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With an objective of identifying the genomic regions for productivity and quality traits

in peanut, a recombinant inbred line (RIL) population developed from an elite variety,

TMV 2 and its ethyl methane sulfonate (EMS)-derived mutant was phenotyped over

six seasons and genotyped with genotyping-by-sequencing (GBS), Arachis hypogaea

transposable element (AhTE) and simple sequence repeats (SSR) markers. The genetic

map with 700 markers spanning 2,438.1 cM was employed for quantitative trait loci

(QTL) analysis which identified a total of 47 main-effect QTLs for the productivity and oil

quality traits with the phenotypic variance explained (PVE) of 10–52% over the seasons.

A common QTL region (46.7–50.1 cM) on Ah02 was identified for the multiple traits,

such as a number of pods per plant (NPPP), pod weight per plant (PWPP), shelling

percentage (SP), and test weight (TW). Similarly, a QTL (7.1–18.0 cM) on Ah16 was

identified for both SP and protein content (PC). Epistatic QTL (epiQTL) analysis revealed

intra- and inter-chromosomal interactions for the main-effect QTLs and other genomic

regions governing these productivity traits. The markers identified by a single marker

analysis (SMA) mapped to the QTL regions for most of the traits. Among the five potential

candidate genes identified for PC, SP and oil quality, two genes (Arahy.7A57YA and

Arahy.CH9B83) were affected by AhMITE1 transposition, and three genes (Arahy.J5SZ1I,

Arahy.MZJT69, and Arahy.X7PJ8H) involved functional single nucleotide polymorphisms

(SNPs). With major and consistent effects, the genomic regions, candidate genes, and

the associated markers identified in this study would provide an opportunity for gene

cloning and genomics-assisted breeding for increasing the productivity and enhancing

the quality of peanut.
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INTRODUCTION

Peanut or groundnut (Arachis hypogaea L. 2n = 4x = 40) is
an important oilseed, legume food, and fodder crop, which,
in 2019, was cultivated globally on an area of 29.5 million ha
with a production of 48.7 million tons and a productivity of
1,647 kg/ha (http://www.fao.org/faostat/en/#data/QC/visualize).
Globally, over half of the peanut produce goes for oil extraction
while the remaining is consumed as raw and processed food. In
India, over 80% of the produce was used for oil extraction in the
past. But, now, it has reduced to<50% (Sharma, 2017), indicating
a shift in the use of peanut in multiple food preparations. Apart
from being rich in oil, proteins, fibers, polyphenols, antioxidants,
vitamins, and minerals, the peanut is an excellent source of
compounds, such as resveratrol, phenolic acids, flavonoids, and
phytosterols, co-enzyme Q10, and amino acids (all 20, with
the highest content of arginine). Peanut forms a major food
component in fighting malnutrition in the form of Ready-to-
use Therapeutic Food (RUTF) in Africa and Asia. With these
nutrient profiles, peanut is being considered a functional food
(Arya et al., 2016). Thus, peanut has gained the status of “poor
person’s almond” over the years. However, kernel features and
nutritional qualities need to be considered while attempting to
increase peanut productivity along with tolerance to the biotic
and abiotic stresses.

The last decade has been transformational for peanut
stakeholders globally because of tremendous developments in the
availability of substantial genomic resources and optimization of
multiple modern breeding approaches, such as marker-assisted
selection (MAS), genomic selection, and rapid generation
advancements (as shown in Pandey et al., 2020). The availability
of high-quality reference genomes for diploid subgenomes
(Bertioli et al., 2016; Chen et al., 2016; Lu et al., 2018), primitive
tetraploid (Yin et al., 2018) as well as the subspecies of the
cultivated tetraploid peanut (Bertioli et al., 2019; Chen et al.,
2019; Zhuang et al., 2019), high density genotyping assay with
58K single nucleotide polymorphisms (SNPs) (Pandey et al.,
2017), genotyping-by-sequencing (GBS) (Dodia et al., 2019;
Wang et al., 2019, 2021; Zhou et al., 2021), and other reduced-
representation sequencing (Zhao et al., 2016; Shirasawa et al.,
2018; Luo et al., 2021) based genotyping in peanut provided
a strong platform for precise trait mapping, gene discovery,
and marker development for use in breeding (Han et al.,
2018; Wang et al., 2019). With the availability of trait-specific
markers, peanut has already demonstrated the application of
marker-assisted breeding by developing several new varieties
with improved disease resistance and oil quality (as shown
in Pandey et al., 2020). However, the challenge still prevails
for molecular breeding to improve the productivity traits that
show complex genetic inheritance. Therefore, such traits need
multi-environment phenotyping and dense genotyping data for
performing high-resolution genetic mapping and the precise
detection of genetic factors with direct and epistatic effects over
the seasons.

The recombinant inbred line (RIL) population (Pattanashetti,
2005) derived from an elite peanut variety TMV 2 and its
ethyl methane sulfonate (EMS)-induced mutant TMV 2-NLM

(Prasad et al., 1984) allowed subtracting a large portion of
the genome common between the parents, thereby favoring
successful trait mapping as demonstrated with 105 AhTE
markers in our previous effort (Hake et al., 2017). Therefore,
this study aimed to enrich the linkage map with GBS-
based SNP markers along with AhTE and simple sequence
repeat (SSR) markers and generating the phenotypic data
over six seasons to detect the genomic regions with main
and epistatic effects in addition to identifying a few co-
segregating genes.

MATERIALS AND METHODS

Plant Material
We used a RIL population developed (Pattanashetti, 2005) from
the cross between TMV 2, an elite variety of peanut and
its EMS-mutagenized derivative TMV 2-NLM (Prasad et al.,
1984). TMV 2 is a Spanish bunch cultivar known for its
uniform pods and kernels, kernel taste, and wide adaptability
(Rathnakumar et al., 2013), but low in OLE (42.08%). TMV 2-
NLM is a semi-spreading cultivar with bold kernels, low yield,
and moderate content of oleic acid (53.73%) (Prasad et al., 1984).
The phenotypic and genotypic differences between TMV 2 and
TMV 2-NLM have been previously reported by Hake et al.
(2017).

Phenotyping of the Mapping Population
and Statistical Analysis
F14−19 generations of the 432 RILs together with the parents
were grown during the six seasons, namely, rainy 2014 (S1),
rainy 2015 (S2), rainy 2016 (S3), rainy 2017 (S4), rainy 2018
(S5), and post-rainy 2018 (S6) at IABT garden (E115) of
Main Agricultural Research Station, University of Agricultural
Sciences, Dharwad, India (Figure 1). During each season, the
RILs were grown in two replications with a spacing of 30 ×

10 cmwith recommended agronomic practices. The observations
were recorded on productivity traits, such as the number of
pods per plant (NPPP), pod weight per plant (PWPP), shelling
percentage (SP), and test weight (TW), and on quality traits, such
as protein content (PC), oil content (OIL), OLE, linoleic acid
content (LIN), and oleic to linoleic acid ratio (O/L). The quality
parameters were estimated using the near-infrared reflectance
spectroscopy (NIRS) (Model XDS RCA, FOSS Analytical AB,
Sweden, Denmark) at ICRISAT, Patancheru, India.

