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As two coexisting abiotic stresses, salt stress and alkali stress have severely restricted
the development of global agriculture. Clarifying the plant resistance mechanism and
determining how to improve plant tolerance to salt stress and alkali stress have been
popular research topics. At present, most related studies have focused mainly on salt
stress, and salt-alkali mixed stress studies are relatively scarce. However, in nature, high
concentrations of salt and high pH often occur simultaneously, and their synergistic
effects can be more harmful to plant growth and development than the effects of
either stress alone. Therefore, it is of great practical importance for the sustainable
development of agriculture to study plant resistance mechanisms under saline-alkali
mixed stress, screen new saline-alkali stress tolerance genes, and explore new plant
salt-alkali tolerance strategies. Herein, we summarized how plants actively respond
to saline-alkali stress through morphological adaptation, physiological adaptation and
molecular regulation.

Keywords: morphological adaptation, endogenous hormone response, signal transduction, epigenetic regulation,
osmotic regulation, saline-alkali stress

INTRODUCTION

With the increase in population and the deterioration of natural environments, soil saline-
alkalization has become an increasingly serious global problem (Shabala, 2013). According to
statistics, approximately 7% of the world’s land (more than 900 million hectares) is threatened by
saline-alkalization, and there are no effective measures by which to control its spread (Li et al.,
2014). In China, the area of saline-alkali soil has reached 100 million hectares, and the Songnen
Plain in northeastern China accounts for 3.73 million hectares and is one of three typical saline-
alkali soil distribution areas in the world (the other two are Victoria in Australia and California
in the United States) (Feng et al., 2007; Wang et al., 2009). Therefore, soil saline-alkalization is
an extensive abiotic stressor and has become a major limiting factor for crop production in global
agriculture (Wang H. et al., 2018).

The stress effects of soil saline-alkalization on plants include the effects of both salt stress and
alkali stress. According to the salt content and pH value, the degree of salt-alkali conditions is
classified as mild (the salt content is less than 3h, and the pH is 7.1-8.5), moderate (the salt
content is 3–6h, and the pH is 8.5–9.5), or severe (the salt content exceeds 6h, and the pH
value exceeds 9.5) (Oster et al., 1999). Salt stress results mainly from NaCl, Na2SO4 and other
neutral salts. On the one hand, these sodium ions will enter the cell directly through channel
and carrier proteins that causes ion toxicity. On the other hand, the high ion concentration
outside the cell will reduce the osmotic potential, which drives water molecules out of the cell,
leading to physiological drought, that is, osmotic stress. Both of these aspects can cause plant
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metabolic disorders (Richards, 1947). Alkali stress is induced by
NaHCO3 and Na2CO3, which further increase the pH on the
basis of salt stress. Therefore, in addition to ionic toxicity and
osmotic stress, high pH will severely disturb cell pH stability,
destroy cell membrane integrity, and decrease root vitality and
photosynthetic function (Zhang et al., 2017; Kaiwen et al., 2020).
Many studies have shown that combined salt-alkali stresses
result in more serious trophic ion imbalance, reduced osmotic
adjustment capacity, inhibition of the antioxidant system, and
more serious plant growth inhibition (Amirinejad et al., 2017;
Chen et al., 2017; Wang X.-S. et al., 2017; Wang J. et al., 2020). For
example, under mild alkali stress, bermudagrass slows metabolic
processes such as carbohydrate degradation and N metabolism to
maintain basic growth but with a slower growth rate. Moderately
and severely alkali-stressed plants will accumulate relatively
higher amounts of carbohydrates and significantly increase ROS
and MDA contents (Ye et al., 2021). In short, the osmotic stress,
oxidative stress, ionic toxicity and high-pH stress caused by
mixed salt-alkali stress can destroy the cell membrane structure,
inactivate enzyme activity, disrupt the ion balance in plant cells
etc. However, most studies have focused mainly on salt stress, and
little attention has been given to salt-alkali mixed stress.

Based on the extent and severity of plant damage due to
soil salinization and alkalization, studying and summarizing
the response mechanisms of plants under salt-alkali stress is
very important. The results will contribute to the breeding
of resistant varieties and provide an important theoretical
basis for the rational utilization of saline-alkali land and the
sustainable development of agriculture. Hence, in this work, we
review how plants actively respond to salt-alkali stress on the
basis of three different aspects: (1) morphological adaptations;
(2) physiological adaptations, including osmotic regulation,
ion and pH balance, antioxidant effects, and endogenous
hormone responses; and (3) molecular regulation, including
signal transduction, transcription factor involvement, saline-
alkali resistance gene expression, and epigenetic regulation.

