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Diverse signaling pathways regulated by phytohormones are essential for the
adaptation of plants to adverse environments. Root endophytic bacteria can manipulate
hormone-related pathways to benefit their host plants under stress conditions,
but the mechanisms underlying endophyte-mediated plant stress adaptation remain
poorly discerned. Herein, the acetic acid-producing endophytic bacteria Lysinibacillus
fusiformis Cr33 greatly reduced cadmium (Cd) accumulation in tomato plants.
L. fusiformis led to a marked increase in jasmonic acid (JA) content and down-
regulation of iron (Fe) uptake-related genes in Cd-exposed roots. Accordantly, acetic
acid treatment considerably increased the JA content and inhibited root uptake of Cd
uptake. In addition, the Cr33-inoculated roots displayed the increased availability of
cell wall and rhizospheric Fe. Inoculation with Cr33 notably reduced the production of
nitric oxide (NO) and suppressed Fe uptake systems in the Cd-treated roots, thereby
contributing to hampering Cd absorption. Similar results were also observed for Cd-
treated tomato plants in the presence of exogenous JA or acetic acid. However,
chemical inhibition of JA biosynthesis greatly weakened the endophyte-alleviated Cd
toxicity in the plants. Collectively, our findings indicated that the endophytic bacteria
L. fusiformis effectively prevented Cd uptake in plants via the activation of acetic
acid-mediated JA signaling pathways.

Keywords: endophytes, jasmonic acid, cadmium toxicity, iron deficiency, acetic acid-producing bacteria

INTRODUCTION

Massive industrial waste and the use of phosphate fertilizers cause heavy metal pollution in
agricultural soils (Sarwar et al., 2017). Soil cadmium (Cd) is highly mobile and can be transported
into the edible tissues of crop plants (Pan et al., 2019). To ensure food safety, sustainable
technologies are urgently needed to prevent Cd accumulation in plants grown under Cd-polluted
conditions. However, the use of physical and chemical methods to remedy Cd-contaminated soil

Frontiers in Plant Science | www.frontiersin.org 1 June 2021 | Volume 12 | Article 670216

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.670216
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.670216
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.670216&domain=pdf&date_stamp=2021-06-04
https://www.frontiersin.org/articles/10.3389/fpls.2021.670216/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-670216 May 29, 2021 Time: 21:48 # 2

Zhu et al. Lysinibacillus fusiformis Alleviates Cadmium Toxicity

is impracticable, rendering these methods ineffective for
implementation at field sites (Pulford and Watson, 2003).
Mounting evidence has indicated that the exploitation of soil-
borne bacteria is an emerging alternative for preventing Cd
uptake in plants (Ravanbakhsh et al., 2019; Zhou et al., 2019a;
Tanwir et al., 2021).

Cd is a toxic metal element for plants that shares chemical
similarity with some essential elements such as calcium (Ca),
zinc (Zn), and iron (Fe). Cd can compete with other mineral
nutrients to bind with several functional proteins, leading to the
serious impairment of plant growth (Schützendübel and Polle,
2002). Cd is primarily transported into root cells through some
plasma membrane-localized metal transporters such as iron-
regulated transporters (IRTs) and zinc/iron-regulated transporter
proteins (ZIPs), which results in severe interferences with Fe
uptake (Clemens, 2006). Previous studies have indicated that
increased Fe supply or rhizospheric Fe availability effectively
inhibits Cd uptake in plants, which is closely associated
with the competition between Fe and Cd for several metal
transporters (Wu et al., 2012; Sebastian and Prasad, 2016).
Cd-stressed plants often exhibit typical chlorotic symptoms,
similar to those occurring in Fe deficient plants (Chen et al.,
2017). Cd stress can trigger Fe deficiency responses, which are
accompanied by the up-regulation of Fe acquisition-associated
genes including FIT, encoding a functional homolog of the
bHLH transcription factor Fer, IRT1 encoding an iron-regulated
transporter, and FRO2, encoding a putative ferric reduction
oxidase (Lešková et al., 2017). Recently, nitric oxide (NO) has
been demonstrated to govern Fe deficiency responses in different
plant species (Buet et al., 2019). Cd stress can stimulate root
NO burst and further initiate signaling pathways resembling
those induced by Fe deficiency via the enhancement of IRT1
and FRO2 transcripts. Cd-induced IRT1 expression has also
been implicated in the promotion of Cd absorption, thus
aggravating Cd toxicity in Arabidopsis (Lei et al., 2020). Several
phytohormones such as jasmonic acid (JA) and gibberellic
acid (GA) negatively regulate the NO-dependent signaling
pathways in Cd-stressed plants (Zhu et al., 2012; Lei et al.,
2020). In Arabidopsis, JA can inhibit root uptake of Cd by
reducing root NO accumulation and thus down-regulating IRT1
expression (Lei et al., 2020). GA has also been reported to
repress the root NO burst and the transcription of Cd uptake-
related IRT1, thereby attenuating Cd toxicity in plants (Zhu
et al., 2012). Therefore, the inhibition of NO-mediated IRT1
expression in Cd-stressed plants is an alternative strategy for
interdicting Cd absorption.

Plants coexist with a myriad of soil microbes that play
fundamental roles in maintaining plant health and productivity
(Cheng et al., 2019). The manipulation of soil-borne bacteria
can potentially suppress disease incidence of plants (Liu et al.,
2019), increase agricultural production (Gouda et al., 2018),
lower the emissions of greenhouse gases (Wu et al., 2018),
and reduce heavy metal contents within the tissues (Xu
et al., 2018; Ravanbakhsh et al., 2019; Tanwir et al., 2021),
leading to more sustainable agricultural practices. A plant
host harbors a mass of bacterial species inside its tissues
that impacts plant growth and health (Hardoim et al., 2015).