An ANOVA was performed for each trait observed during
each season to test the significant differences among the
RILs. A pooled analysis of variance was performed for all
the traits across the seasons allowing G × E interactions.
Phenotypic coefficient of variation (PCV), genotypic coefficient
of variation (GCV), and broad sense heritability (h2b.s) were
estimated using the plant breeding package Windostat ver. 8.5
(Indostat Services, Hyderabad, India, https://www.indostat.org/
agriculture.html). Pearson’s correlation coefficients (r) among the
different traits were estimated over the seasons using the 16th
version of SPSS (SPSS Inc., Chicago, IL, USA).
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FIGURE 1 | Flow chart of genotyping, high density genetic map construction, multi-season phenotyping, identification of genomic regions for productivity, and quality

traits and their validation.

DNA Extraction and Genotyping With AhTE
and SSR Markers
DNA was isolated from the young leaves of each RIL and
the parents following the modified cetyltrimethyl-ammonium
bromide (CTAB) method as described by Cuc et al. (2008).
DNA quality of each sample was checked on 0.8% agarose
gel. Furthermore, DNA quantification was done using Nano-
Drop (UV technologies, Wilmington, DE, USA), and DNA
concentration was normalized to∼5–10 ng/µl for genotyping the
parents and the RIL population using AhTE and SSR markers.
In total, 343 AhTE markers (Gayathri et al., 2018) and 91 SSR
markers (as shown in Pandey et al., 2012) were screened for
parental polymorphism between TMV 2 and TMV 2-NLM.
Subsequently, the markers polymorphic between the parents
were identified and used to genotype the RILs (Figure 1). PCR
and separation of the amplicons and scoring of the alleles were
performed as described by Kolekar et al. (2016). Genotypic data
on 105 AhTE markers generated by Hake et al. (2017) on these
RILs were also employed for genetic mapping.

GBS of the RILs, Sequence Analysis and
SNP Calling
Genotyping-by-sequencing was performed for the RILs and their
parents as described by Dodia et al. (2019). To perform GBS,
10 ng DNA from each RIL was digested using the restriction
endonuclease enzyme ApeKI that recognizes the site G/CWCG.
The ligation enzyme, T4 ligase, was used to ligate the digested

products with uniquely barcoded adapters. Such digestion and
ligation were performed for each RIL, and an equal proportion
of the products from each sample was mixed to construct
the libraries. These libraries were amplified and purified to
remove the excess adapters. They were sequenced on HiSeq
2500 platform (Illumina Inc., San Diego, CA, USA) to generate
genome-wide sequence reads.

The sequence reads for the parents and the RILs were obtained
as FASTQ files, which were used for SNP discovery using TASSEL
version 5.2 (Bradbury et al., 2007) (Supplementary Figure 1).
Initially, the perfectly matched barcodes were detected with four
bases remnants of the digestion site of the restriction enzyme in
the sequencing reads generated for RILs and parental genotypes.
Reads were sorted and de-multiplexed using the barcodes. They
were trimmed for the first 64 bases starting from the recognition
site of the restriction enzyme. Reads containing “N” within the
first 64 bases were identified and discarded. Reads passing the
quality filtering criteria were mapped onto the reference genome
of cultivated peanut A. hypogaea (Bertioli et al., 2019) using
the Burrows-Wheeler Alignment (BWA) tool (Li and Durbin,
2009). The mapped reads were exported in the form of Sequence
Alignment Map (SAM) file. Furthermore, the alignment file
was processed for SNP calling using SNP caller plugin
implemented in TASSEL version 5.2.0 GBS v2 pipeline as per the
standard instruction (https://bitbucket.org/tasseladmin/tassel-
5-source/wiki/Tassel5GBSv2Pipeline). The RILs with <85Mb
data were not processed for further analysis to avoid false-
positives. The SNPs with more than 50% missing data and
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minor allele frequency (MAF) of ≤0.3 were filtered out
to avoid the noise during genetic map construction. The
SNPs with <50% missing data for the RILs were imputed
using Beagle version 5.2 (Browning et al., 2018) algorithm.
Furthermore, filtering was performed to check the percentage
heterozygosity and polymorphic SNPs between the parents
(Supplementary Figure 1).

Genetic Map Construction
High-quality SNPs obtained after filtering were further
considered for genetic analysis. A chi-square (χ2) test was
applied on polymorphic AhTE, SSR, and SNP markers with
a null hypothesis that two alleles from both parents of RIL
population at a particular locus segregate in a 1:1 ratio. The
markers showing high segregation distortion (χ2-test, P <

0.001) were filtered out and not considered for the linkage
map construction. The genetic map was constructed using
JoinMap (version 4.0) (Van Ooijen, 2006) with logarithm
of odds (LOD) threshold ranging from 3.0 to 10.0 and a
minimum recombination threshold of 45%. Grouping and
ordering of the markers were performed using the regression
mapping algorithm. Kosambi map function (Kosambi, 1943)
was used for genetic map construction, and to convert the
recombination frequencies into map distances in centiMorgans
(cM). Chromosome-wise marker positions with their respective
names were used to draw the final genetic map using MapChart
(Voorrips, 2002). The mapped markers were also analyzed for
their genic and non-genic location and functional annotation
(especially for the SNP and AhTE markers).

Main-Effect and Epistatic Quantitative Trait
Locus Analysis
The main-effect quantitative trait locus (QTL) analysis was
carried out using a “composite interval mapping (CIM)”
approach (Zeng, 1994) with Model 6 and scanning distance of
1.0 cM between markers and moving window size of 10.0 cM
using Windows QTL Cartographer version 2.5 (Wang et al.,
2007). A forward–backward stepwise regression method was
used to set themarker cofactors for the background selection. The
highest peak was considered to locate QTL where the distance
between the peak and the QTLwas<5.0 cM. Permutation (1,000)
test was performed to work out the threshold and identify the
significant QTL. The QTLs with >3.0 LOD and phenotypic
variance explained (PVE) >10% were considered as major
effect QTLs for a particular trait. Those with PVE <10% were
considered as minor effect QTLs. Based on the trait name and
chromosome number, the QTLs were named, where the first
letter “q” indicated the QTL and the abbreviated capital letters
indicated the trait followed by chromosome number and the
numerical number indicating the serial number of the QTL for a
trait. For instance, qPC-Ah16-1 was the first QTL for PC detected
on chromosome Ah16.

Analysis for the epistatic QTL (epiQTL) (Q × Q) was
conducted using the function “two-dimensional scanning ICIM-
EPI” implemented in inclusive composite interval mapping
(ICIM) software version 4.1 (Wang et al., 2014) with 5 cM step
and 0.001 probability mapping parameters in stepwise regression.

The minimum threshold LOD value for significant epiQTL was
set at 3.0.

Single Marker Analysis
Association of the markers with the productivity and quality
traits was tested by SMA using the lm() function (linear
regression) of the R program.

Putative Gene Discovery From Major
QTLs/SMA
Putative genes were identified for the major QTLs or QTL
clusters. The region between the flanking markers of a particular
QTL on the physical map was considered for candidate gene
discovery. Where the physical distance between the two flanking
markers was more, the marker closer to the peak was selected,
and a physical distance of 5Mb (toward the QTL peak) was
searched for the candidate genes. Also, those markers which were
identified to be significantly associated with the traits by SMA
were checked for their location (genic and non-genic) and effect
at PeanutBase (www.peanutbase.com).

