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Longan (Dimocarpus longan L.) is one of the most important tropical and subtropical
fruits in the world. Longan fruit has high nutritional and medical value, and is regarded
as a treasure among fruits. Since it was first reported that potassium chlorate (KClO3)
could be successfully applied to promote flowering in longan, this compound has been
widely used in the production of on-season and off-season longan fruits. KClO3 has thus
played a great role in promoting the development of the longan industry. In this review,
we summarize the application methods, influencing factors, and physiological and
molecular mechanisms associated with KClO3-mediated induction of longan flowering.
It can be deduced that leaves may play a crucial role in the transport of and response
to KClO3. Leaves supply carbon and nitrogen nutrition, and hormone and signaling
molecules needed for the differentiation of apical buds. Moreover, cytokinins may be
crucial for KClO3-mediated induction of longan flowering. More effort should be focused
on studying the molecular mechanisms underlying this process. This will not only
help us to better understand floral induction by KClO3 in longan but also enrich our
understanding of flowering regulation mechanisms in woody plants.

Keywords: Dimocarpus longan, floral induction, KClO3, stress response, plant hormone

INTRODUCTION

Longan (Dimocarpus longan Lour.) is an important tropical and subtropical fruit tree that belongs
to the Sapindaceae family (Lai et al., 2000). Native to southern China and Southeast Asia, longan
is cultivated in more than 20 countries, from Sri Lanka and India to East Malaysia and Australia
(Janick, 1989; Lithanatudom et al., 2017). China has the largest planting area and highest yield
of longan, followed by Thailand, Vietnam, India, and South Africa. These five countries produce
ninety percent longan (Food and Agriculture Organization, 2014; Wang et al., 2015). Longan can
be eaten fresh or processed, and is widely consumed due to its sweet juicy taste and health benefits.
These health benefits include blood metabolism promotion, memory enhancement and insomnia
incidence reduction (Rangkadilok et al., 2007; Park et al., 2010). Longan have also been used as
traditional Chinese medicine to treat leucorrhea, kidney disorders, allergies, and cardiovascular
diseases (Jiang et al., 2009).

Floral induction (FI) is considered the first step from vegetative to reproductive growth. FI
plays an important role as it determines the success of commercial orchards (Bangerth, 2009).
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The flowering of many plants is regulated by environmental
factors, such as chilling, drought, and oxidative stresses. With the
development of science and technology, it is possible to create
similar environmental conditions for flowering requirement, or
to find chemicals to promote off-season flowering. For example,
supplementary lighting in short-day winters can induce flowering
in long-day pitaya (Hylocereus undatus Britton et Rose) (Xiong
et al., 2020). In addition, the use of paclobutrazol can induce off-
season flowering in mango (Mangifera indica L.) (Sergent et al.,
1997; Abdel Rahim et al., 2011).

Normally, a period of low temperature (usually ≤ 18◦C)
is required for longan to bloom (Suttitanawat et al., 2012).
In warmer winter, girdling can control the growth of winter
shoots and promote flowering in spring (Wu et al., 2000). In
addition, low concentrations (100–200mg/L) of paclobutrazol
(PP333) have been shown to significantly promote flower bud
differentiation (Huang, 1996). The first report of potassium
chlorate (KClO3) being used to induce flowering in longan was
published by Changrui Yan. Since then, attempts have been made
to achieve stable FI in longan (Yan et al., 1998; Li et al., 2006).
Thus, KClO3 has now been widely used in longan production.
Fresh longan fruits are currently available in local markets
in Thailand all year round due to the application of KClO3
(Subhadrabandhu and Yapwattanaphun, 2000).

Thus far, FI by KClO3 has only been found to be effective
for longan. Studying FI by KClO3 will provide a deeper
understanding of the flowering regulation mechanism of woody
plants. Furthermore, such study will provide a theoretical basis
for regulating the flowering of other Sapindaceae plants, such as
Litchi chinensis Sonn. In this paper, we summarize the application
methods, physiological and molecular regulation mechanisms,
influencing factors, and the environmental impact of KClO3-
mediated FI in longan. Furthermore, the future perspectives of
studying the mechanisms underlying FI by KClO3 are analyzed.

