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Aerobic respiration and oxygen consumption are indicators of routine metabolic rate,
and dissolved oxygen in plant tissues is one of the most important environmental
factors affecting their survival. The reduction of available O2 leads to hypoxia which
causes a limitation of the oxidative phosphorylation; when O2 is absent, tissues generate
ATP by activating the fermentative glycolysis to sustain glycolysis in the absence of
mitochondrial respiration, which results in the production of lactate. Overall, hypoxia was
reported to often decrease the respiration rate (O2 uptake) and delay the climacteric
rise of ethylene in climacteric fruits by inhibiting action, thus delaying their ripening.
Much research has been done on the application of postharvest hypoxia and anoxia
treatment to temperate fresh crops (controlled or modified atmosphere), however, very
few reported on tropical commodities. Indeed, the physiological mode of action of low
or absence of oxygen in fresh crops is not well understood; and the physiological and
biochemical bases of the effects low or absence of O2 are also yet to be clarified. Recent
investigations using omics technologies, however, have provided useful information on
the response of fresh fruits and vegetables to this abiotic stress. The aims of this review
are to (i) report on the oxygen exchange in the crops tissue, (ii) discuss the metabolic
responses to hypoxia and anoxia, and (iii) report the physiological and biochemical
responses of crops tissues to these abiotic stresses and the potential benefits of these
environmental conditions.
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INTRODUCTION

From the botanical point of view, tropical fruits are a diverse group of commodities native to
tropical regions which are geographically defined as regions between the latitudes 23◦ North and
South of the equator, with temperatures averaging around 27◦C and little variation in photoperiod
(Samson, 1986). Tropical fruits present a large biodiversity varying in structure, characteristics, and
physiology (Wongs-Areea and Noichinda, 2014). Although the variations of tropical fruits are not
well established, banana, pineapples, papaya, and avocado fall within the category of major tropical
fruits, while others such as lychee, durian, rambutan, guava, passionfruit, mangosteen, tamarind,
and some others are considered minor tropical fruits (FAO, 2003; Paull and Duarte, 2011, 2012).

Atmosphere composition consists of 78% nitrogen (N2), 21% oxygen (O2), 0.04% carbon dioxide
(CO2), 0.93% argon, small amounts of other gases, and variable amount of water vapor at 20◦C
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and absolute pressure of 1 atm. Oxygen depletion or hypoxia
occurs when the partial pressure of oxygen is low enough
to limit the production of ATP by mitochondria, whereas
anoxia (absence of O2) is attained when ATP mitochondrial
production is insignificant compared to that generated by
glycolysis and fermentation. Under normal condition of oxygen
level (normoxia) cells run aerobic respiration and energy in
the form of ATP is produced by oxidative phosphorylation.
However, a reduction in oxygen (hypoxia) reduces the oxidative
phosphorylation, while the absence of oxygen (anoxia) stops
the phosphorylation process (Wongs-Aree and Noichinda, 2018;
Salvatierra et al., 2020). This diverts the production of energy to
the fermentation pathway producing fermentative by-products
that accumulate in the cells (Boersig et al., 1988; Pfister-Sieber and
Brändle, 1994; Cho et al., 2021).

In plant cells, oxygen partial pressure between organs of
plant, for example in shoots O2 concentration is much higher
in comparison with roots (Kotula et al., 2015; van Dongen and
Licausi, 2015). On the other hand, oxygen availability also varies
significantly in time and space, and the distribution of active O2
depends on its diffusion and convection, and the conductivity of
gas transport in specific tissues (Armstrong et al., 2006; Ho et al.,
2011; Licausi, 2011; Wang et al., 2017).

Intrinsically, the oxygen status of cells is variable and depends
to a great extent on the concentration or partial pressure of
atmospheric oxygen supply. This status differentiates between
hypoxia and anoxia. Tissues are under hypoxic conditions
when the oxygen partial pressure is the limiting factor of ATP
production; anoxic conditions are characterized by a limited
production of ATP by oxidative phosphorylation, which is mainly
produced by fermentation (Drew, 1997; Atwell et al., 2015).