It is well documented that endophytic bacteria can colonize
the roots and activate a series of sophisticated mechanisms
for aiding plant adaptation to harmful conditions (Lugtenberg
and Kamilova, 2009). Several endophytic bacteria can improve
plant growth and survival under adverse stresses via the
modulation of hormone-related signaling pathways (Oleńska
et al., 2020). Mounting evidence has indicated that microbe-
mediated changes in hormonal status in plants are primarily
attributable to microbial synthesis (e.g., abscisic acid and auxin),
degradation (1-aminocyclopropane-1-carboxylate deaminase-
mediated ethylene metabolism) of hormones, and alterations
in hormone metabolism by bacterial volatile compounds
(Bal et al., 2013; Sharifi and Ryu, 2018; Xu et al., 2018).
However, it thus far remains unclear how the endophyte-
derived signals control the host hormone metabolic pathways for
alleviating Cd toxicity.

In this study, we explored the impacts of root endophytic
bacteria on tomato adaptation to Cd stress. Among these
bacterial isolates, the acetic acid-producing bacteria Lysinibacillus
fusiformis greatly elevated the capability of the tomato plants
to ameliorate Cd toxicity. Transcriptomic, elemental and
pharmacological analyses were further combined to elucidate the
mechanisms of the endophyte-mediated detoxification of Cd in
plants. We found that the interactions between L. fusiformis and
the tomato roots activated JA signaling pathways to repress the
entry of Cd into the roots. Therefore, our study provided a new
avenue for exploiting acetic acid-producing endophytes to steer
host JA signaling pathways for impeding Cd uptake.

MATERIALS AND METHODS

Isolation of Endophytic Bacteria From
Cd-Treated Tomato Roots
Root samples were harvested from 2 months-old tomato
plants cultivated in Cd-polluted soils (100 mg Cd kg−1 soil).
Approximately 1.0 g of roots was placed into 50 mL of plastic
tube with sterile water for ultrasonic cleaning for 15 min, followed
by sterilization with 1% NaClO for 5 min, 75% alcohol for
2 min and rinsing five times with sterile water. The nutrient
agar (NA) plates coated by the last rinsed water were used
as a control. The sterilized roots were ground with 15 mL of
0.2 M phosphate buffered saline (PBS) solution and allowed
to stand for 15 min. After that, 1 mL of the supernatant was
serially diluted and spread on the NA agar plates containing
20 mg L−1 CdCl2 for 72 h. Bacterial colonies were randomly
picked and purified, and a total of 36 isolates were obtained.
Bacterial genomic DNA was extracted for amplifying and
sequencing 16S rRNA genes.

To evaluate the effects of bacterial isolates on the Cd-stressed
tomato plants, a high-throughput screening test was designed.
Briefly, tomato seeds were sterilized with 1% NaClO for 10 min
and then washed with sterile water. Subsequently, these seeds
were cultured on 1/2 Hoagland’s medium for 10 days (d) and
then placed on 0.6% agar plates. Each root was incubated
with 20 µL of bacterial inoculum at 5 × 107 CFU mL−1 for
48 h at 25◦C in the dark, and then transferred to the soil
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(pH 6.5, organic matter 16.7 g kg−1, total N 1.25 g kg−1,
available P 8.9 mg kg−1; available K 102.2 mg kg−1) under
a photoperiod of light (16 h)/dark (8 h) at 25◦C. Before
transplantation, the soil was saturated with the solution of
CdCl2 to achieve 100 mg Cd kg−1 soil for 2 months and
was then autoclaved at 120◦C for 1 h before use. The values
of maximal PSII photochemical efficiency (Fv/Fm), soil plant
analysis development (SPAD), and shoot fresh weight (SFW)
were measured for assessing the Cd resistance of plants after
2 weeks of exposure to Cd stress.

Qualitative Analyses of Acetic
Acid-Producing Bacteria, Ultraviolet
Mutagenesis and Measurement of Root
Acetic Acid Levels and Rhizospheric
Organic Acids
Bacterial strains were cultured in basic medium (pH 6.8; 1%
yeast extract, 1% glucose, and 3% ethanol) at 30◦C for 96 h,
followed by centrifugation at 8,000× g for 15 min. Subsequently,
5 mL of the supernatant was neutralized with 0.1 M NaOH,
followed by addition of 20 µL of 5% FeCl3. The mixture
was heated for 10 min at 100◦C. The formation of reddish
brown precipitates indicated the presence of acetic acid. To
generate acetic acid-deficient strains, wild-type (WT) strains
were mutated by ultraviolet radiation and then spread on the
agar plates (1% yeast extract, 1% glucose, 2% CaCO3, and
1.5% agar) at 28◦C for 48 h. The mutated strains that did not
produce a transparent zone indicated an inability to produce
acetic acid for dissolving CaCO3. Furthermore, to measure the
acetic acid content, 1.0 g of root tissue was homogenized and
centrifuged at 12,000 × g for 15 min at 4◦C. Then, acetone was
used to dilute the supernatant for acetic acid quantification by
gas chromatography-mass spectrometry (GC-MS) (Kim et al.,
2017). In addition, root-released organic acids were detected
using high performance liquid chromatography (HPLC) as
reported by Pii et al. (2015).