APPLICATION METHODS

Year-round FI is achieved in longan with KClO3 application. The
perfect time period to apply KClO3 for on-season FI is from
November to January, after the maturation of the last shoot. Off-
season FI can be achieved by applying KClO3 from February to
October, when the leaves of the last shoot are light green. Leaves
play a fundamental and essential role in this process of FI (Nunez-
Elisea et al., 1996). To achieve higher FI efficiency, KClO3 should
be applied when leaves are older than 60 days, as flower bud
differentiation requires adequate nutrition. It has been proposed
by Hegele et al. (2004) that the presence of young leaves reduces
the efficiency of FI by KClO3. Furthermore, supernutrition can
lead to flushes of new leaves, and thus the timing of KClO3
treatment needs to be precisely controlled (Lu et al., 2006).

Foliar spraying and soil drenching are the most common
KClO3 application approaches. For foliar spraying, 0.5–3 g/L
KClO3 solution is sprayed onto the leaves. For soil drenching,
a circular shallow ditch with a depth of approximately 15–
20 cm and a width of approximately 15–25 cm should be dug
along the drip line of the longan tree crown. Then, 0.5–2 kg of

solid KClO3 or water solution should be spread into the ditch.
Generally, the combination of the two methods will produce
better results. The specific KClO3 dosage should be determined
according to the plant variety and age, and to the climate. In
addition, the soil needs to be kept slightly wet for 15 days
after KClO3 treatment. Furthermore, fertilization and pruning
should be avoided during the period between the treatment and
flowering (Huang et al., 2009).

FACTORS INFLUENCING
KClO3-MEDIATED FI

Floral induction is highly correlated with leaf age in tropical
and subtropical fruit trees. Longan apical buds with high
carbon content (> 50.93 mg/g) in the leaves can be induced
into flowers. Meanwhile, those with leaves with low carbon
content (< 37.40 mg/g) cannot be induced by KClO3 out of
season (Hong et al., 2014). Previous research has suggested
that mature leaves might be involved in the conversion
of isopentenyladenine/isopentenyladenosine (iP/iPA) cytokinin
(CK) precursors into the active zeatin/zeatin riboside (Z/ZR)
CKs. Hence, leaves may be involved in the FI process
(Potchanasin et al., 2009a; Tiyayon et al., 2010). Shading has
been shown to inhibit the export of indoleacetic acid (IAA) out
of the shoot apical buds, the leaf export of iP/iPA- and Z/ZR-
type CKs, and CK accumulation in shoot apical buds. In this
way, shading can prevent FI by KClO3 treatment (Sritontip et al.,
2008; Sringarm et al., 2009a; Ongprasert et al., 2010). Appropriate
KClO3 concentrations promote flowering, while excessive KClO3
concentrations may lead to less flowering, no flowering or leaf
burn (Ongprasert et al., 2010). Weather conditions can also affect
KClO3-mediated FI; the lowest flowering percentage (11.9%–
50.9%) occurs in rainy seasons, and higher flowering percentage
(77.5–88.6%) in cool and hot seasons (Manochai et al., 2005).