Under unfavorable conditions of oxygen deprivation, plants
develop different structural and metabolic adaptations that are
genetically controlled, however, the form of adaptation and shift
in metabolism depend on the specific response of each species
and its tolerance (Figure 1; Beaudry, 2000; Huang et al., 2008;
Ioannidi et al., 2009; Toro and Pinto, 2015; Boecx, 2018). This
response causes the molecular mechanisms to react to the low
or absence of oxygen (Davies et al., 1974; Jackson et al., 1991;
Kennedy et al., 1992; Perata and Alpi, 1993; Ricard et al., 1994;
Ratcliffe, 1995; Schmidt et al., 2018), as well as an acclimatization
where ethylene was found to play a role (Figure 1; Hartman et al.,
2021).

In plants, it has been established that anaerobic metabolic
pathways other than ethanol production exist (Perata and Alpi,
1993; Ricard et al., 1994; Kolb and Joly, 2010; Ventura et al.,
2020). First, plants respond to hypoxia/anoxia by producing
lactate and the reaction consists of reducing pyruvate by the
lactate dehydrogenase (LDH) (Mithran et al., 2010). Under
prolonged exposure to hypoxia/anoxia, pyruvate is converted
to acetaldehyde by pyruvate decarboxylase (PDC), and then
the acetaldehyde is converted to ethanol by the acetaldehyde
dehydrogenase (LDH). The lactate-ethanol transition pathway
depends on the initial pH of the cytoplasmic compartment (Felle,
2005, 2010; Hossain and Uddin, 2011), and the lower the pH, the
faster this transition occurs because LDH has an optimal alkaline
pH of 8.0 while PDC has an optimal acidic pH of 5.8 (Davies

et al., 1974; Davies, 1980; Morrell et al., 1990; Fox et al., 1994;
Kato-Noguchi and Morokum, 2007; Cukrov et al., 2016).

Since tolerance of fresh crops to hypoxia/anoxia is of
great economic importance in postharvest science and
modified atmosphere packaging (MAP) technology, numerous
investigations have been carried out to elucidate the mechanisms
underlying the effect of oxygen deprivation on the physiological,
biochemical, and organoleptic parameters of crops and their
shelf-life. This review aims to describe the effects of low oxygen
availability -hypoxia/anoxia- on the physiology, the biochemistry
and the quality attributes of tropical fruits in order to determine
the optimal condition of MAP application in postharvest
handling and storage of these commodities.

ANOXIA/HYPOXIA AND CELL
METABOLIC CHANGES

Under hypoxic/anoxic conditions, the electron transport chain in
the mitochondria leads to the progressive suppression and the
inhibition of ATP synthesis. To compensate this lack of aerobic
energy, the cell switches to produce ATP by anaerobic glycolysis.
Basically, hypoxia/anoxia causes a decrease in ATP production,
but this decrease is more significant in the anoxia-intolerant
plants; this suggests that the ability of the anoxia-tolerant species
to sustain their energy supply might be the key factor for survival
under anoxia/hypoxia (Figure 2; Crawford, 1992; Hanhijärvi and
Fagerstedt, 1994, 1995; Nakamura and Noguchi, 2020; Zahra
et al., 2021). Nevertheless, response to oxygen deprivation is
more complex than it seems and requires further investigation
at different plants levels. Tolerance to hypoxia/anoxia, however,
appears to depend on a dual morphological and metabolic
adaptations which are specific to species and tissue types
(Kennedy et al., 1992; Perata et al., 1993; Ratcliffe, 1995; Mariani
and Ferrante, 2017; Nakamura and Noguchi, 2020; Zahra et al.,
2021).