Confirmation of QTLs and Markers
A few selected major QTLs identified in this study were validated
using other genotypes (GPBD 4, TG 26, TAG 24, ICGV 86699,
ICGV 86855, ICGV 06189, DBG 3, and DBG 4). The markers
flanking these QTL were used for genotyping as described above.
Co-segregation between the marker and the phenotype was
checked using the t-test.

RESULTS

Phenotypic Variability in the Mapping
Population
ANOVA revealed significant differences between the RILs,
seasons, and the season × RILs interaction for the productivity
and quality traits over the six seasons (Supplementary Table 1).
All the traits, except TW and O/L during S6, showed
normal distribution based on the kurtosis and skewness
(Supplementary Figure 2 and Supplementary Table 2). The RIL
population exhibited moderate PCV and GCV for most of the
traits (Supplementary Table 2). PC, OIL, and TW showed high
broad-sense heritability (h2

bs
), while NPPP, PWPP, SP, OLE, LIN,

and O/L revealed low to moderate heritability. Transgressive
segregants were observed in both directions for the traits. The
correlation analysis showed positive association of NPPP with
PWPP (r = 0.02–0.62) and SP (0.12∗-0.18∗), and a negative
association with TW (r = −0.06 to −0.14∗∗). PC showed
positive correlation with NPPP (0.10∗-0.19∗∗), PWPP (0.04-
0.11∗∗), and SP (0.15∗∗-0.24∗∗) over the seasons. Similarly,
OIL showed a positive correlation with NPPP (0.02-0.17∗∗)
and PWPP (0.11∗-0.15∗∗) over the seasons. OLE was positively
correlated with PWPP (0.03∗-0.11∗) and TW (0.09∗-0.12∗∗),
however, it was negatively correlated with NPPP (−0.10∗ to
−0.18∗∗) and SP (−0.09∗ to −0.15∗∗), PC (−0.32∗∗ to −0.34∗∗),
OIL (−0.03∗ to −0.29∗∗), and LIN (−0.64∗∗ to −0.96∗∗)
(Supplementary Table 3).
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FIGURE 2 | High density genetic map of RIL population of TMV 2 and TMV 2-NLM. (A) Map chart of high density genetic map. (B) Summary of genetic map with

number of mapped loci, map distance (cM), and map density (cM/loci). (C) Collinearity of the genetic map with the reference genome (Arachis hypogaea L.). Prefix G

and P stands for genetic map and physical map, respectively.

GBS Based High-Density Genetic Map
A total of 1,067.58 million raw reads (100.87 GB) were obtained

for the 403 RILs and the two parents. On average, 2.42 million

reads (0.23 GB) data were generated for each sample. After
filtering, a total of 978.96 million reads (82.9 GB) were mapped
onto the tetraploid reference genome of cultivated tetraploid

peanut “Tifrunner” (Bertioli et al., 2019). In total, 47,584
raw SNPs (mean read depth of 73.7) were extracted for the
downstream analysis. Out of these SNPs, 1,205 polymorphic

SNPs were identified between the parental genotypes (TMV
2 and TMV 2-NLM). Further filtering based on missing data
and segregation distortion identified 713 SNPs high-quality

polymorphic SNPs. The missing data for these SNPs ranging

from 0.01 (1%) to 0.489 (48.9%) (Supplementary Table 4).
Overall genotypic data available for mapping included 865

markers; comprising of 713 SNPs, 143 AhTEs (105 from
Hake et al., 2017 and 38 from this study), and 9 SSRs

(Supplementary Table 5). The polymorphism percentage for the
SNP, AhTE, and SSR markers were 1.49% (713/47,584), 20.08%
(143/712), and 9.89% (9/91), respectively. Of these 865 markers,
a total of 700 (including 553 SNPs, 136 AhTEs, and 8 SSRs)
were mapped to construct a new genetic map spanning a map
distance of 2,438.2 cM for this mapping population (Figure 2A
and Supplementary Table 6). The genetic map with 20 linkage
groups showed a marker density of 3.48 cM/locus. The number
of mapped loci ranged from 20 (Ah07 with a density of
2.65 cM/locus) to 66 (Ah02 with a density of 1.60 cM/locus).

The length of the chromosomes ranged from 53.06 cM (Ah07)
to 180.52 cM (Ah13) (Figure 2B and Supplementary Table 5).
Overall, the genetic map showed good marker collinearity with
a physical map having a few exceptions (Figure 2C).

Main-Effect QTL Discovery for Yield and
Quality Traits
A QTL analysis was conducted for the productivity (NPPP,
PWPP, SP, and TW) and quality (PC, OIL, OLE, LIN, and
O/L) traits across six seasons using composite interval mapping
at 1,000 permutations. In total, 33 QTLs were identified for
the four productivity traits that included nine QTLs for NPPP,
two for PWPP, 10 for SP, and 12 for TW (Figure 3 and
Supplementary Table 7). Among the nine QTLs for NPPP, three
were identified as major QTLs. Among them, the first one
(qNPPP-Ah02-1) identified on chromosome Ah02 with the LOD
score of 9.6 showed 23.6% PVE during S4 season. The second
QTL qNPPP_Ah04-1 detected on Ah04 had a PVE of 22.9%
with an LOD score of 3.8 during S1 season. The third QTL
qNPPP_Ah14-3 reported on chromosome Ah14 had a PVE of
17.3% with the LOD score of 7.7 during the S3 season (Figure 3
and Table 1). Among the two QTLs detected for PWPP, the
first QTL on Ah02 (qPWPP-Ah02-1) was a major QTL with the
highest LOD score of 10.6 and PVE of 20.9% (Figure 3 and
Table 1), and it was stable over four seasons (S1, S2, S3, and S4).
The other QTL on Ah01 (qPWPP-Ah01-1) was a minor QTL with
a LOD value of 3.3 and a PVE of 5.1%. Of the 10 QTLs for SP,
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FIGURE 3 | Circos plot illustrating main effect and epistatic (QTL × QTL) QTLs identified for productivity and quality traits in ML population of TMV 2 and TMV 2-NLM

of peanut. The tracks from outside to inside indicates (1) 20 chromosomes of tetraploid genome Arachis hypogaea, (2) main effect QTLs for number of pods per plant

(NPPP) and linoleic acid (IAN) qNPPP–Ah02-1, qNPPP–Ah04-1, qNPPP–Ah08-1, qNPPP–Ah10-1, qNPPP–Ah12-1, qNPPP–Ah13-1,

qNPPP–Ah14-1,qNPPP–Ah14-2, qNPPP–Ah14-3, qLIN–Ah19-1, qLIN–Ah19-2, qLIN–Ah19-3, qLIN–Ah19-4, qLIN–Ah19-5, qLIN–Ah19-6, qLIN–Ah19-7,

qLIN–Ah19-8, qLIN–Ah19-9, qLIN–Ah19–10, qLIN–Ah19-11, qLIN–Ah19-12, qLIN–Ah19-13, (3) main effect QTLs for test weight (TW), protein content (PC), and oleic

acid content (OLE) qTW–Ah02-1, qTW–Ah02-2, qTW–Ah02-3, qTW–Ah02-4, qTW–Ah03-1, qPC–Ah05-1, qPC–Ah05-2, qPC–Ah05-3, qPC–Ah10-1, qOLE–Ah10-1,

qTW–Ah12-1, qTW–Ah12-2, qTW–Ah12-3, qTW–Ah12-4, qPC–Ah16-1, qPC–Ah16-2, qPC–Ah16-3, qOLE–Ah16-1, qOLE–Ah19-1, qOLE–Ah19-2, qOLE–Ah19-3,