Pot and Split-Root Experiments
For the pot experiments, 10-d-old tomato roots were incubated
with 20 µL of cell suspension of L. fusiformis Cr33 at 5× 107 CFU
mL−1 as described above. These plants were then transplanted
to plastic pots filled with the Cd-polluted soil (100 mg Cd kg−1

soil). To conduct split-root assays, 3-weeks-old tomato roots were
placed into split-root boxes containing 1/2 Hoagland’s medium
as reported by Zhou et al. (2019a). In split-root systems, left side
of each root box was supplied with bacterial suspensions, while
the other side was not. After 3 d of culture, these plants were
transferred into the split-root system containing 100 µM CdCl2.
The medium in the root box was replaced every 3 d. In addition,
the root colonization of L. fusiformis Cr33 was quantified by
quantitative real-time PCR (qRT-PCR) with a pair of gene-
specific primers for amplifying the 16S rRNA gene fragment
of L. fusiformis (F: 5′-ACGGTTTCGGCTGTCGCTAT-3′; R: 5′-
TTCCCTACTGCTGCCTCCC-3′).

Determination of Metal Content and
in situ Localization of Cd
To measure the total metal content, plant tissues were washed
and dried for 24 h at 80◦C, followed by treatment with
HNO3/HClO4 (4:1, v/v) and dilution with deionized water as
described previously by Lei et al. (2014). The soluble Fe content
was detected according to Cassin et al. (2009). Briefly, plant
tissues were ground with deionized water and then centrifuged
at 12,000 × g for 15 min. The supernatant was used to measure
soluble Fe content. The contents of total Fe and Cd, and
soluble Fe were quantified via inductively coupled plasma-atomic
emission spectroscopy (ICP-AES). For measuring apoplastic Fe
content, the roots were serially treated with CaSO4, 2.2-bipyridyl,
N2 and Na2S2O4 according to Jin et al. (2007). The collected
solutions were used to determine root apoplastic Fe via detection
of the Fe2+-bipyridyl complex at 520 nm.

In situ localization of Cd was detected in the roots as
described by Balestri et al. (2014). Briefly, excised roots
were rinsed with deionized water and then immediately
immersed in dithizone working solution containing 30 mg
dithizone, 20 mL deionized water and 60 mL acetone for
2 h. The roots with reddish precipitates were washed with
deionized water and then photographed. Additionally, the
availability of Fe and Cd in the rhizospheric soil was
extracted and analyzed by ICP-AES according to Chen et al.
(2015).

RNA Sequencing (RNA-Seq) and
qRT-PCR Analyses
Three-week-old tomato plants grown in hydroponic systems
were subjected to treatment with or without bacterial suspension
for 48 h. These plants were then transferred into the split-
root systems containing 100 µM CdCl2. After that, the root
tissues were harvested and immediately ground in liquid
nitrogen. Then, total RNA from the root samples was extracted
using TRIzol reagent (Invitrogen, United States) according
to the manufacturer’s instructions. The RNA samples from
three biological repeats were analyzed using an Agilent 2100
Bioanalyzer and then used for RNA sequencing through the
Illumina HiSeq 4000 platform (Illumina, United States). Clean
reads were mapped to the reference genome sequence of Solanum
lycopersicum Heinz 1706, and then submitted to the NCBI SRA
database (No. PRJNA695320). The R package DEGseq was used
to screen differentially expressed genes (DEGs) at P ≤ 0.05 and a
value of log2 fold change > 1.0 or < −1.0. Gene Ontology (GO)
enrichment analyses of the DEGs were screened at a cutoff of
FDR≤ 0.05 using the GOseq R package (Chen et al., 2005). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were conducted using the KOBAS software (Mao et al., 2005).

For the qRT-PCR analyses, total RNA samples were extracted
and used as qPCR templates. The qRT-PCR reactions were
performed using the SYBR Green qPCR Master Mix (Takara,
Japan) in an Applied BiosystemsTM 7500 Real-Time PCR
system. The tomato Actin gene was used as an internal
control. The primers used for qRT-PCR analyses were reported
recently by Zhou et al. (2019b).
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Detection of Root Ferric Chelate
Reductase (FCR) Activity and
2,3,5-Triphenyltetrazolium Chloride (TTC)
Assays
Root FCR activities were measured as described by Grusak
(1995). Briefly, whole roots were incubated in the assay solution
(0.1 mM Fe-EDTA, 0.1 mM FerroZine, 0.5 mM CaSO4, 0.1 mM
bathophenanthroline-disulfonic; pH 5.5) for 2 h at 28◦C.
Absorbance of the solutions was determined at 562 nm and the
formation of Fe2+-FerroZine was detected using an extinction
coefficient of 27.9 mm−1 cm−1. To measure cell viability, tomato
roots were incubated in 15 mL of assay solution (0.4% TTC
in 60 mM PBS, pH 7.0) for 6 h at 37◦C. Reduced TTC was
extracted with ethanol and the absorbance was recorded at
485 nm (Hawrylak-Nowak et al., 2015).

Analyses of Physiological Indexes, Root
JA and NO Content and Ultrastructural
Observation
Chlorophyll content was assessed on the fully expanded leaves
based on the analysis of the SPAD values using a portable
chlorophyll meter as previously reported by Lei et al. (2014).
The values of Fv/Fm and actual PSII photochemical efficiency
(8PSII) were determined using a FluorCam 7 system (Zhou
et al., 2019a). The chlorophyll levels were analyzed based on
the method described by Porra (2002). Briefly, leaf tissues were
immersed in 80% acetone and incubated for 2 d in the dark.
Absorbance of the extracted solutions was measured at 645
and 663 nm. The levels of chlorophyll were assessed using the
formula: 20.21 × A645 + 8.02 × A663. In addition, H2O2
content, electrolyte leakage (EL), and malondialdehyde (MDA)
values were measured as described by Wang et al. (2010). Root
JA content was measured as reported by Kim et al. (2017).
Briefly, about 200 mg of fresh tomato roots were ground into
the powder using liquid nitrogen and then combined with 2mL
of extraction solution (methanol: formic acid:water = 15:1: 4),
followed by centrifugation at 12,000 × g for 30 min. The
supernatant was loading into a Sep-Pak C18 column and then
eluted with the extracted solution. The collected solution was
evaporated and then dissolved in 200 µL of 80% methanol for
analyzing JA content using HPLC. In addition, root NO content
was quantified by the oxyhemoglobin-based spectrophotometric
assay as described recently by Zhou et al. (2019b). To observe
chloroplast ultrastructure, leaf tissues were cut into small
pieces and immediately fixed with 1% glutaraldehyde, and then
subjected to gradient dehydration with acetone. Finally, the leaf
samples were embedded in EPON 812 resin and cut into sections
(70–100 nm) for ultrastructural observations.