Although no fundamental metabolic differences have been
observed between anoxia tolerant and intolerant plant species
(Pfister-Sieber and Brändle, 1994), sugar availability is important
since some tissues (e.g., roots) suffer more from sugar
starvation under anoxia (Saglio, 1985). Indeed, when O2
becomes less available starch is rapidly hydrolyzed and channeled
to the fermentative pathway for ATP production in order
to compensate the lack of oxidative phosphorylation (Perata
and Alpi, 1993). Although it was noted that starch reserve
mobilization is affected by anoxia, anoxia-tolerant plants have
been shown to break down starch much easier than anoxia-
intolerant species (Perata et al., 1992).

From the metabolic point of view, oxygen unavailability
and the production of ATP by fermentative glycolysis cause
the acidification of the cytoplasm (Summers et al., 2000; Gout
et al., 2001; Greenway and Gibbs, 2003) and, depending on the
tolerance to low oxygen partial pressure, the cellular pH remains
stable but drops when energy becomes short (Felle, 2005, 2010).
This drop in the pH leads to the accumulation of lactate which
in turn inhibits LDH and activates PDC producing acetaldehyde,
which is converted to ethanol by alcohol dehydrogenase (ADH).
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FIGURE 1 | How plants sense oxygen. Under aerobic conditions (left), aerobic respiration in the mitochondria provides most off the energy (ATP) required for the cell
metabolism. The ERF—VIII transcription factor genes are constitutively expressed, but their stability is compromised by the activity pf PCOs. Which is a process
requiring oxygen, oxidize the N-terminal Cys residue, channeling the ERF-VII proteins to the proteasome, in a process also requiring nitric oxide (NO). Under hypoxia
(right), the respiration in the mitochondria is drastically reduced, and AT production can only occur because of enhanced glycolytic activity. The ERF-VII proteins are
stabilized because of the absence of oxygen and also thank to ethylene production, which dampers the presence of NO in the cell. The stable ERF-VII proteins
migrate to the nucleus where they activate the transcription of Hypoxia-Responsive Genes (HRGs), including genes encoding proteins required for the alcoholic
fermentation. (From Loreti and Perata, 2020, published under an open access Creative Common CC BY license).

However, cytoplasm acidification is not caused solely by lactate
accumulation, but also by the possible passive H+ and potassium
(K+) leakage from the vacuole and the protoplasm under limited
ATP availability and inhibition of vacuolar H+-ATPase (Ratcliffe,
1995; Gout et al., 2001; Kulichikhin et al., 2007; Yemelyanov
et al., 2020). Indeed, ethanol is the primary end product of
fermentation in tissues of higher plants under to low oxygen,
even though its catalysis and regulation involve components
that will be identified in the future (Bui et al., 2019). However,
other studies suggest that other fermentation pathways exist, such
as the alanine pathway which is quantitatively minor (Davies
et al., 1974; Nover, 1989; Jackson et al., 1991; Ricard et al.,
1994). Under anaerobic fermentation, pyruvate can therefore
be converted into products other than ethanol such as alanine,
malate, and succinate which have been detected under early
anoxic conditions. Although these diversified glycolytic pathways
are recommended for enhancing the tolerance of plants to
anoxia using molecular engineering (Lee et al., 2014; Diab and
Limami, 2016), this physiological mechanism is not fully clear
(Pfister-Sieber and Brändle, 1994).

Indeed, the effects of hypoxia/anoxia do not solely depend
on the quantity of oxygen availability for ATP production,
but also on the exposure time. Under prolonged anoxia,
ethanol was found to be the most abundant end product
of fermentation, but interestingly some plants showed their
ability to release it into their surrounding environment, thereby
increasing their tolerance to anoxia (Crawford and Zochowski,
1984; Kato-Noguchi and Morokum, 2007). Another metabolic
consequence under anoxia is the alteration of the cellular
redox state of the cell, and the ability of the plant to survive
under hypoxia/anoxia consists of their capacity to maintain
the cell redox (i.e., NADH/NAD+-ratio), since a decrease in
NADH/NAD+ was noted in anoxia-intolerant plants (Chirkova

et al., 1992; Nakamura and Noguchi, 2020). However, under
oxygen deprivation anoxia-tolerant plants have higher ability to
oxidize NADPH to NADP+ via glycolysis and fermentation, and
this oxidation leads to less accumulation of reducing equivalents
(Guglielminetti et al., 1995, 1999). Furthermore, prolonged
hypoxia/anoxia, ATP needs also triggers the fermentation
pathway and LDH and ADH generate NAD+.