ABSORPTION AND METABOLISM OF
CHLORATE

Plant cells share the same absorption mechanism for chlorate
and nitrate through nitrate transporter (Glass et al., 1999).
Chlorate is generally not toxic to plants; however, chlorate
becomes toxic when converted into chlorite and hypochlorite
by nitrate reductase (NR) and nitrite reductase (NiR) (Hofstra,
1977). Chlorate is not harmful while plants lack NR activity
(Doddema et al., 1978; Borges et al., 2004). The interactions
of potassium chlorate and proteins in Arabidopsis thaliana and
Populus trichocarpa were searched by STITCH 5.0 at http://stitch.
embl.de/cgi/ (Szklarczyk et al., 2016). The interaction of two
NRs with potassium chlorate was found in Arabidopsis thaliana
and Populus trichocarpa (Figure 1). The following were also
observed: one multidrug and toxic compound extrusion (MATE)
transporter, one major facilitator superfamily transporter, one
aspartyl protease in guard cell 1 in Arabidopsis thaliana
(Figure 1). Meanwhile, four MATE transporters were found
in Populus trichocarpa (Figure 1). These findings indicate that
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FIGURE 1 | Interactions of potassium chlorate and proteins in Arabidopsis thaliana (A) and Populus trichocarpa (B) searched by STITCH 5.0. (A) Generated by input
“Item Name: potassium chlorate, Organism: Arabidopsis thaliana”; (B) Generated by input “Item Name: potassium chlorate, Organism: Populus trichocarpa.”
Stronger associations are represented by thicker lines and higher scores in the follow table. Protein-protein interactions are shown in gray and chemical-protein
interactions in green.

nitrate reduction systems are crucial in chlorate absorption and
metabolism. MATE may pump chlorate out of cells or transfer
chlorate into vacuoles for detoxification due to its implication
in the membrane-mediated transport of small organic molecules,
metal ions, and chloride ions (Zhang et al., 2017; Upadhyay et al.,
2019).

PHYSIOLOGICAL MECHANISMS of
KClO3-MEDIATED FI

Plant Hormones
Endogenous plant hormones participate in the entire life process
of plants. Plant hormones regulate plant growth and development
by forming a complex and complete signaling network that
enables the transmission of exogenous or endogenous signals.
Therefore, hormone signals are crucial to flower formation
(Santner and Estelle, 2009; Wolters and Jürgens, 2009; Puja
et al., 2015). Application of KClO3 can induce changes in

endogenous hormones. The contents of two types of CK—trans-
zeatin (tZ)/ZR and iP/iPA—have been shown to increase after
KClO3 treatment in apical buds, sub-apical wood and bark,
leaves and roots (Potchanasin et al., 2009b; Hegele et al., 2010;
Suttitanawat et al., 2012). However, only ZR seemed to be
involved in the FI process (Bangerth et al., 2010). Mature leaves
may set the stage for the conversion of iPA into ZR, and KClO3
treatment promotes the translocation of CKs from the leaves to
apical buds (Sringarm et al., 2009b; Tiyayon et al., 2010). The
increased CK contents can also be detected during flowering in
longan (Sringarm et al., 2009b). The contents of gibberellic acid
(GA), IAA, and abscisic acid (ABA) in shoot apical buds and
leaves have been shown to decrease following KClO3 application
(Hegele et al., 2008, 2010; Tiyayon et al., 2010). This shows that
longan FI by KClO3 may require more CKs, but less GA, IAA,
and ABA. Increased production of ethylene (ETH) has also been
detected in longan leaves after KClO3 treatment. It is unknown
whether this increase is involved in the FI process or a stress
response (Sringarm et al., 2009b). Besides ETH and CK, KClO3
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FIGURE 2 | Physiological mechanism of floral induction by KClO3 in longan. The physiological indexes above the red line increased after KClO3 treatment, while the
indexes under the red line decreased.

treatment can also increase the amount of salicylic acid (SA). SA
has also been found to be closely related to plant flower formation
(Sringarm et al., 2009b; Martínez et al., 2010).

Carbon and Nitrogen Nutrition
The carbon–nitrogen (C:N) ratio is an important physiological
factor influencing flowering. Carbohydrate reserves are a
prerequisite for FI in tropical and subtropical trees. High
carbohydrate and low nitrogen contents lead to a high
C:N ratio, which is conducive to flowering. Meanwhile, a
high nitrogen content results in a low C:N ratio, which
is favorable for vegetative growth (Corbesier et al., 2002).
It seems that KClO3 treatment does not impact the total
nitrogen content, total non-structural carbohydrate content, or
carbohydrate–nitrogen ratio (Charoensri et al., 2005; Wangsin
and Pankasemsuk, 2005; Matsumoto et al., 2007). However, it
has been shown that the content of soluble sugar, fructose, and
glucose increased, the sucrose content increased significantly,
and the starch content decreased significantly in longan leaves
in response to KClO3 treatment (Chen and Li, 2004; Lu,
2005; Chang, 2010). KClO3 treatment has also been shown
to reduce the longan leaf nitrate reductase activity. In the
same study, KClO3 led to a peak in soluble amino acid
accumulation in the leaves within 2 weeks of treatment;