(Continued)
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FIGURE 3 | qOLE–Ah19-4, qOLE–Ah19-5, qOLE–Ah19-6, qOLE–Ah19-7, qOLE–Ah19-8, qOLE–Ah19-9, qOLE–Ah19-10, qOLE–Ah19-11, qOLE–Ah19-12,

qTW–Ah20-1, qTW–Ah20-2, qTFV–Ah20-3, (4) main effect QTLs for shelling percentage (SP) and oleic to linoleic ratio (0/L) qSP–Ah01-1, qSP–Ah02-1, qSP–Ah05-1,

q5P–Ah09-1, qSP–Ah10-1, qSP–Ah10-2, qSP–Ah11-1, OP–Ah13-1, OP-A/216-1, qO/L–Ah19-1, qO/L–Ah19-2, qO/L–Ah19-3, qO/L–Ah19-4, q0/L–Ah19-5,

qO/L–Ah19-6, qO/L–Ah19-7, qO/L–Ah19-8, qO/L–Ah19-9, qO/L–Ah19-10, qO/L–Ah19-11, qO/L–Ah19-12, qO/L–Ah19-13, qSP–Ah20-1, (5) main effect QTLs for oil

content (OIL) and pod weight per plant (PWPP). qPWPP–Ah01-1, qPWPP–Ah02-1, qOIL–Ah03-1, qOIL–Ah03-2, qOIL–Ah03-3, qOIL–Ah03-4, qOIL–Ah05-1,

qOIL–Ah05-2, qOIL–Ah10-1 qOIL–Ah11-1, qOIL–Ah13-1, qOIL–Ah20-1, qOIL–Ah20-2. Innermost links connecting between the loci indicates the epistatic QTLs for

NPPP, PWPP, TW, and SP.

three were major-effect QTLs. Of them, the QTL (qSP-Ah13-1)
identified on Ah13 had the highest PVE of 52.8% with the LOD
score of 35.5 and stability over four seasons (S2, S3, S4, and S5).
The second major effect QTL (qSP-Ah16-1) on Ah16 identified
over three seasons (S1, S2, and S6) with the highest LOD score
of 6.6 showed the highest PVE of 19.9% (Figure 3 and Table 1).
The third major QTL (qSP-Ah02-1) on Ah02 had a PVE of
12.6% with a LOD score of 5.7 was detected only during S3. The
remaining seven QTLs identified on Ah01, Ah05, Ah09, Ah10,
Ah11, and Ah20 were minor QTLs that appeared only during
one or two seasons. The favorable alleles for NPPP and PWPP
were contributed by TMV 2-NLM, while TMV 2 contributed
the favorable allele at two major QTLs for SP. No major-effect
QTL was detected for TW; however, 12 minor-effect QTLs were
identified with the highest PVE of 8.5% (qTW-Ah02-4).

For OIL, 11 QTLs were identified, of which two were major,
and located on chromosome Ah03 (qOIL-Ah03-3) and Ah05
(qOIL-Ah05-1). qOIL-Ah03-3 was detected over four (S1, S2, S4,
and S5) seasons with the highest LOD score of 9.5 and PVE of
13.7%.While qOIL-Ah05-1was detected over the two seasons (S2
and S4) with the highest LOD score of 4.6 and PVE of 10.7%. The
favorable alleles at both these QTLs were contributed by TMV
2-NLM (Figure 3 and Table 1).

A total of 47 QTLs were identified for quality traits (PC, OLE,
LIN, and O/L) (Figure 3 and Supplementary Table 7). For PC,
out of seven QTLs, two QTLs on Ah16 were major and stable
across four seasons. Of them, qPC-Ah16-1 had the highest PVE of
13.3% with a LOD score of 15.3, and qPC-Ah16-2 had the highest
PVE of 13.3% with a LOD score of 13.5. The favorable alleles for
both these QTLs were contributed by TMV 2-NLM (Figure 3 and
Table 1). A total of 14 QTLs were identified for OLE along with
13 QTLs each for LIN and O/L. Of them, 12 QTLs for OLE were
major and stable with the highest PVE of 21.3%. The remaining
two minor QTLs were mapped on Ah10 and Ah16 (Figure 3,
Table 1, and Supplementary Table 7). For LIN, all the 13 QTLs
were major and stable with the highest PVE of 17.1% (Figure 3,
Table 1, and Supplementary Table 7). However, for O/L out of
13 QTLs, 11 weremajor and stable with the highest PVE of 18.4%.
All themajor and stable QTLs for OLE, LIN, andO/L clustered on
a 26.5 cM region (61.1–87.6 cM) on Ah19 (Figure 3, Table 1, and
Supplementary Table 7). It was inferred that TMV 2 contributed
to the decreased level of OLE, and increased level of LIN.

Common QTL Clusters for the Productivity
and Quality Traits
Three clusters were identified for the productivity and quality
traits. Cluster 1 of 3.4 cM (46.7–50.1 cM on Ah02) was common
for NPPP, PWPP, and SP. It showed the maximum PVE of 23.6,

20.9, and 12.6% for NPPP, PWPP, and SP, respectively (Figure 3
and Table 1). This region was highly stable for PWPP as it was
detected over four seasons (S1, S2, S3, and S4). Also, the additive
effects were high for this region, and the favorable alleles for
NPPP, PWPP, and SP were contributed by TMV 2-NLM. Cluster
2 of 10.9 cM (7.1–8 cM on Ah16) carried the major QTL for PC
and SP with a PVE of 7.9–13.3% and 11.9–19.9%, respectively
(Figure 3 and Table 1). Cluster 3 of 26.5 cM (61.1–87.6 cM on
Ah19) controlled OLE, LIN, and O/L with the PVE of 5.0–
21.3%, 5.5–17.1%, and 6.0–18.4%, respectively, and this region
was consistently stable over all the six seasons (Figure 3 and
Table 1).

Single Marker Analysis
Single marker analysis revealed that a total of six markers were
significantly associated withOLE along with five each for LIN and
O/L with PVE ≥ 10. Of them, four markers (Ah19_155127364,
Ah19_155135344, Ah19_155135353, and Ah19_155172354) and
one (Ah19_155165240) marker located, respectively, on Ah19
and Ah09 were common for OLE, LIN, and O/L. These markers
were also identified to be the flanking markers by CIM. These
associations were consistent over all the six seasons (Table 2). In
addition, Ah10_36971572 located on Ah10 showed association
with OLE only during the S4 season.

A total of 10 markers were significantly associated with PC
with a PVE of ≥10. Out of which AhTE0242 and AhTE0060
located at 0–7.16 cM were also identified by CIM. Three
markers (Ah12_118126407, AhTE0242, and AhTE0060) showed
association in S1 and S4 season, while seven markers (AhTE0281,
Ah03_127278448, AhTE0087, AhTE0275, AhTE0120, AhTE1110,
and AhTE1451) showed association only during the S1 season
(Table 2). There were a few other markers associated with PC;
however, they either showed relatively low PVE or appeared
only during the specific seasons. SMA revealed that four
markers (AhTE0281, AhTE0087, AhTE0120, and AhTE0242)
were significantly associated with SP during the S3 season
(Table 2). However, none of them was in the main effect QTL
region detected for SP. For the remaining traits (OIL, NPPP,
PWPP, and TW), none of themarkers were detected as significant
by SMA.