Statistical Analysis
The experimental data were analyzed by SPSS 10.0 software
(SPSS Inc., Chicago, United States) with using Student’s t-test or
Duncan’s multiple range tests with one-way analysis of variance
at P < 0.05.

RESULTS

Screening of Root Endophytic Bacteria
With Cd-Detoxifying Properties in Plants
A total of 36 endophytic bacteria strains were isolated from
the roots of 2-month-old tomato plants cultivated in soil
polluted with about 100 mg Cd kg−1 soil. Bacterial isolates were
identified by PCR amplification of 16S rRNA genes, and the
sequences were assigned to species using the NCBI blast tool
(Supplementary Table 1). Based on 97% sequence similarity
for the 16S rRNA genes, these bacterial strains were assigned
to six phylogenetic taxa at the class level, including Alpha-,
Beta- and Gamma-proteobacteria, Bacilli, Corynebacteriales, and
Flavobacteria (Figure 1A). Furthermore, these isolates were
selected to assess their potential for detoxifying Cd in the tomato
plants. Using high-throughput screening assays (Figure 1B), nine
bacterial strains were found to distinctly mitigate Cd stress in
the tomato plants, as reflected by the higher values of Fv/Fm,
SPAD and SFW, which were used as a proxy assessment for
Cd toxicity in plants (Figure 1C). Compared with the non-
inoculated (control) plants, soil drenched with the nine isolates
significantly reduced shoot Cd content, whereas some of the
isolates increased the root Cd content (Figures 1D,E). Among
these isolates, L. fusiformis Cr33 exhibited the greatest ability to
relieve Cd stress and inhibit plant uptake of Cd, and was thus
selected for the subsequent experiments.

Inoculation With L. fusiformis Alleviated
Cd Stress and Reduced Cd Uptake in
Tomato
After 4 weeks of Cd treatment, serious chlorosis was observed
in new leaves with a marked reduction in chloropyll content
and Fv/Fm values, but this was clearly relieved by supplying
the soil with L. fusiformis Cr33 (Supplementary Figures 1A–
C). The Cd content was notably lower in the shoots and roots
of the inoculated plants than the non-inoculated (control) plants
(Supplementary Figure 1D). Within 4 weeks of inoculation, the
population of L. fusiformis Cr33 had abundantly colonized the
roots within 7 d (0.3–1.2 × 107 CFU g−1), following which it
decreased (0.4–3.5× 106 CFU g−1) (Supplementary Figure 1E).

In the split-root systems, 3-weeks-old tomato roots were
treated with or without cell suspension of Cr33 (Figure 2A).
Cd stress resulted in chlorotic symptoms with a reduction
in chlorophyll levels and biomass (Figures 2B–F). However,
root inoculation with Cr33 inhibited root growth compared
with the non-inoculated (control) plants under Cd stress
conditions (Figures 2C,F). The levels of H2O2 were distinctly
increased in the leaves of the Cd-treated plants, whereas
the Cr33-inoculated leaves accumulated less H2O2 levels than
the control plants (Figure 2G). Accordingly, the inoculated
plants displayed lower the values of MDA and EL in the
leaves than the control plants (Figures 2H,I). Additionally,
Cd exposure led to marked decreases in the values of Fv/Fm
and 8PSII, whereas their values were remarkably lower in
the control plants than the inoculated plants under Cd stress
conditions (Figures 3A–C). However, there was no obvious
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FIGURE 1 | Effects of soil drench with endophytic bacteria on Cd resistance in tomato plants. (A) Taxonomic cladogram of bacterial isolates. (B) High-throughput
assays of Cd-detoxifying bacterial isolates. Ten-day-old tomato roots were co-cultured with or without bacterial suspension on agar plate at 25◦C in the dark for
48 h. the non-inoculated (control) and inoculated plants were then transplanted into Cd-contaminated soils (100 mg Cd kg−1 soil) at 25◦C. After 2 weeks of culture,
the values of Fv/Fm, SPAD and SFW were determined for assessing the ability of plants to tolerate Cd stress. (C) Heatmap analysis for Fv/Fm, SPAD and SFW.
Asterisks indicated significant differences between the control and inoculated plants (n = 8 biological replicates) using Student’s test at p < 0.05. (D) Shoot and (E)
root Cd content. Different letters indicated significant differences among different bacterial strain-inoculated plants (n = 8 biological replicates) using Duncan’s
multiple range test at p < 0.05.
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difference in photosynthesis between the control and inoculated
plants under non-Cd condition (Figures 3A–C). Cd stress also
led to a marked reduction in chloroplast number, swollen
chloroplasts and fewer granum lamellae, but this was largely
alleviated by root inoculation with Cr33 (Figure 3D). The
TTC cell viability assays also showed that the inoculated plants
maintained higher root viability than the control plants under
Cd stress conditions (Supplementary Figure 2). Moreover,
the inoculated plants exhibited less Cd content than the
control plants (Figure 3E). Accordingly, in situ localization
of Cd showed reddish precipitates in the Cd-treated roots,
whereas the inoculated roots exhibited less reddish precipitates
than the control roots (Figure 3F). The inoculated plants
exhibited a reduction of about 50% shoot Fe content under
Cd stress compared with the control plants, but no striking
difference was observed for root Fe content (Figure 3G).
However, the inoculated roots exhibited less apoplastic Fe
(ApoFe) and higher soluble Fe (SoFe) levels than the control
plants (Figure 3H).