this amino acid accumulation then decreased but continued
to increase in the apical buds (Lu, 2005). Generally, higher
ammoniacal nitrogen contents are beneficial for flowering.
Overall, it can be inferred that KClO3 treatment can change
the types of carbohydrate and protein to promote reproductive
development without affecting total nitrogen or total non-
structural carbohydrate contents.

Stress Response
KClO3 is a type of strong oxidant that is used as a herbicide.
High KClO3 concentrations will cause longan leaves to turn
yellow and fall off. It is speculated that appropriate amounts of
KClO3 can lead to stress responses. Reduced net carbon dioxide
(CO2) assimilation, transpiration, stomatal conductance rates,
and photosystem II efficiencies (Fv/Fm) have been detected after
KClO3 treatment (Hegele et al., 2008; Sritontip et al., 2010,
2013). The treatment has resulted in chlorophyll degradation,
the destruction of chloroplast thylakoid membrane structure, the
disappearance of chloroplast starch granules, and the destruction
of basal granules (Lu, 2005). The decrease in photosynthetic
capacity has been shown to have been mainly caused by
the inhibition of the activity of the photosynthetic apparatus
(Chang, 2010). The reactive oxygen species and malondialdehyde
contents, and superoxide dismutase and peroxidase activities,
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FIGURE 3 | Proposed model of the molecular regulation of KClO3 mediated FI. The solid line shows confirmed result while dotted lines indicate speculated. Blue
dotted lines (after ClO2

−/ClO−): ClO2
−/ClO− may directly induce stress response, CK content increasement and flowering-related genes expression; Red dotted

lines: ClO2
−/ClO− induce stress response, then stress response induce CK content increasement and flowering-related genes expression; Black dotted line: CK

content increasement may also induce flowering-related genes expression.

were found to be higher in leaves within 1 month after KClO3
treatment than in the control. Meanwhile, the leaf water potential
and root activity were significantly lower than in the control
(Ouyang et al., 2005).

MOLECULAR MECHANISMS OF
KClO3-MEDIATED FI

Several genes related to the flowering of longan have been
identified. Tiyayon et al. (2011) first cloned the longan
flowering locus T (DlFT) gene, which shared 68% identity with
the Arabidopsis thaliana gene, AtFT (Tiyayon et al., 2011).
Winterhagen et al. (2013) isolated DlFT1, DlFT2, and two
APETALA1-like (DlAP1-1 and DlAP1-2) sequences from longan.
Transgenic analysis indicated that DlFT1 promoted flowering,
while DlFT2 inhibited flowering. Ectopic overexpression of
AP1 genes in Arabidopsis resulted in early or late-flowering
phenotypes (Winterhagen et al., 2013). Overexpression of the
longan gigentea (DlGI) and flavin-binding, kelch repeat, F-box
1 (DlFKF1) genes caused Arabidopsis to bloom early under
long-day conditions (Huang et al., 2017). The early flowering 4
proteins, DlELF4-1 and DlELF4-2, were found to bind to and
activate the promoter of DlGI (Waheed et al., 2020). Through
transcriptome analysis of “Sijimi” longan, Zhang et al. (2016)

found a large number of genes related to the four known
flowering pathways and floral integrator genes. By comparing and
analyzing the different expression levels of genes in the terminal
tips of “Sijimi” and “Lidongbe” longan, short vegetative phase
(SVP), GI, FKF1, and ELF4 were found to be involved in the
continuous flowering of “Sijimi,” and ELF4 might play a key role.