Epistatic QTL Discovery for Productivity
Traits
Epistatic QTL analysis for the complex productivity traits,
namely, NPPP, PWPP, TW, and SP identified a total of 94
epiQTLs, such as 87 major epiQTLs. In total 9, 12, 14, and
52 major epiQTLs were identified for NPPP, PWPP, TW, and
SP, respectively. It was found that four major main effect QTLs
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TABLE 1 | Major main effect quantitative trait loci (QTLs) identified for productivity and quality traits across seasons in the recombinant inbred line (RIL) population of TMV 2 and TMV 2-NLM of peanut.

Trait/QTL Chromosome Peak position

(cM)

Confidence

interval

Flanking markers LOD PVE (%) Additive

effect

Stability across

season(s)

Number of pods per plant (NPPP)

qNPPP-Ah02-1 Ah02 48.7 46.7–50.1 Ah02_100281747–Ah02_1558084 9.6 23.6 2.1 S4

qNPPP-Ah04-1 Ah04 11.0 0–15.4 AhTE0087–TC11H06 3.8 22.9 2.8 S1

qNPPP-Ah14-3 Ah14 133.5 132.5–136.3 Ah11_1177069–Ah14_4643565 7.7 17.3 2.5 S3

Pod weight per plant (PWPP)

qPWPP-Ah02-1 Ah02 48.7 46.7–50.1 Ah02_100281747–Ah02_1558084 4–10.6 7.4–20.9 2–7.1 S1, S2, S3, S4

Shelling percentage (SP)

qSP-Ah02-1 Ah02 48.7 46.7–50.1 Ah02_100281747–Ah02_1558084 5.7 12.6 6.7 S3

qSP-Ah13-1 Ah13 163.3 159.3–178.3 Ah13_80163117–Ah13_50074616 3.2–35.5 16.3–52.8 −6.6 to −1.2 S2, S3, S4, S5

qSP-Ah16-1 Ah16 13.1 7.1–18 AhTE0060–Ah16_77480103 4.1–6.6 10.5–19.9 −4.4 to −1.4 S1, S2, S6

Protein content (PC)

qPC-Ah16-1 Ah16 3.0 0.0–7.1 AhTE0242–AhTE0060 7.6–15.3 7.9–13.3 0.8–1.3 S1, S3, S4, S5

qPC-Ah16-2 Ah16 12.1 7.1–18 AhTE0060–Ah16_77480103 6.9–13.5 9.7–13.3 1.0–1.3 S1, S3, S4, S5

Oil content (OIL)

qOIL-Ah03-3 Ah03 37.4 37.4–37.5 Ah03_142744376–AhTE1144 3.3–9.5 6.2–13.7 0.8–1.2 S1, S2, S4, S5

qOIL-Ah05-1 Ah05 111.2 108.2–115.3 Ah05_115061124–AhTE0470 3.8–4.6 9.1–10.7 0.6–0.6 S2, S4

Oleic acid content (OLE)

qOLE-Ah19-1, qOLE-Ah19-2,

qOLE-Ah19-3, qOLE-Ah19-4,

qOLE-Ah19-5, qOLE-Ah19-6,

qOLE-Ah19-7, qOLE-Ah19-8,

qOLE-Ah19-9, qOLE-Ah19-10,

qOLE-Ah19-11, qOLE-Ah19-12

Ah19 78.6* 61.1–87.6 Ah19_155127299–Ah19_155179303** 5.1–22.2 5.5–21.3 −0.1 to

−0.28

S1, S2, S3, S4,

S5, S6

Linoleic acid content (LIN)

qLIN-Ah19-1, qLIN-Ah19-2,

qLIN-Ah19-3, qLIN-Ah19-4,

qLIN-Ah19-5, qLIN-Ah19-6,

qLIN-Ah19-7, qLIN-Ah19-8,

qLIN-Ah19-9, qLIN-Ah19-10,

qLIN-Ah19-11, qLIN-Ah19-12,

qLIN-Ah19-13

Ah19 75.8* 61.1–87.6 Ah19_155127299–Ah19_155179303** 6.3–18.3 7.0–17.1 0.9–2.2 S1, S2, S3, S4,

S5, S6

Oleic linoleic ratio (O/L)

qO/L-Ah19-3, qO/L-Ah19-4,

qO/L-Ah19-5, qO/L-Ah19-6,

qO/L-Ah19-7, qO/L-Ah19-8,

qO/L-Ah19-9, qO/L-Ah19-10,

qO/L-Ah19-11, qO/L-Ah19-12,

qO/L-Ah19-13

Ah19 78.6* 61.1–87.6 Ah19_155127299–Ah19_155179303** 6.5–19.5 6–18.4 −0.2 to −0.1 S1, S2, S3, S4,

S5, S6

*Peak value of QTL with highest. **Right flanking marker of first QTL and left flanking marker of last QTL; LOD, Logarithm of odds; PVE, Phenotypic variance explained; S1, Rainy 2014; S2, Rainy 2015; S3, Rainy 2016; S4, Rainy 2017;

S5, Rainy 2018 and S6, Post-rainy 2018–19.
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TABLE 2 | Major SNP and AhTE markers identified using single marker analysis for the productivity and quality traits in the RIL population of TMV 2 and TMV 2-NLM of

peanut.

Trait Marker Chromosome Position (cM) LOD PVE (%) Season(s)