L. fusiformis-Derived Acetic Acid
Increased Cd Resistance in Tomato
The bioavailability of Cd and Fe in the rhizosphere is positively
related to Cd toxicity in plants (Xu et al., 2018; Wang et al.,
2020). We therefore determined their content in rhizospheric
soils from both the control and Cr33-inoculated plants. The
content of rhizospheric Cd was slightly higher in the bacteria-
treated soils than in the untreated soils (Figure 4A). By
contrast, the levels of rhizospheric Fe were about twofold
higher in the bacteria-treated soils than in the untreated soils.
Root-secreted organic acids can influence the availability of
nutrient elements and heavy metals in the rhizosphere (Rajkumar
et al., 2012; Montiel-Rozas et al., 2016). Thus, the levels
of organic acids in the rhizospheric soils were determined.
Compared with the control plants, the rhizospheric soils from
the inoculated plants had greater total organic acid content.
Among these organic acids, the rhizospheric soils from the
inoculated plants displayed significantly higher acetic acid levels
than the control plants (Supplementary Figure 3). Moreover,
qualitative assays revealed that the reaction of Cr33 culture
with FeCl3 produced reddish brown substances (Supplementary
Figure 4), indicating that L. fusiformis was an acetic acid-
producing bacterium.

As shown in Figure 4B, two acetic acid-deficient mutants
(mCr33-1 and -2) did not considerably increase the root acetic
acid levels compared with Cr33. Moreover, the Cd-induced
chlorotic symptoms and reduction of Fv/Fm values were not
largely ameliorated by the mutant strains (Figures 4C,D).
The levels of Cd were distinctly higher in the shoots and
roots of the mCr33-exposed plants than those of the Cr33-
exposed plants (Figure 4E). In line with this, in situ localization
of Cd showed a notable reduction in reddish precipitates
in the roots colonized by Cr33, but not in the mCr33-
inoculated roots (Figure 4F). To further confirm whether
high-level acetic acid conferred increased Cd resistance in
plants, split-root assays were conducted as described above.

Acetic acid (AA) treatment markedly alleviated the Cd-
induced leaf chlorosis with higher Fv/Fm values and less Cd
content (Figures 4C–E). Consistent with this, the reddish
precipitates were substantially reduced in the AA-treated
roots (Figure 4F).

Transcriptome Analyses of L.
fusiformis-Treated Tomato Roots
To probe the molecular mechanisms of L. fusiformis-induced Cd
resistance of tomato plants, RNA-Seq was performed to examine
gene expression profiles of the Cd-treated roots colonized by
Cr33. For this, tomato plants cultured in hydroponic systems
with or without Cr33 were treated with 100 µM CdCl2 for
0 and 48 h (Figure 5A). Gene expression changes in the
roots were examined by comparing the control plants (Cd48)
with the Cr33-inoculated plants (Cr33 + Cd48). An additional
condition evaluation of the impacts of 100 µM Cd2+ on the
gene expression profiles in the roots was also conducted. A total
of 1,015 (Supplementary Table 2) and 863 (Supplementary
Table 3). DEGs exhibited significant differential expression in
both Group I (Cd48 vs. -Cd) and II (Cr33 + Cd48 vs. Cd48),
respectively (Figures 5B,C). The GO enrichment analyses of the
DEGs showed that several genes involved in diverse processes
such as detoxification and response to stimulus were remarkably
induced by Cd stress and Cr33 (Supplementary Figure 5).
As shown in Figure 5D, KEGG enrichment pathway analyses
for the Group I revealed that Cd stress strikingly impacted
several metabolic pathways such as sulfur and glutathione,
which are responsible for the detoxification of Cd in plants
(Gill and Tuteja, 2011; Han et al., 2020; Xu et al., 2020).
Conversely, root inoculation with Cr33 markedly affected several
pathways such as phenylalanine metabolism, phenylpropanoid
biosynthesis, hormone biosynthesis and signal transduction
(Figure 5E).

As shown in Figure 5C, 217 of the 518 DEGs that
were greatly induced by Cd stress were down-regulated in
the Cr33-inoculated roots, indicating that a mass of Cd-
responsive genes in the roots was significantly repressed by
Cr33 (Supplementary Table 4). Previously, the Cd-induced
expression of Fe uptake-associated genes was shown to promote
Cd uptake and enhance Cd toxicity in Arabidopsis plants
(Figure 5F). Among the shared DEGs, the transcription levels
of Fe uptake-associated genes including Fer, FRO1, and IRT1
were considerably increased in the Cd-exposed roots, whereas
root inoculation with Cr33 significantly down-regulated their
expression (Figure 5G). Additionally, several genes associated
with the biosynthesis of JA and signal transduction were
observably activated in the Cd-treated roots colonized by Cr33
(Supplementary Table 5).