Sixty-five uniquely expressed genes were identified between
buds with and without KClO3 treatment, and many of them
were demonstrated to be involved in shoot and floral meristem
development. These genes included homologs of protodermal
factor 1 (PDF1), SHEPHERD, and PISTILLATA (Matsumoto,
2006; Matsumoto et al., 2007). KClO3 treatment was also
found to enhance the expression of DlFT1 in mature leaves,
which was highly consistent with the increased CK content
(Winterhagen et al., 2020).

CONCLUSION

By analyzing the results of previous studies, it can be inferred that
in longan, leaves are the main plant organs that respond to KClO3
treatment. KClO3 treatment can induce stress responses in leaves.
These stress responses include reduced leaf water potential,
net CO2 assimilation, transpiration, stomatal conductance rates
and Fv/Fm, increased destruction of photosynthetic apparatus,
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malondialdehyde and reactive oxygen species contents, and
superoxide dismutase and peroxidase activities (Figure 2;
Ouyang et al., 2005; Sritontip et al., 2013). KClO3 treatment
can also cause changes in carbon and nitrogen nutrition in
longan leaves. It reduces the starch content and increases the
soluble sugar, fructose, glucose, sucrose, and soluble amino acid
contents (Figure 2; Lu, 2005; Chang, 2010). Furthermore, KClO3
treatment can lead to changes in leaf hormone contents. The
treatment slightly reduces the contents of GA, IAA, and ABA
and increases the contents of ETH, SA, and CKs (Figure 2;
Sringarm et al., 2009b; Martínez et al., 2010). CKs may play a
particularly vital role in FI by KClO3. KClO3 treatment can also
slightly reduce the contents of GA, IAA, and ABA, and increase
the contents of iPA- and ZR-type CKs in the apical bud, which
may be due to transport from the leaves (Figure 2; Sringarm
et al., 2009b; Tiyayon et al., 2010). The enhanced soluble sugar
and soluble amino acid contents provide nutrition for flower
bud differentiation. In addition, the H2O2 generated in the stress
response process may act as an important signal molecule in off-
season FI of longan as it can promote the expression of DlAP1
and DlFT (Hong et al., 2015; Yang et al., 2016).

We have a general understanding of the physiological
mechanism underlying longan FI by KClO3. Though little
is known about the corresponding molecular mechanism, a
speculated regulation model of KClO3-mediated FI was proposed
based on above information. Chlorate can be reduced to chlorite
and hypochlorite by nitrate reductase (NR) and nitrite reductase
(NiR) (Figure 3; Borges et al., 2004). Chlorite and hypochlorite
may directly cause stress response, CK content increasement
and expression of flowering-related genes (Figure 3, blue dotted
lines). It is reported that stress could induce the cytokinin
synthesis (Reguera et al., 2013) and flowering (Cho et al.,
2017). There is another possibility that the stress response
caused by chlorite and hypochlorite may contribute to the CK
content increasement and expression of flowering-related genes
(Figure 3, red dotted lines). Also, the enhanced CK content may
induce the expression of flowering related genes as indicated by
Winterhagen et al. (2020) (Figure 3, black dotted lines). Excess

chlorate in plant cell may be transferred out of cell or into vacuole
by MATE transporters (Figure 3, blue dotted lines).

It remains to be understood how KClO3 is transferred from
the root to leaf or from the leaf to root. Furthermore, it is
unclear how KClO3 causes various physiological changes and
why it is possible to use KClO3 in place of cold treatment
in FI. In particular, it will be important to understand the
relationship between KClO3 treatment and the contents of CKs,
and what role CKs play in FI by KClO3. Addressing these issues
will not only provide a full understanding of the mechanism
underlying FI by KClO3 in longan but also enrich our theoretical
understanding of flowering regulation in woody plants. Although
the genome of longan has been published (Lin et al., 2017), a
genetic transformation system, or a highly efficient virus-induced
gene silencing system for longan, will be required to undertake
the necessary further research.
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