From the molecular point of view, the mechanisms signaling
the response to anoxia still remain unclear and not well
elucidated, and the sensors of hypoxia/anoxia in plants are not
clearly understood (Geigenberger, 2003; Gibbs and Greenway,
2003). Molecular responses to oxygen deprivation have focused
on the regulation of genes expression and activation of
enzymes involved in acclimation of metabolism such amylases
(Bailey-Serres and Chang, 2005). So far, a direct oxygen
sensor has not been established in plants, but some studies
have demonstrated that increased ADH gene expression and
fermentative metabolism are triggered under hypoxia/anoxia
(Koch et al., 2000). Other mechanisms which use different sets of
transcription factors (TFs) and ethylene responsive factor family
(ERF) to perceive low-oxygen derived signals have been reported
to play a primordial role in the determination of survival with
reduced oxygen availability (Licausi et al., 2010b; Licausi, 2011).

Cytosolic calcium patterns (Ca2+)cyt have also been
recognized as important elements in signaling, and there
has been increased interest in identifying the calcium fate
involved in (Ca2+)cyt changes in specific signaling pathways
(Bush, 1995; Subbaiah et al., 1998; Yemelyanov et al., 2011;
Lindberg et al., 2012; Hironari and Takashi, 2014). In this
regard, one of the suggested hypotheses is the role of Ca2+

as a messenger. This hypothesis is supported by the work of
Subbaiah et al. (1998) who observed an increase of Ca2+ in the
cytosol suggesting its possible participation in anoxic signaling
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FIGURE 2 | Regulations of sugar catabolism, fermentation, glycolysis, and major amino acid metabolism associated with NAD(P) + regeneration and ATP production
in terrestrial and wetland plants under O2-deficient conditions. Blue arrows and letters indicate the reactions and enzymes in the up-regulated pathways when the
mitochondrial electron transport and the TCA-cycle flux decrease under O2-deficient conditions. Red letters indicate the regeneration of NAD(P)+ from NAD(P)H. In
rice plants, the blue pathways contribute to their tolerance to long-term O2 deficiency compared with the terrestrial plants. Some wetland plants such as rice also
have a high ability to optimally regulate the pyruvate level by activation of pyrophosphate (PPi)-dependent phosphofructokinase (PFK-PPi) and pyruvate phosphate
dikinase (PPDK) that consume PPi instead of ATP for energy conservation. Besides glycolysis, PPi is consumed to regulate the cytosolic pH by the tonoplast
H+-pumping pyrophosphatase (H+-PPiase) instead of H+-ATPase in wetland plants. Although two independent pathways for sucrose degradation contribute to the
regulation of glycolytic flux in both terrestrial and wetland plants, the UDP-dependent sucrose synthase (SuSy) pathway is regarded as energetically more
advantageous for survival under O2-deficient conditions than the invertase (INV) pathway because here, PPi is utilized instead of ATP. Sugar supply to glycolysis
through starch mobilization is observed in species with developed storage organs such as tuber, rhizome, and endosperm. In NAD(P)H regeneration during the
metabolisms of 2-oxoglutarate and glutamate associated with γ-aminobutyric acid (GABA) production, the glutamate dehydrogenase (GDH) pathway without ATP
consumption is more efficient in energy consumption than the NAD(P)H-dependent glutamine: 2-oxoglutarate aminotransferase (GOGAT) pathway with ATP
consumption. The accumulation of some amino acids such as GABA, alanine, and glutamate play an important role in avoiding carbohydrate loss not only during
O2-deficient conditions but also during the recovery phase of re-oxygenation after hypoxia/anoxia. Alanine accumulation by alanine aminotransferase (AlaAT) can
operate non-circular TCA-cycle and gluconeogenesis under O2 deficiency and re-oxygenation. ADH, alcohol dehydrogenase; AlaAT, alanine aminotransferase;
ALDH, acetaldehyde dehydrogenase; AspAT, aspartate aminotransferase; CoASH, coenzyme A; FK, fructokinase; GABA-T, GABA transaminase; GAD, glutamate
decarboxylase; GHBDH, γ-aminobutyrate dehydrogenase; Glucose-1-P, glucose-1-phosphate; GS, glutamine synthetase; HXK, hexokinase; LDH lactate
dehydrogenase; MDH, malate dehydrogenase; PCK, phosphoenolpyruvate carboxykinase; PDC, pyruvate decarboxylase; PDH; pyruvate dehydrogenase; PEPC,
phosphoenolpyruvate carboxylase; PFK, ATP-dependent phosphofructokinase; PFK-PPi, PPi-dependent phosphofructokinase; PGI, phosphoglucoisomerase;
PGM, phosphoglucomutase; Pi, phosphate; PK, pyruvate kinase; PPDK, pyruvate Pi dikinase; SSADH, succinate semialdehyde dehydrogenase; Starch Pase, starch
phosphorylase; TCA, tricarboxylic acid; UDP, uridine diphosphate; UGPPase, UDP-glucose pyrophosphorylase; UTP, uridine triphosphate. (From Nakamura and
Noguchi, 2020; an open access article distributed under the terms of the Creative Commons CC BY license).
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(Sedbrook et al., 1996; Bose et al., 2011). In a recent study,
Igamberdiev and Hill (2018) suggested the possible release of
Ca2+ from cell compartments to the cytosol under the decrease
of ATP concentration resulting in the suppression of ATPases
and activation of calcium ion channels.