L. fusiformis Inhibited Root NO Burst and
Fe Deficiency Response Under Cd Stress
As shown in Figure 6A, Cd stress triggered the production
of NO in the roots, whereas root NO burst was dramatically
restrained in the Cr33-inoculated roots. Since NO is essential
for activating the expression of the FER, IRT1, and FRO1 genes
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FIGURE 2 | Root inoculation with L. fusiformis Cr33 ameliorated Cd stress in tomato plants. (A) Three-weeks-old tomato plants cultured in the split-root systems
were inoculated with or without Cr33 for 3 d. Then, these plants were exposed to 0 or 100 µM Cd with or without Cr33 for 10 and 20 d, respectively. These plants
were used to analyze shoot phenotypes (B), root growth after 20 d of culture (C), chlorophyll content (D), shoot (E) and root (F) fresh weight, H2O2 content (G), and
MDA (H) and EL (I). Asterisks indicated significant differences between the control and inoculated plants (n = 8 biological replicates) using Student’s test (ns, not
significant; *p < 0.05; **p < 0.01).
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FIGURE 3 | Root inoculation with L. fusiformis Cr33 reduced Cd toxicity in tomato plants. Three-weeks-old tomato plants cultured in the split-root systems were
inoculated with or without Cr33 for 3 d. Then, these plants were exposed to 0 or 100 µM Cd with or without Cr33 for 10 and 20 d, respectively. These plants were
used to analyze Fv/Fm (A), 8PSII (B), Fv/Fm images (C), chloroplast ultrastructure (chl, chloroplast; gra, grana) (D), shoot and root Cd content (E), root Cd
localization (F), total Fe content (G), root apoplastic (ApoFe) and soluble Fe (SoFe) (H). Asterisks indicated significant differences between the control and inoculated
plants (n = 8 biological replicates) using Student’s test (ns, not significant; *p < 0.05; **p < 0.01).

in tomato roots under Fe deficiency (Graziano and Lamattina,
2007; Chen et al., 2015), we evaluated the effects of Cr33 on
root Fe deficiency responses in the Cd-exposed plants. Their
transcripts were quantified by qRT-PCR in the roots after 48 h
of exposure to Cd stress. The expression of the FER, IRT1, and
FRO1 genes was relatively higher in the Cd-treated roots than
the untreated roots, but root inoculation with Cr33 reduced their
transcripts (Figures 6B–D). The FCR activities in the Cd-treated
roots were remarkably induced by Cd stress, whereas inoculation
with Cr33 strikingly repressed root FCR activities (Figures 6E,F).

This decline of FCR activities was in concert with the reduced
expression of FRO1 (Figure 6D).

JA Signals Were Required for the
L. fusiformis-Alleviated Cd Toxicity of
Tomato
High-level acetic acid promotes de novo JA synthesis and
further activates the JA signaling pathway for improving drought
tolerance in plants (Kim et al., 2017). For this reason, we
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FIGURE 4 | L. fusiformis Cr33-released acetic acid conferred the increased availability of rhizospheric Fe and Cd, and Cd resistance in tomato plants. (A) The
bioavailability of rhizospheric Fe and Cd was quantified after 2 weeks of soil drench with Cr33. Asterisks indicated significant differences between the non-inoculated
(control) and inoculated plants (n = 8 biological replicates) using Student’s t-test (*p < 0.05; **p < 0.01). (B–F) Three-weeks-old tomato plants were cultured in the
split-root systems containing 100 µM Cd with or without Cr33 or its mutant strains (mCr33-1 and -2) for 20 d. These plants were used to analyze root acetic acid
content (B), shoot phenotypes (C), Fv/Fm images (D), shoot and root Cd content (E), and root Cd localization (F). Different letters indicated significant differences
among different experimental groups (n = 8 biological replicates) using Duncan’s multiple range test at p < 0.05.
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FIGURE 5 | Transcriptome analyses of L. fusiformis Cr33-inoculated roots in response to Cd stress. (A) Three-week-old tomato plants cultured in the split-root
systems were inoculated with or without Cr33 for 3 d. Then, these plants were exposed to 100 µM Cd with or without Cr33 for 48 h. Total RNA samples extracted
from the treated roots were used for RNA-Seq analyses, including Group I (Cd48 vs. –Cd) and II (Cr33 + Cd48 vs. Cd48). (B) Numbers of DEGs in both Group I and
II. (C) Venna diagram of shared and specific DEGS between the Group I and II. (D,E) KEGG analyses for up-regulated DEGs from the Group I and II. (F) A model for
the Cd-activated Fe uptake leading to aggravate Cd toxicity in plants. Cd-induced expression of Fe uptake-related genes including FIT (a functional homolog of Fer),
IRT1, and FRO2 resulted in the increased Cd uptake in plants. (G) Expression profiles of Fer, IRT1, and FRO1 in both the Group I and II.

assessed the effects of L. fusiformis Cr33 on the JA content in the
Cd-exposed tomato roots. Compared with the non-inoculated
(control) plants, the JA levels were remarkably increased in the
Cr33-inoculated roots after 1 d of exposure to Cd stress and

thereafter stabilized at a higher level over 7 d (Figure 7A). It
was thus possible that the Cr33-induced increases in JA levels
contributed to reducing the Cd toxicity in the plants. To validate
this hypothesis, the Cd resistance of plants treated with methyl
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FIGURE 6 | Root inoculation with L. fusiformis Cr33 inhibited root Fe deficiency responses under Cd stress condition. Three-weeks-old tomato plants cultured in the
split-root systems were inoculated with or without Cr33 for 3 d. Then, these plants were exposed to 100 µM Cd with or without Cr33 for 48 h. These plants were
used to analyze root No content (A), the expression of Fer (B), IRT1 (C), FRO1 (D). In addition, root FCR activities were quantified (E) and assessed by observing
purple color (F). Asterisks indicated significant differences between different experimental groups (n = 8 biological replicates) using Student’s t-test (**p < 0.01).

jasmonate (MeJA) was also evaluated. MeJA treatment strikingly
relieved Cd stress in plants, as reflected by the higher chlorophyll
content, Fv/Fm values, and lower Cd levels (Figures 7B–F).