OLE Ah19_155127364 Ah19 67.1 8.4–12.3 9.2–13.1 S1, S2, S3, S4, S5, S6

Ah19_155135344 Ah19 72.5 15.8–18.4 16.5–18.9 S1, S2, S3, S4, S5, S6

Ah19_155135353 Ah19 72.6 16.7–18.7 15.6–19.2 S1, S2, S3, S4, S5, S6

Ah19_155165240 Ah09 20.5 7.5–20.1 6.3–20.6 S1, S2, S3, S4, S5, S6

Ah19_155172354 Ah19 77.6 7.9–20.8 6.8–21.2 S1, S2, S3, S4, S5, S6

Ah10_36971572 Ah10 67.9 9.8 10.6 S4

LIN Ah19_155127364 Ah19 67.1 8.2–12.6 8.9–13.5 S1, S2, S3, S4, S5, S6

Ah19_155135344 Ah19 72.5 15.4–19.6 13.2–20.4 S1, S2, S3, S4, S5, S6

Ah19_155135353 Ah19 72.6 12.3–20.3 13.1–20.7 S1, S2, S3, S4, S5, S6

Ah19_155165240 Ah09 20.5 6.8–20.7 7.4–21.1 S1, S2, S3, S4, S5, S6

Ah19_155172354 Ah19 77.6 7.7–21.5 8.5–21.8 S1, S2, S3, S4, S5, S6

O/L Ah19_155127364 Ah19 67.1 8.3–11.1 9.1–11.9 S1, S2, S3, S4, S5, S6

Ah19_155135344 Ah19 72.5 14.2–17 14.9–17.7 S1, S2, S3, S4, S5, S6

Ah19_155135353 Ah19 72.6 14.7–17.3 15.5–18 S1, S2, S3, S4, S5, S6

Ah19_155165240 Ah09 20.5 6–17.3 6.6–18 S1, S2, S3, S4, S5, S6

Ah19_155172354 Ah19 77.6 6.9–18.3 7.6–18.9 S1, S2, S3, S4, S5, S6

PC AhTE0281 Ah01 57.9 15 15.8 S1

Ah03_127278448 Ah03 11.8 10.3 11.1 S1

AhTE0087 Ah04 0.0 18.4 18.9 S1

AhTE0275 Ah05 118.7 15.5 16.2 S1

AhTE0120 Ah11 29.3 23 23.2 S1

AhTE1110 Ah12 0.0 14.4 15.2 S1

Ah12_118126407 Ah12 82.2 9.8–13.4 10.5–14.2 S1, S4

AhTE0242 Ah16 0.0 9.6–21.6 10.4–21.9 S1, S4

AhTE0060 Ah16 7.1 11.5–24.5 12.3–24.4 S1, S4

AhTE1451 Ah18 74.6 11.1 11.9 S1

SP AhTE0281 Ah01 57.9 18.8 19.3 S3

AhTE0087 Ah04 0.0 10.4 11.2 S3

AhTE0120 Ah11 29.3 17.5 18.1 S3

AhTE0242 Ah16 0.0 13.1 13.9 S3

LOD, Logarithm of Odds; PVE (%), Phenotypic coefficient of variation; LIN, Linoleic acid content; OLE, Oleic acid content; O/L, oleic to linoleic acid ratio; PC, Protein content and SP,

Shelling percentage.

of NPPP and SP were involved in epistatic interaction with
PVE more than 10% (Figure 3 and Table 3). The rest of the
epiQTLs involved either the main effect QTLs with minor effects
or new genomic regions (Figure 3 and Supplementary Table 8).
Of the four epistatic interactions for NPPP involving the major
and main effect QTLs, three emerged from a genomic region
on Ah02 showing significant interaction with the regions on
Ah04, Ah06, and Ah12 with the PVE of 15.8, 17.7, and 20.0%,
respectively during S4 season. Also, the major QTL for NPPP on
Ah04 showed epistatic interactions with its own proximal region
(10 cM) during S2, S3, and S4 seasons with a maximum PVE of
28.5% (Figure 3 and Table 3). Out of the remaining five epiQTLs
for NPPP, those on Ah06, Ah18, and Ah19 showed interactions
with their own close proximal regions (20, 5, and 15 cM) with the
highest PVE of 39.6, 13.6, and 35.8%, respectively. Furthermore,
the epiQTLs on Ah03 and Ah10 showed significant interactions
with genomic regions on Ah16 and Ah19 with maximum

PVE of 13.4 and 11%, respectively for NPPP (Figure 3 and
Supplementary Table 8).

Of the four epistatic interactions for SP involving the major
and main effect QTLs, a main effect QTL region on Ah16
(7.1–18 cM) showed epistatic interactions with Ah03, Ah12,
and Ah13 with the maximum PVE of 24.2, 23.5, and 23.9%,
respectively. Furthermore, a region (159.3–178.3 cM) on Ah13
with major main effect QTL also showed epistatic interactions
with Ah08 recorded maximum PVE of 23.2% (Figure 3 and
Table 3). In addition, a minor main effect QTL region on
Ah01 for SP showed significant interaction with consecutive
regions (at 60 and 80 cM) on Ah03 with the highest PVE of
22.3 and 22.6%. Among the remaining 47 epiQTLs, regions
on Ah01, Ah05, Ah13, and Ah19 for SP were also involved in
epistatic interaction with their own close proximal regions with
PVE of 39.7, 30.4, 32.4, and 31.6%, respectively (Figure 3 and
Supplementary Table 8).
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TABLE 3 | Major main effect QTLs showing major epistatic interaction for productivity traits across seasons in the RIL population of TMV 2 and TMV 2-NLM of peanut.

Trait/QTL

name

Locus 1 Locus 2 LOD PVE

(%)

Additive

effect 1

Additive

effect 2

AddbyAdd Season(s)

Chromosome

1

Position 1

(cM)

Left marker 1 Right marker 1 Chromosome 2 Position 2

(cM)

Left marker 2 Right marker 2

NPPP

qtlNPPP–

Ah02-1

Ah02 50 Ah02_100281747Ah02_1558084 Ah04 10 AhTE0087 TC11H06 3.2 15.8 1.4 1.7 1.4 S4

qtlNPPP–

Ah02-2

Ah02 50 Ah02_100281747Ah02_1558084 Ah06 110 Ah16_110524270 AhTE2006 3.6 17.7 1.6 1.7 1.6 S4

qtlNPPP–

Ah02-3

Ah02 50 Ah02_100281747Ah02_1558084 Ah12 135 Ah12_1893158 Ah12_12348612 4.6 20 1.8 −1.8 −1.6 S4

qtlNPPP–

Ah04-1

Ah04 0 AhTE0087 TC11H06 Ah04 5 AhTE0087 TC11H06 3.2–

4.6

9.8–

28.5

−2.4 to −1.3 1.6–2.7 −2.4 to −1.1 S4, S3, S2

SP

qtlSP–

Ah03-6

Ah03 65 Ah03_29890737 AhTE0178 Ah16 15 AhTE0060 Ah16_77480103 3.7–

6.1

18.3–

24.2

1.7–2.7 −1.8 to −1.8 2.3–3.1 S2, S4

qtlSP–

Ah08-5

Ah08 15 Ah08_27217002 Ah17_20550255 Ah13 175 Ah13_80163117 Ah13_50074616 3.1–

9.7

14–

23.2

−4.7 to −3.6 −5 to −3.8 −5.5 to −4.2 S2, S4

qtlSP–

Ah12-1

Ah12 95 Ah12_111595586Ah12_40652945 Ah16 15 AhTE0060 Ah16_77480103 3.4–

5.9

16.3–

23.5

−4 to −3.6 −4.4 to −3.6 −4.7 to −3.5 S2, S1

qtlSP–

Ah13-2

Ah13 165 Ah13_80163117 Ah13_50074616 Ah16 15 AhTE0060 Ah16_77480103 5.3–

9.8

13.9–

23.9

−4.4–13.5 −4.8–11.3 −5–12.1 S6,S2

LOD, Logarithm of odds; PVE, Phenotypic variance explained; NPPP, Number of pods per plant; PWPP, Pod weight per plant (g); TW, Test weight (g); SP, Shelling percentage (%); S1, Rainy 2014; S2, Rainy 2015; S3, Rainy 2016; S4,

Rainy 2017; S5, Rainy 2018; S6 and Post-rainy 2018.
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For PWPP, none of the main-effect QTL was involved in
epistatic interactions. However, the new epiQTL regions on
Ah04, Ah05, Ah06, and Ah13 showed significant interactions
with their own close proximal regions (5 cM) with the highest
PVE of 36.4, 29.5, 43.3, and 26.7%, respectively. Apart
from these, eight other epiQTLs appeared in at least two
seasons with the major effect (PVE ≥10%) (Figure 3 and
Supplementary Table 8).