MORPHOLOGICAL ADAPTATIONS TO
SALT-ALKALI STRESS

Under salt-alkali stress, the normal growth, development, and
physiological and biochemical metabolism of plants are severely
disrupted. When plants are exposed to saline-alkali stress, the
roots are the first to perceive the stress information, which is
gradually transmitted to the aboveground parts. The root surface
area and the root tip number, as well as the leaf area and
photosynthetic rate, mainly account for the response of the plant
seedling biomass to salt-alkaline stress (An et al., 2021). After
long-term exposure to saline-alkali stress, plants can alter their
morphology to better adapt to the environment. According to
reports, the typical changes in the morphology or anatomy of
halophytes in response to salinity mainly include an increase in
succulence, leaf pubescence, alterations to the number and size of
stomata, a multilayered epidermis, thickening of the cuticle, early
lignification, inhibition of differentiation, changes in the xylem
vessel diameter and quantity, etc. (Waisel, 1972). Studies on three

plant species with different responses to salt stress (Phaseolus
vulgaris, which is salt-sensitive; Gossypium hirsutum, which
is moderately salt tolerant; and Atriplex patula, which is salt
tolerant) have shown that high Na+ concentrations significantly
reduce the leaf area/plant height ratio. The anatomical structure
of the leaves indicated that compared with the other species,
the salt-tolerant species A. patula had greater leaf thickness due
to the increase in the epidermal and mesophyll thickness and
increased succulence (Longstreth and Nobel, 1979). Moreover,
salt stress led to a decrease in the photosynthetic rate and CO2
concentrations in the chloroplasts, as determined by the stomatal
and mesophyll conductance (Wang X. et al., 2018). Furthermore,
the anatomical structure of Populus euphratica under salt stress
revealed inhibition of xylem differentiation and developmental
changes in normal-sized vessels, which improved the plant
tolerance to salinity (Chen and Polle, 2010). In addition, studies
on cotton and Leymus chinensis have also shown that plants can
adapt to salt-alkali stress by increasing their root/shoot ratio and
specific root length (Liu B. et al., 2015; Wang Q. H. et al., 2018).
Dissections of the root structure showed that stress promoted
the maturation of both the hypodermis and endodermis, which
formed a well-developed Casparian strip closer to the root apex
that is helpful for adaptation (Walker et al., 1984). Moreover,
a study on the halophyte plant Kochia sieversiana showed that
the cotyledon node zone may play a role in salt and alkali
tolerance. Xylem sap collected from the above cotyledon node
zone contains less Na+ and Cl− under both salt and/or alkali
stresses. The selective restriction of ion transport conferred by
the cotyledon node zone under both salt and alkali stresses
may represent a novel mechanism of salt and alkali resistance
in halophyte plants (Wang et al., 2019). At the cell level, cell
expansion increases along the radial axis in the epidermis and
cortex under high salinity, which is controlled by modifying the
cell wall structure. Studies have shown that a proper cell wall
structure is important for the cell shape, elasticity, cell expansion
direction and overall growth in roots, which can be directly
regulated by salt stress (Shoji et al., 2006; Duan et al., 2015).
However, the latest report showed that in response to stress,
root aquaporin activity, rather than changes in the root xylem
structure, controlled hydraulic conductance, which provides new
mechanistic and functional insights into plant adaptation to
stress (Domec et al., 2021). In summary, salt-tolerant plants
exhibit increased resistance by altering both aboveground and
belowground organs to construct an appropriate morphological
structure to adapt to adversity.

PHYSIOLOGICAL ADAPTATION
MECHANISM OF PLANTS UNDER
SALINE-ALKALI STRESS

Increasing Osmotic Regulatory Ability via
Accumulation of Small-Molecule Organic
Compounds
Under saline-alkali stress, sodium ion accumulation in the soil
causes the osmotic pressure of the soil to be higher than that

Frontiers in Plant Science | www.frontiersin.org 2 June 2021 | Volume 12 | Article 667458

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-667458 May 29, 2021 Time: 18:8 # 3