After 48 h of Cd treatment, root NO content was relatively
lower in the MeJA-treated plants than the untreated (UT) plants,
which was similar to the observation for the Cr33-inoculated
roots (Figure 7G). Diethyldithiocarbamic acid (DIECA), a JA
biosynthetic inhibitor, was applied to the Cd-treated plants
colonized by Cr33. Root inoculation with Cr33 did not relieve Cd
toxicity in the DIECA-treated plants, which displayed serious leaf
chlorosis, lower chlorophyll levels and Fv/Fm values, and greater
Cd content (Figures 7B–F). Similarly, DIECA treatment largely
weakened the AA-alleviated Cd toxicity in the plants. Treatment
with Cr33 or MeJA inhibited the transcription of Fer, FRO1 and
IRT1, and the activities of FCR. Conversely, DIECA treatment
enhanced root Fe deficiency responses in both the Cr33- and AA-
treated plants (Figures 7H–K). In addition, the root NO content
was remarkably increased in both the Cr33- and AA-treated
plants when treated with DIECA (Figure 7G).

DISCUSSION

Remediating soil Cd contamination is costly and challenging, and
thus there is an increasing demand for alternative strategies to
address Cd pollution in agricultural soils (Pulford and Watson,
2003). Steering plant hormone metabolism toward the repression

of Cd uptake may preserve food safety and improve plant
performance under Cd-polluted conditions (Lei et al., 2017).
Herein, we explored the impacts of the acetic acid-producing
endophytic bacteria L. fusiformis on the plant hormone JA, which
negatively regulates Fe uptake and translocation (Lei et al., 2020).
The endophyte-derived acetic acid stimulated the JA biosynthesis
and further suppressed the root Fe deficiency responses imposed
by Cd stress, which contributed to reduction of Cd accumulation.
Hence, our findings suggested that manipulation of host JA
signals by root endophytic bacteria effectively prevented Cd
absorption in the plants.

Cd stress often results in the reduction of plant photosynthesis,
biomass and root viability (Hawrylak-Nowak et al., 2015; Xu
et al., 2018; Pan et al., 2019). In accordance with previous reports
on the harmful impacts of Cd stress, the values of photosynthetic
parameters were largely decreased in the Cd-exposed leaves.
Compared with the control plants, these photosynthetic indexes
were observably higher in the L. fusiformis-inoculated plants
under Cd stress. Observations of the photosynthetic apparatus
further showed that the chloroplast structures were abnormal
and that there were fewer chloroplasts and stacked grana in the
Cd-exposed leaves. However, root inoculation with L. fusiformis
mitigated the toxicity of Cd to the photosynthetic system. Cd
stress also caused a considerable reduction in root viability, while
the inoculated roots displayed higher viability than the control
plants. Therefore, these findings indicated that the inoculated
plants experienced fewer of the toxic effects imposed by Cd stress.
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FIGURE 7 | Involvement of JA signals in the L. fusiformis Cr33-induced Cd resistance in tomato plants. (A) Root JA content within 7 d of Cd treatment. Asterisks
indicated significant differences between the non-inoculated (control) and inoculated plants (n = 8 biological replicates) using Student’s t-test (**p < 0.01).
Three-weeks-old tomato plants were exposed to 100 µM Cd with or without cell suspensions of Cr33 at the final density of 5 × 107 CFU mL−1, 0.15 mM acetic
acid (AA), 0.05 mM MeJA, Cr33 plus 0.2 mM DIECA (Cr33 + DIECA), and 0.15 mM AA plus 0.2 mM DIECA (AA + DIECA) for 20 d. The untreated (UT) and treated
plants were used to analyze shoot phenotypes (B), chlorophyll content (C), Fv/Fm values (D), shoot (E) and root (F) Cd content, root NO content (G). qPCR
analyses of the expression of Fer (H), IRT1 (I) and FRO1 (J), and root FCR activity (K) after 48 h of treatments. Different letters indicated significant differences
among different experimental groups (n = 8 biological replicates) using Duncan’s multiple range test at p < 0.05.

The bioavailability of Cd in the soil is an important factor
that affects Cd uptake in plants (Rajkumar et al., 2012; Xu et al.,
2018). We found that inoculation with L. fusiformis increased
the bioavailability of Cd in the rhizospheric soils. This raised a

question why higher Cd availability did not aggravate the Cd
toxicity in the tomato plants. Herein, we also found that the
bioavailability of Fe in the rhizospheric soils was remarkably
increased in the L. fusiformis-treated soils compared with the
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FIGURE 8 | A model for illustrating root endophytic bacteria L. fusiformis-mediated Cd detoxification in tomato plants. L. fusiformis-released acetic acid led to the
increased bioavailability of rhizospheric and cell wall Fe. Moreover, high-level acetic acid also activated the JA signaling pathway to suppress root NO burst, thereby
weakening Cd-induced Fe deficiency responses. These synergistic effects contributed to inhibit the IRT1-mediated Cd uptake in plants.

untreated soils. In the hydroponic experiments, root inoculation
with L. fusiformis also promoted root cell wall Fe remobilization,
thereby increasing its availability. Wang et al. (2020) reported
that the Cd-tolerant bacteria Burkholderia sp. Y4 prevents Cd
uptake in rice by increasing the bioavailability of micronutrients
such as Fe and Mn in the rhizosphere soils. Cd frequently
competes with Fe for the absorption sites and inhibits Fe uptake,
thereby provoking Fe deficiency responses (Wu et al., 2012). The
increased Fe source can effectively alleviate the Cd toxicity in
plants by repressing the root uptake of Cd (Wu et al., 2012;
Sebastian and Prasad, 2016; Chen et al., 2017). Hence, the
increased bioavailability of Fe by L. fusiformis reinforced the
competitiveness of Fe with Cd for the absorption sites and further
inhibited the entry of Cd into the root cells, which at least partially
contributed to less Cd accumulation in the plants.