EFFECTS OF HYPOXIA/ANOXIA ON THE
RESPIRATION RATE AND ETHYLENE
PRODUCTION

Unlike animal products, crops are living organisms and they
continue to respire and are metabolically active during, either,
before or after harvest. This respiration is the chemical process
of energy production by converting glucose to carbon dioxide,
water and heat. The respiration rate (RR) of a fresh crop is
therefore determined by the speed at which this chemical process
occurs, and a high RR leads to a faster depletion of glucose
and loss of freshness. Indeed, under aerobic condition oxygen
exchange in fruit depends greatly on its physiology (type of fruit
and vegetable) (Platenius, 1942; Brady et al., 1970; Varoquaux
et al., 1992; Kader, 1994) and it relies on O2 diffusion from
the atmosphere to the fruit following Fick’s law (Palmes and
Lindenboom, 1979; Kader and Saltveit, 2003).

However, as a dynamic process resulting from a chemical
reaction, following van’t Hoff’s law (van’t Hoff, 1884; Kemp,
1987), RR is influenced by different factors mainly temperature
(Waghmare et al., 2013). Atmospheric oxygen concentration
also significantly affects RR depending on CO2 accumulation
during respiration, regulation of the respiratory metabolism in
addition to O2 diffusion limitation and availability which reduces
significantly RR (Gupta et al., 2009; Ho et al., 2018). However, at
low temperatures it was observed that RR was likely reduced by
a specific response to a signal generated by a plant oxygen sensor
(Ho et al., 2018).

From the metabolic point of view, more information is readily
available on the effects of O2 than on CO2 (Watkins, 2000).
Atmospheric carbon dioxide also influences the RR of crop
commodities, however, the mechanisms on how CO2 affect
RR are still not well understood, and CO2 might increase or
decrease RR depending on the type of fruit (Mathooko, 1996).
Overall, the RR of commodities decreases with the decrease in
oxygen partial pressure below 21 kPa, and the effect of hypoxia
becomes more significant below 10 kPa oxygen partial pressure
(Chervin et al., 1996).