Fang et al. Plant Response to Salt-Alkali Stress

of plant cells. Under these environmental conditions, water
exits plant cells, which causes osmotic stress and physiological
drought. To cope with this adversity, plant cells synthesize
and accumulate several small-molecule organic compounds,
such as proline, soluble proteins, betaine, sugar, polyols and
polyamines, to maintain intracellular water potential (Sun
et al., 2019). These substances exert osmoregulatory ability by
altering the solvent properties of water, stabilizing the internal
osmotic potential, increasing the thermodynamic stability of
folding proteins and protecting the macromolecular structure.
Sorghum seedlings reportedly adapt to salt-alkali environments
by altering the synthesis of small-molecule compounds such
as proline and soluble proteins (Sun et al., 2019). In wheat,
salt-alkali stress led to increases in proline, soluble sugar and
polyol (sorbitol) contents to counteract the adverse salt-alkaline
conditions (Lin et al., 2012; Guo et al., 2015). Exogenous
application of salicylic acid and nitric oxide has been reported
to increase plant salt tolerance by enhancing the synthesis
of proline, glycine betaine, and sugars that contribute to the
maintenance of the tissue water content in Vigna angularis
(Ahanger et al., 2019). Taken together, these results show that
different plant species and different varieties of the same species
can respond to salt-alkali stress through changes in different
osmotic adjustment substances.

Maintaining Na+-K+ Ion Balance via
Channel Proteins and Transporters
The high concentration of sodium ions in the soil under
saline-alkali stress can disrupt the dynamic balance of ions
in cells, leading to a series of damaging effects on plants,
such as destruction of the cell membrane structure, abnormal
metabolons in cells and ionic toxicity (Hasegawa, 2013). Plants
alleviate the toxicity of sodium ions mainly through excreting
sodium ions from cells and sequestering them through ion
antiporters such as NHX7 (also named SOS1) within cell
membrane and NHX1 within vacuolar membrane, both of
whose activity is regulated by calcium-dependent SOS2/SOS3
kinase complexes (Figure 1) (Bahmani et al., 2015). Na+
transport is driven by proton-driven forces produced by H+-
ATPase (located within the cell and vacuolar membranes)
and H+-VPPase (located within the vacuolar membranes).
Saline-alkali stress can increase the activities of H+-ATPase
and H+-VPPase. More H+ is pumped into the apoplast and
vacuole, which increases the transmembrane electrochemical
gradient, and enhances the power of Na+ flow from the
cytoplasm into the apoplast and vacuole (Deinlein et al.,
2014; Ye et al., 2019). Moreover, the SOS2-SOS3 complex is
sensitive to Ca2+ concentrations, so appropriate Ca2+ levels are
beneficial to maintaining sodium ion homeostasis under saline-
alkali stress.

The potassium (K+) concentration is closely related to the
regulation of osmosis, the membrane potential, and enzyme
activity in plants (Hasanuzzaman et al., 2018). A high cytosolic
K+/Na+ ratio in the cytoplasm is necessary for normal plant
growth and development. Under saline-alkali-stress conditions,
a large influx of Na+ into the cytoplasm can causes the

membrane potential to drop below the resting potential, which
then activates the K+ outflow channel (such as NSCC, GORK,
and SKOR) and disrupts the steady-state equilibrium of the
K+/Na+ ratio (Falhof et al., 2016) (Figure 1). There is increasing
evidence that some K+ channel proteins, including high-
affinity K+ transporters (HKTs), high-affinity K+ absorption
transporters channel proteins (HAKs), and Arabidopsis K+
transporters (AKT1), are involved in the K+ absorption in
plants. HKTs are a kind of transport protein specific for Na+/K+
(type II). Type II HKTs are selective for K+ but can also
transport Na+ under certain conditions (Cotsaftis et al., 2012).
Generally, K+ absorption is mediated by members of the K+
transporter HAK/KUP/KT family (such as HAK5 and KUP7)
or members of the shaker family of K+ channels (such as
AKT1) (Li et al., 2018). A recent study showed that many
members of the HAK/KUP/KT family are involved in K+
uptake and stress responses in tea plants (Yang T. et al., 2020).
Plants overexpressing the HAK gene are highly tolerant to salt
under low-K+ conditions in cytoplasm. However, under the
combined conditions of Na+ and low K+ in plant cytoplasm,
HAK expression is inhibited, the activity of the transporter
decreases sharply, and plants become very sensitive. The main
reason is that Na+ depolarizes the plasma membrane (PM),
such that its polarity value is higher than that of the K+
equilibrium potential, thereby activating the outward-rectifying
K+ channel (such as SKORs) and leading to K+ outflow
(Pottosin and Dobrovinskaya, 2014; Bacha et al., 2015). In
addition, the activity of PM H+-ATPase is another factor that
restricts K+ absorption. This protein complex is necessary for
protons to be actively pumped out of the cell through an
ATP-dependent phosphorylation process, generating a proton
motif force (pmf) across the PM (Falhof et al., 2016). HAKs
then use the pmf produced by H+-ATPase for K+ absorption
because HAKs are usually K+/H+ symporters (Bose et al., 2013;
Pottosin and Dobrovinskaya, 2014). Thus, limiting membrane
depolarization (restricting Na+ influx or promoting Na+ efflux)
and enhancing H +-ATPase activity can increase K+ absorption
via HAKs under salt stress and increase the resistance to
low K+ under salt stress. Studies in tomato have indicated
that inducing LeHAK5 and supplementing Ca2+ during the
K+ starvation period can counteract the PM depolarization
induced by salt stress by inhibiting NSCCs, thereby increasing
the absorption of K+ (Bacha et al., 2015). From this point of
view, maintaining a high K+/Na+ ratio is an important salt
stress adaptation measure. AKT1 participates in high-affinity
K+ absorption to ensure a constant K+ supply, resulting in
a high internal-K+ to external-K+ concentration (Gierth and
Mäser, 2007; Demidchik, 2014). When salt stress inhibits the
plant’s ability to absorb K+ from the soil, increasing the external
K+ concentration helps alleviate salt stress (Rodrigues et al.,
2013). In Puccinellia tenuiflora, PutAKT1 has been characterized
as encoding a K+ transporter/channel expressed under saline-
alkali-stress conditions (Zhao et al., 2016). The overexpression
of PutAKT1 in Arabidopsis seedlings increases K+ uptake by
cells and reduces Na+ accumulation, which proves the role
of PutAKT1 (Ardie et al., 2010). As mentioned above, there
are many proteins involved in maintaining high cytoplasmic
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FIGURE 1 | Maintaining Na+-K+ ion balance via channel proteins and transporters.

