10.1016/j.compag.2020.105222
https://doi.org/10.1109/CVPR.2019.00308
https://doi.org/10.1007/978-3-319-46478-7_31
https://doi.org/10.1007/s11263-018-01142-4
https://doi.org/10.1109/ISSPIT.2007.4458016
https://doi.org/10.1109/CVPR.2019.00899
https://doi.org/10.1109/ACCESS.2020.3039345
https://doi.org/10.3389/fpls.2020.600854
https://doi.org/10.1109/CVPR.2019.00585
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. CRN for Classifying Imbalanced Dataset

Zhang, X., Fang, Z., Wen, Y., Li, Z., and Qiao, Y. (2017). “Range loss for deep

face recognition with long-tailed training data,” in 2017 IEEE International

Conference on Computer Vision (ICCV), 5419–5428.

Zhou, B., Cui, Q., Wei, X.-S., and Chen, Z.-M. (2020). “BBN: bilateral-

branch network with cumulative learning for long-tailed visual

recognition,” in Computer Vision and Pattern Recognition (CVPR)

(Seattle, WA: IEEE), 9719–9728. doi: 10.1109/CVPR42600.2020.

00974

Zhu, F., He, M., and Zheng, Z. (2020). Data augmentation using improved

cDCGAN for plant vigor rating. Comput. Electr. Agricult. 175:105603.

doi: 10.1016/j.compag.2020.105603

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Yang, Chen, Li, Fu, Guo and Liang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Plant Science | www.frontiersin.org 14 July 2021 | Volume 12 | Article 671134

https://doi.org/10.1109/CVPR42600.2020.00974
https://doi.org/10.1016/j.compag.2020.105603
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Convolutional Rebalancing Network for the Classification of Large Imbalanced Rice Pest and Disease Datasets in the Field
	Introduction
	Related Work
	Image Classification of Rice Pests and Diseases
	Imbalanced Datasets
	Image Augmentation

	Method
	Convolutional Rebalancing Module
	Data Sampling
	Attention Representation

	Image Augmentation Module
	Augmentation Map
	Region Crop
	Region Cover

	Feature Fusion Module
	Testing Phase
	Loss Function

	Experiments
	Datasets
	Implementation Details

	Results
	Comparison Methods
	Ablation Studies
	Samplers for the CRM
	Accuracy Contribution
	Effect of Number of Attention Maps
	Visualization of the Effect of IAM


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