Practically, extensive literature has reported on the effects of
hypoxia/anoxia on numerous temperate fruits (Ho et al., 2014;
Boeckx et al., 2019), while limited references are readily available
on tropical fruits in comparison. When exposed to low oxygen
concentration, hypoxia/anoxia significantly reduced the RR of
avocado (El-Mir et al., 2001), banana (Wade, 1974; Yi et al.,
2006), Japanese persimmon (Imahori et al., 1998), mango (Yahia
and Vazquez-Moreno, 1993), kiwi (Botondi et al., 2012; Huang
et al., 2014), pear (Ho et al., 2018), and dragon fruit (Ho et al.,
2021), while the absence of oxygen increased the RR of lychee
(Liu et al., 2015).

FIGURE 3 | (A) Plant CO2 production in response to oxygen depletion. Data
on carrot are from Leshuk and Saltveit (1990), on blueberries from Beaudry
et al. (1992) and on pears from Boersig et al. (1988). Arrows indicate ACPs
(Chervin et al., 1996, with permission of Elsevier). (B) Hypothetical respiratory
responses to O2 for a respiratory system of low diffusive resistance exhibiting
a K1/2 of about 0.15% O2, representative of single cells or tissues, and a
tissue with significant diffusive resistance to gas exchange with an K1/2 of 3%
O2 (with open permission).

On the other hand, oxygen is closely linked to the rate of
respiration of fresh crops and is required for the biosynthesis
of ethylene, and ERFs have been shown to play a role under
hypoxia/anoxia (Licausi et al., 2010a,b; Licausi, 2011). In an
interesting study, Sanders and de Wild (2003) modelized in vivo
ethylene production rate in relation to O2 partial pressure
using tomato, and their findings are in agreement with the
molecular findings since they noted that ethylene biosynthesis
and perception was positively related to O2 partial pressure
(Mustroph et al., 2010). Thus, similar to the effects on RR,
hypoxia/anoxia reduced levels of oxygen uptake and slowed
down ethylene production in avocado (Zhang et al., 2011),
saskatoon fruit (Rogiers and Knowles, 1998), banana (Imahori
et al., 2013), and kiwi fruit (Botondi et al., 2012).
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Nevertheless, a decrease in the RR does not change the
respiratory quotient (RQ = CO2/O2) –which is a good
indicator of the trigger of the fermentation pathway– until
O2 partial pressure reaches the compensation point c.a.
2 kPa (Figures 3A,B; Beaudry et al., 1992; Banks et al.,
1993; Peppenlenbos et al., 1996). Therefore, this suggests that
commodities are not significantly stressed by oxygen depletion
since carbohydrates are still completely oxidized to CO2 and the
end products of anoxia, namely lactate and acetaldehyde, do not
accumulate until the oxygen partial pressure falls below 2 kPa
(Beaudry et al., 1992).

HYPOXIA/ANOXIA AND FRESH CROPS
RIPENING, QUALITY, AND STORABILITY

As described above, hypoxia/anoxia may have beneficial effects,
such as slowing down the RR, ethylene production, and even
reducing the incidence of some physiological disorders (Mojević
and Tešanović, 2011; Lurie and Tonutti, 2014; Kongpatjirak
et al., 2016) such as delaying ripening (Pesis et al., 1994;
Pegoraro et al., 2012), softening (Wu et al., 2020), deastringency
(Zhu et al., 2018), browning (Phonyiam et al., 2016), internal
breakdown (Lizada and Rumbaoa, 2017), and also diseases (Fallik
et al., 2003). However, it is important to note that following
exposure of the fruit to anoxic conditions, the accumulation
of the ethanol fermentation metabolites -acetaldehyde and
ethanol- may be enhanced to extreme levels. The occurrence
of anaerobic conditions in the internal atmospheres of fruit
and vegetables, and their tendency to develop off-flavors
also depend on their anatomical structure and morphology
(Porat and Falik, 2008).