In this study, soil drenched with L. fusiformis led to higher
acetic acid levels in the rhizospheric soil compared with the
control plants. Qualitative assays of acetic acid further indicated
that L. fusiformis was an acetic acid-producing endophytic
bacterium. It is increasingly evidenced that high-level organic
acid such as acetic and malic acid can facilitate plant tolerance to
adverse conditions such as drought, aluminum (Al) and Cd stress
(Hawrylak-Nowak et al., 2015; Pii et al., 2015; Kim et al., 2017).
Hence, higher acetic acid levels in the L. fusiformis-inoculated
roots may be conducive to alleviating Cd toxicity in tomato

plants. To verify this hypothesis, we investigated the impacts
of acetic acid-deficient strains on the Cd-tolerating capacity
of the tomato plants. We found that inoculation with acetic
acid-deficient strains failed to mitigate Cd stress in the tomato
plants. Furthermore, exogenous acetic acid distinctly elevated the
capability of plants to tolerate Cd stress. These results strongly
supported a pivotal role of acetic acid in detoxifying Cd in plants.
However, the molecular mechanisms of the acetic acid-mediated
alleviation of Cd toxicity in plants have remained elusive thus far.

Besides the increased Fe availability, L. fusiformis may initiate
alternative complementary pathways for relieving Cd toxicity in
plants. More recently, increased acetic acid level can induce the
biosynthesis of JA and thus improve plant drought resistance
(Kim et al., 2017). Herein, the biosynthesis of JA in plants was
substantially induced by L. fusiformis. Similar results were also
observed for the acetic acid-treated tomato plants. We further
monitored the responses of L. fusiformis-inoculated plants to
Cd stress in the presence of the JA biosynthetic inhibitor
DIECA. It was clearly observed that L. fusiformis failed to relieve
Cd toxicity in the DIECA-treated plants, indicating that the
enhanced JA synthesis was responsible for the L. fusiformis-
induced Cd resistance in the plants. In fact, Cd toxicity is
mainly as a consequence of the dysfunction of essential element
absorption, especially Fe, since Cd stress induces leaf chlorosis
and the molecular responses resembling those triggered by
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Fe deficiency (Clemens, 2006; Wu et al., 2012; Sebastian and
Prasad, 2016; Chen et al., 2017). Fe deficiency often stimulates
the production of NO, which is essential for enhancing the
transcription of Fe uptake-related genes in plants (Graziano and
Lamattina, 2007; Zhou et al., 2019b). Cd stress can induce root
NO burst in many plant species such as Arabidopsis and wheat
(Bartha et al., 2005; Valentovicova et al., 2010; Arasimowicz-
Jelonek et al., 2011; Lei et al., 2020). Nevertheless, overproduction
of NO in the roots intensifies the Cd toxicity in Arabidopsis
plants, which is positively related to the enhancement of Cd
uptake (Besson-Bard et al., 2009). Herein, Cd stress considerably
triggered NO burst in the tomato roots within several hours,
whereas the L. fusiformis-inoculated plants exhibited less root
NO accumulation. In accordance with this, the expression of Fe
uptake-related genes was greatly weakened in the L. fusiformis-
inoculated roots under Cd stress compared with the control
plants. Reductions in IRT1 mRNA transcripts have been reported
to interdict root uptake of Cd (Zhu et al., 2012). Thus,
the suppression of root NO burst by L. fusiformis effectively
minimized the activation of IRT1 expression in plants, thereby
reducing Cd accumulation. However, treatment with DIECA
almost abolished the L. fusiformis-mediated inhibition of root NO
burst in the Cd-treated plants. It has recently been indicated that
exogenous JA reduces root NO levels in the Cd-stressed plants,
thereby down-regulating the expression of AtIRT1 (Lei et al.,
2020). Consistently, the Cd-stressed tomato plants exhibited
lower root NO levels and IRT1 expression after JA treatment.
Hence, our results suggested that the JA-mediated repression of
NO signals was responsible for the L. fusiformis-inhibited Cd
uptake in the plants.

CONCLUSION

In summary, although endophytic bacteria have previously been
reported to improve plant health and survival under adverse
conditions, the mechanisms underpinning these beneficial
services have been sparsely explored. Herein, an illustrated
model was provided for endophyte-mediated Cd detoxification
in tomato plants (Figure 8), in which the L. fusiformis-derived
acetic acid resulted in increases in Fe bioavailability and acetic
acid levels in the roots. Moreover, high-level acetic acid provoked
the JA signaling pathway to inhibit root NO burst, thus
attenuating the root Fe deficiency responses imposed by Cd
stress. Consequently, these synergistic effects contributed to
hampering the entry of Cd into root cells and thus mitigating Cd
toxicity in plants: (1) the increased Fe bioavailability enhanced
the competitiveness of Fe with Cd for metal transporters such

as IRT1; and (2) the repression of NO signals down-regulated
Fe uptake-related genes under Cd stress conditions, thereby
inhibiting the IRT1-mediated Cd uptake. Therefore, our findings
provide novel insights into the mechanisms of endophyte-
mediated Cd detoxification in plants.
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