Of the 14 epiQTLs detected for TW, a main effect minor
QTL on Ah12 was involved in epistatic interaction with regions
on Ah03, Ah07, and Ah14 with the highest PVE of 24.8, 28.5,
and 15.8%, respectively. Among the remaining 11 epiQTLs,
regions on Ah01, Ah03, Ah05, and Ah11 were also involved in
epistatic interactions with maximum PVE of 17.6, 24.8, 28.4,
and 14.3%, respectively. Most of these genomic regions identified
in this study were important since they carried stable major
QTL(s) which also showed significant epistatic interaction for
various traits with PVE ≥ 10% across the seasons (Figure 3 and
Supplementary Table 8).

Putative Genes Identified in Major
Main-Effect QTL Regions/Clusters
In total, the three clusters and four major and stable QTL regions
were subjected to candidate gene discovery. In cluster 1, a 5Mb
region from the left flanking marker (Ah02_100281747) toward
the common QTL peak for NPPP, PWPP, and SP was considered
for gene discovery, and 360 genes were found (Table 4). In
clusters 2 and 3, the region between the left and right flanking
markers were considered, and 34 and 3 genes were found in the
regions, respectively (Table 4).

Of the four major QTL regions, a 5Mb region from the left
flanking marker to the QTL peak was employed for three; qPC-
Ah16-1, qOIL-Ah03-3, and qOIL-Ah05-1, and 249, 421, and 333
genes were found in these regions, respectively (Table 4). The
region between the two flanking markers was considered for qSP-
Ah13-1, and 259 genes were found (Table 4). However, more
studies are required to identify the candidate genes contributing
to these traits.

Sixteen markers that were identified to be significantly
associated with the traits by single marker analysis were
checked for their location (genic and non-genic), effect,
and probable function (Supplementary Table 9). Of them,
10 were found to be located in the intergenic regions
and two each were located in the exonic, 5′ UTR, and
intronic regions (Supplementary Table 9). AhTE0281 being
located in the 16th exonic region of Arahy.7A57YA on
Ah16 contributed for SP and PC (Supplementary Table 9). In
addition, Ah12_118126407 being located in the second exon
of Arahy.J5SZ1I (Ah12) governed PC. AhTE1451 being located
in the 5′ UTR of Arahy.CH9B83 (Ah18) also governed PC
(Supplementary Table 9). Similarly, an SNP at 155172354 bp
being located in the 5′ UTR of the gene Arahy.X7PJ8H on Ah19
contributed for OLE, LIN, and O/L (Supplementary Table 9).
Also, both Ah19_155135344 and Ah19_155135353 being located
in the 11th intron of Arahy.MZJT69 on Ah19 contributed for
OLE, LIN, and O/L (Supplementary Table 9).

Confirmation of the QTLs and Markers
The two stable major QTLs qPC-Ah16-1 and qOIL-Ah03-3
were selected for validation using the other eight genotypes
(Supplementary Table 10). The closest flanking markers;
AhTE0242 for qPC-Ah16-1 and AhTE1144 for qOIL-Ah03-3
were used for genotyping. The t-test was significant (p < 0.05)
for AhTE0242 and AhTE1144 markers, indicating a strong
validation of the markers and thereby the QTL for PC and OIL
(Table 5).

DISCUSSION

In our previous study, the RIL population derived from TMV 2
and TMV 2-NLM was used for constructing the AhTE marker-
based genetic map and identifying the QTL for important
taxonomic and productivity traits (Hake et al., 2017). Since the
parents and the RILs also differed for quality traits, an effort was
made in the present study to map the quality traits using an
improved genetic map with extensive multi-season phenotypic
data on the productivity and quality traits collected over six
seasons and GBS-derived SNP data. In this population, GBS
could identify more number of SNPs (713) polymorphic between
TMV 2 and TMV 2-NLM than the number of SNPs (31 SNP loci)
detected using the ddRAD-Seq in the previous study (Hake et al.,
2017). This could be due to the differences in the methodology,
especially the use of a four-base cutter and a six-base cutter in
ddRAD-Seq, while only a four-base cutter in GBS for generating
the DNA fragments. With the 865 markers available for mapping,
a total of 700 markers loci were mapped on the genetic map
of 2,438.1 cM. The map density was increased to 3.5 cM/loci
as compared with a previous genetic map where a total of 91
marker loci were mapped onto a genetic map of 1,205.6 cM with
18.1 cM/loci map density (Hake et al., 2017). In the previous
genetic mapping studies with GBS or WGRS (whole genome
re-sequencing) or SNP array, the diploid reference genomes
of Arachis duranensis and Arachis ipaensis were used for SNP
calling (Dodia et al., 2019; Gangurde et al., 2020). However, the
present study used the tetraploid peanut (A. hypogaea) genome
(Bertioli et al., 2019) as the reference for the true representative
SNP calling.

The genomic regions controlling NPPP, PWPP, SP, TW,
PC, OIL, OLE, LIN, and the OLE to LIN ratio (O/L) were
identified using the phenotypic data generated over six seasons
and the newly constructed improved genetic map with SNP,
AhTE, and SSR markers. In this study, the main effect QTLs
with major contributions (>10% PVE) were detected for all
the traits except for TW. Likewise, the genomic region showing
epistatic interactions for productivity traits (NPPP, PWPP, SP,
and TW) were also identified. It was noticed that the traits
identified with the major QTL showed higher GCV and broad
sense heritability. The QTLs for highly correlated traits, such
as OLE, LIN, and O/L shared a common marker interval on
chromosome Ah19. Similarly, QTLs for NPPP, PWPP, and SP
shared common marker interval QTLs on Ah02 and for PC
and SP on chromosome Ah16. Though G × E interactions
were significant for all the traits, stable QTL regions could be
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TABLE 4 | Putative genes identified in the major main effect QTL cluster/QTL regions for productivity and quality traits in the RIL population of TMV 2 and TMV 2-NLM of

peanut.

Region QTL Chromosome Flanking markers Region (cM) Peak position

(cM)

Region (Mb) Genes

Cluster

1 qNPPP–Ah02-1,

qPWPP–Ah02-1 and

qSP–Ah02-1

Ah02 Ah02_100281747–

Ah02_1558084

46.7–50.1 48.7 5.0 360

2 qPC–Ah16-2 and qSP–Ah16-1 Ah16 AhTE0060 (86223589)

–Ah16_77480103

7.1–18.0 13.1 8.7 34

3* Ah19 Ah19_155127299–

Ah19_155179303

61.1–87.6 – 0.05 3

QTL

1 qSP–Ah13-1 Ah13 Ah13_80163117–

Ah13_50074616

159.3–178.3 163.3 30.0 249

2 qPC–Ah16-1 Ah16 AhTE0242 (3776007)

–AhTE0060

0.0–7.1 3.0 5.0 259

3 qOIL–Ah03-3 Ah03 Ah03_142744376–AhTE1144 37.4–37.5 37.4 5.0 421

4 qOIL–Ah05-1 Ah05 Ah05_115061124–AhTE0470 108.2–115.3 111.2 5.0 333

*Cluster 3 contains of 12, 13, and 11 major effect QTLs for OLE, LIN, and O/L, respectively.

TABLE 5 | Validation of QTL and markers linked to oil and protein content in peanut.

QTL Closest marker t-value p-valuea LOD PVE (%)

qPC–Ah16-1 AhTE0242 2.13 0.011S 0.8 37.0

qOIL–Ah03-3 AhTE1144 1.94 0.014S 0.33 17.0

aStudent’s t-test (p < 0.05) was performed to identify co-segregation between distinct allele and phenotype; S, Significant; NS, Non-significant.