The modification of atmosphere was first developed by Kidd
and West (1927a,b), and a general consensus was reached on
hypoxia/anoxia and the effects in reducing rate of respiration,
ethylene synthesis and sensitivity, and lipid catabolism and other
oxidative reactions (Burton, 1974; Knee, 1991). Hypoxic/anoxic
conditions have shown to delay ripening and senescence of

many fruits and these effects were behind the development
of MAP and controlled atmosphere (CA) postharvest storage
technologies. Extensive literature is readily available on the
effects of hypoxia/anoxia on crops, but little on tropical fruits.
Green banana fruit stored under low (2%) and absence (0%) of
oxygen for 7 days showed high ADH activity and accumulated
more ethanol under total anoxia (0% O2), while low oxygen
showed a delayed onset of the climacteric peak and extended
the shelf-life of banana but reduced remarkably the production
of ester volatiles, i.e., ethyl acetate, isoamyl acetate, and isobutyl
acetate (Imahori et al., 2013). Similar results on banana were
obtained and the application of pure nitrous oxide (100% N2O)
or combined to low O2 levels delayed ripening and extended the
shelf-life of the fruit (Palomer et al., 2005; Yi et al., 2006).

Short anoxic treatment of pineapple maintained flesh and pulp
color; delayed the increase in total sugar content and enhanced
total ascorbic acid content during storage; and maintained overall
postharvest quality of the fruit stored at ambient temperature
(Techavuthiporn et al., 2017). When hypoxically pre-treated (3%
O2 for 24 h) or exposed to low oxygen (1 and 0.25% O2 for
1–3 days), avocado fruit increased their tolerance to hypoxia
(El-Mir et al., 2001). Litchi is known to have a very short
shelf-life, and its short exposure to anoxia (0% O2) markedly
delayed skin browning and reduced rotting while maintaining
the physical quality of the fruit during storage (Jiang et al.,
2004; Liu et al., 2007). Mango is also one of the most widely
consumed but perishable tropical fruit. Interestingly, anoxic
treatment for 24 h prior to storage showed to be effective in
retarding ripening, maintaining firmness, and delaying color
change (Kongpatjirak et al., 2016). In a study on cherimoya,
Palma et al. (1993) noted that hypoxia (5% O2) delayed ripening
and the edible condition differed with oxygen treatment and
was inversely proportional to O2 concentration. In a recent
study, Ho et al. (2021) investigated the effect of different
hypoxic treatments on dragon fruit (Hylocereus undatus) and
their results showed that 2 kPa O2 + 5 kPa CO2 was the
optimal hypoxic treatment in maintaining the shelf-life of the
fruit during storage.

TABLE 1 | Effects of hypoxia/anoxia on some tropical fruits.

Fruit Hypoxia/anoxia Benefits References

Avocado 2–5% O2 Reduce respiration rate Ethylene production Delay ripening El-Mir et al., 2001

Banana 2–5% O2 Delay ripening Palomer et al., 2005; Yi et al., 2006; Imahori et al., 2013

Cherimoya 5% Reduce respiration rate Reduce ethylene production Delay
ripening Delay ripening Firmness retention

Palma et al., 1993; Escribano et al., 1997

Durian 3–5% O2 Reduce CO2 production Reduce ethylene production Delay
ripening

Minh, 2017

Litchi 5% Reduce skin browning Jiang et al., 2004; Liu et al., 2007

Mango 3–5% O2 Delay ripening Kongpatjirak et al., 2016

Papaya 2–8% O2 Delay ripening Degreening and softening Enhanced quality Rohani et al., 1997; González-Aguilar et al., 2003

Pineapple 2–5% O2 Reduce respiration rate Delay senescence Techavuthiporn et al., 2017

Rambutan 3% O2 Reduce respiration rate Delay senescence O’Hare et al., 1994

Sweetsop 3–5 O2 Reduce respiration rate Reduce ethylene production Delay
ripening

Broughton and Guat, 1979; Venkatram et al., 2016

Dragon 2% O2 Delay senescence Ho et al., 2021

Persimmon 95% CO2 Removal of astringency Min et al., 2014; Salvador et al., 2008
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Another benefit of hypoxia/anoxia is the improvement of
the quality attributes of some fruits. Hypoxia was shown to
be a beneficial treatment for the removal of astringency from
persimmon to improve the fruit quality after harvest. Although
the longer the fruit is stored, the less effective is the treatment
(Salvador et al., 2008), the application of hypoxic treatment with
high CO2 (95%) effectively reduced high soluble tannins (SCTs)
content which is one of the most important causes of persimmon
fruit astringency (Min et al., 2014). Table 1 summarizes the main
findings of hypoxia/anoxia treatments effects on tropical fruits.

CONCLUSION AND FUTURE
DIRECTIONS

In postharvest science, hypoxia/anoxia treatments combined
with packaging technology have been used as one of the most
inexpensive non-chemical technology to prevent physiological
disorders, reduce diseases incidence, delay ripening, extending
shelf-life, and even improving some quality attributes of a large
number of temperate fresh commodities during transportation
and storage. Nevertheless, few studies have been focusing on
how oxygen deprivation affects tropical fruits. These atmospheric
conditions and treatments with low or total absence of
oxygen have shown different efficacy levels which depend on
composition of the atmosphere, the treatment and storage
duration, and the type of commodity treated and their tolerance
and response to total or partial absence of oxygen. Overall,
on several tropical fruits low or absence of oxygen has shown
its involvement in reducing the RR and ethylene biosynthesis,
prolonging therefore the shelf-life of these commodities and
maintaining some quality attributes and freshness. However,
data showed that changes in oxygen availability and ethylene
emission rates in reaction to the surrounding hypoxic or anoxic
atmosphere varies with different intrinsic and extrinsic factors
particularly oxygen levels and temperatures. On the other hand
and from the fundamental point of view, the timing of the
converging pathways to acetaldehyde and ethanol production
and the distinct energy-dependent signaling pathways operating
during hypoxia/anoxia are still unclear and not fully understood
since most tropical fruits are known to have higher RRs and
many of them are climacteric fruits. Besides the progress and

advances in plant physiology and hypoxia/anoxia effects on
plant tissues, fruits admittedly react differently to extremely
low or total absence of oxygen conditions during exposure
and storage in terms of tolerance, RR, ethylene production,
volatiles biosynthesis, and acetaldehyde, alanine, and ethanol
production and accumulation. In order to decipher the effects of
hypoxia/anoxia mechanisms on tissues in general, it is first crucial
to elucidate the different oxygen sensing mechanisms involved,
the specific molecular and metabolic changes occurring at the
earliest stages of the hypoxic/anoxic conditions, and establish
whether these changes are a sort of adaptation response to oxygen
deprivation. Another direction in understanding hypoxia/anoxia
effects on plants is to elucidate whether the different oxygen-
sensing mechanisms have different activation thresholds, and
how these sophisticated sensing and signaling networks likely
enable plants to tailor their adaptive responses to face the
severity and duration of hypoxic/anoxic conditions. Elucidating
these mechanisms will be of great importance and applications
in enhancing our understanding of crop physiology in these
extreme conditions. It will also a key step in determining which
low oxygen atmospheric conditions may be worth testing on
tropical fruits to determine the optimal postharvest handling
and storage conditions of these sensitive commodities and
maintaining longer their freshness and quality attributes. Indeed,
anoxia/hypoxia should be further investigated for its potential
application to extend the shelf-life and preserve the quality
attributes of numerous less known tropical fruits by setting
optimal O2 concentration either as a pre-treatment for a
very short time span prior to storage or in MAP or CA
storage technologies.
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