Phenotypic values and allelic pattern of genotypes considered for QTL validation given in Supplementary Table 9.

detected for the majority of the traits in this study. Based on
the stability of QTLs across the seasons, we identified the QTL
clusters and markers for validation and subsequent deployment
in molecular breeding for improving the traits. The QTL region
flanked by Ah02_100281747-Ah02_1558084 on chromosome
Ah02, either through its main effect or epistatic interactions,
showed significant contribution for NPPP (through qNPPP-
Ah02-1), PWPP (through qPWPP-Ah02-1), and SP (through
qSP-Ah02-1). The QTL regions on Ah06 and Ah19 were also
important for NPPP. A QTL on Ah06 was important for PWPP
only through its epistatic interaction. QTLs on chromosomes
Ah13 and Ah16 for SP showed main as well as epistatic effects,
while the same and its consecutive region on Ah16 also showed
main QTL for PC. Therefore, selection based on the QTL region
at 7.1–18.0 cM on chromosome Ah16 might improve not only
SP but also PC. This was also supported by the significant
positive correlation between SP and PC that was observed in this
study and the previous study (Kumar et al., 2014). Moreover,
SMA also showed that four markers contributed to both SP
and PC. Furthermore, validation of these markers across the
seasons and genotypes might indicate their utility in the marker-
assisted breeding for simultaneous improvement of PC and
SP since seasonal variation for PC has been reported earlier
(Sarvamangala et al., 2011). The main effect QTLs on Ah12
for TW also showed epistatic interactions with genomic regions
on Ah05 and Ah14. This might help in transferring the main

effect and epiQTLs simultaneously to improve kernel weight. The
selection based on the main effects of the QTLs on chromosome
Ah03 (qOIL-Ah03-3) and Ah05 (qOIL-Ah05-1) could advance
the genetic gains for OIL. Similarly, the main effect of the QTL
clusters at 61.1–87.6 cM on chromosome Ah19 could contribute
to improving O/L (increased OLE and decreased LIN). Single
marker analysis also showed the significant association of five
markers from this region with OLE, LIN, and O/L stably across
the seasons. The QTL regions in the close vicinity on a few
chromosomes (Ah01, Ah04, Ah05, Ah06, Ah13, and Ah19)
showing epistatic interaction for the productivity traits might be
resolved by fine mapping so that the selection becomes more
effective. Parent TMV 2-NLM could be considered as the source
of favorable allele at the region on Ah02 which contributed for
NPPP, PWPP, SP, and TW. In addition, the favorable allele from
TMV 2 at 19 cM region on Ah13 might be considered while
selecting for SP.

Two of the QTL regions identified in this study were validated
using other genotypes. A region 7.1–18.0 cM on chromosome
Ah16 for PC and 37.4–37.5 cM region on chromosome Ah03
for OIL showed strong validation, indicating that these QTLs
are genotype-independent. Many QTLs were also consistent as
they were reported to be co-localized in the previous studies
thereby supporting their utility. The region at 46.7–50.1 cM on
chromosome Ah02 identified for NPPP, PWPP, SP, and TW
in this study was previously detected for pod length (Fonceka
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et al., 2012), seed length (Zhang et al., 2019), and SP (Chavarro
et al., 2020). Similarly, the 37.4–37.5 cM region on chromosome
Ah03 linked to OIL was reported by Sarvamangala et al. (2011).
The single region on Ah19 linked to OLE, LIN, and O/L was
consistent with the study of Pandey et al. (2014) and Shasidhar
et al. (2017). However, a stable QTL region (159.3–178.3 cM) on
Ah13 reported in this study for SP with the LOD score of 3.2–
35.5 and PVE of 16.3–52.8% over four seasons differed from
the region (60.3–64.7 cM) reported by Zhang et al. (2019) for
seed length.

With the availability of the genome sequence for the diploid
ancestors and the cultivated peanut now (Bertioli et al., 2019),
candidate gene discovery is relatively easy as it has been reported
for SP (Luo et al., 2017), seed weight (Gangurde et al., 2020), TW
(Wang et al., 2019), stem rot resistance (Dodia et al., 2019), and
foliar disease resistance (Shirasawa et al., 2018). Here, putative
gene discovery was performed in the three QTL clusters and
four major QTL regions; 3.4 cM region on Ah02 chromosome
identified for NPPP, PWPP, SP, and TW, 10.9 cM region on Ah16
for SP and PC, and 26.5 cM region on Ah19 for OLE, LIN, and
O/L. There were 360 predicted genes in the 3.4 cM region on
Ah02, while 34 genes were identified in the 10.9 cM region on
Ah16. The 26.5 cMQTL cluster on Ah19 had only three predicted
genes. Furthermore, this region was in the vicinity of FAD2B gene
that determines OLE and LIN content and therefore used widely
for marker-assisted breeding (Jadhav et al., 2021).

Putative gene discovery was also performed in the four stable
major QTL regions, such as qSP-Ah13-1 at 19 cM on Ah13 for SP,
qSP-Ah16-1 at 7.1 cM on Ah16 for PC, and QTLs (qOIL_Ah03-
3 at 0.1 cM on Ah03 and qOIL_Ah05-1 at 7.1 cM on Ah05) for
OIL. Since the flanking markers for these QTLs were distanced
quite apart, the markers close to the peak were selected, and a
physical distance of 5Mb toward the QTL peak was searched for
the predicted genes. This effort identified a large number of genes
(249–421) across the four QTL regions. Therefore, it may be too
primitive to conclude about the candidate genes for the traits
observed in this study, and fine mapping might be essential to
resolve the regions and identify the candidate genes for effective
use in marker-assisted breeding.

Also, the marker loci associated with the traits identified
through SMA were further considered for identifying the
candidate genes. In total, five candidate genes could be
identified; they included Arahy.7A57YA (coding for ARM
repeat superfamily protein) for SP and PC, Arahy.J5SZ1I
(coding for syntaxin of plants) and Arahy.CH9B83 (coding
for phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and
dual-specificity protein phosphatase PTEN-like isoform) for
both SP and PC, and Arahy.MZJT69 and Arahy.X7PJ8H for
OLE, LIN, and O/L. Arahy.MZJT69 (coding for receptor-
like protein kinase 4) and Arahy.X7PJ8H (coding for protein
kinase superfamily) altered the phenotype probably through
SNP, while Arahy.7A57YA (coding for ARM repeat superfamily
protein) and Arahy.CH9B83 (coding for phosphatidylinositol
3,4,5-trisphosphate 3-phosphatase and dual-specificity protein
phosphatase PTEN-like isoform) genes contributed to the
phenotype probably through the transpositional activity of
AhMITE1 as reported earlier with AhTE0391 marker in

Aradu.7N61X (coding for alpha-glucosidase) (Hake et al.,
2017).

Overall, this study contributed to the development of an
improved map with 700 markers for a unique mapping
population derived from an elite variety TMV 2 and its mutant,
which probably offers a greater opportunity for subtracting a
major portion of the genome common to both the parents
and considering probably a small portion of the genome that
differs between the parents for mapping the traits. This fact was
pronounced both in this study as well as the previous study
(Hake et al., 2017), which together reported the mapping of
taxonomical, productivity, and quality traits in peanut.
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