K+/Na+ ratios and that are prerequisites for salt stress tolerance
because a high cytoplasmic K+/Na+ ratio can ensure the best
cell metabolic function. In addition, some chemicals regulate
tolerance to salinity and alkalinity stress by acting on these
protein enzymes or channels. γ-aminobutyric acid (GABA)
accumulation in Arabidopsis corresponded to increased activity
of PM H+ ATPase, reduced ROS-induced K+ efflux from roots,
and lower Na+ uptake, which confer salt tolerance to plants (Su
et al., 2019). Xu et al. (2019) also reported that GABA can reduce
the Na+/K+ ratio by inducing polyamine generation to enhance
salinity-alkalinity stress tolerance in muskmelon. Polyamines
were reported to assist in the movement and sequestration of
Na+ from the cytoplasm to the vacuole and affect K+ flux
by amending outward- and inward-rectifying K+ channels in
guard cells and root cells (Pál et al., 2015; Pottosin et al.,
2020). Moreover, the application of plant growth-promoting
rhizobacteria showed an enhanced capacity to counteract saline-
alkaline stress in Chrysanthemum plants, which can modify
cellular abscisic acid levels, inhibit net K+ efflux and concurrently
induce net Na+ efflux by modulating several Na+/H+ and K+
antiporters/channels (Zhou et al., 2017).

Maintaining Intracellular pH Stability
Through Secreting and Synthesizing
Organic Acids
High pH levels in soils occur with increasing saline-alkali
stress, which mainly affects the plant root system by destroying
root tissue and reducing the root surface area, resulting in
root cells losing their normal physiological function (Munns
and Tester, 2008; Robin et al., 2016). High-pH stress also
causes the mineralization of organic matter such as carbon,

nitrogen, phosphorus, and sulfur, which decreases nutrient
recycling and availability for plants (Neina, 2019). Studies
have shown that many plants can be induced to secrete
large amounts of organic acids under saline-alkali stress,
which can play a buffering role allowing plants to resist
environmental changes and maintain intracellular pH stability
and ion balance (Yang et al., 2010; He et al., 2011; Guo-Hui,
2012). Transcriptomic profiling in grapevine roots revealed that
the underlying mechanism of the NaHCO3-induced synthesis
of organic acids may be that phosphoenolpyruvate carboxylase
catalyzes the carboxylation of phosphoenolpyruvate with -HCO3
to oxaloacetate, which is then converted into oxalate, acetate
and malate. The activity of phosphoenolpyruvate carboxylase was
regulated by phosphoenolpyruvate carboxylase kinases, which
were substantially upregulated by NaHCO3 stress (Xiang et al.,
2019). A relative study also showed that proton pump H+-
ATPase may play an important role in organic acid secretion
from roots under NaHCO3 stress (Guo et al., 2018). A study
on tomato indicated that both the roots and leaves of plants
maintained the ion balance by enhancing the synthesis of
organic acids such as citrate, formate, lactate, acetate, succinate,
malate and oxalate under salt and alkali stress. In particular,
under alkali stress, large amounts of citrate, malate and
succinate were synthesized to compensate for the deficiency
of inorganic anions (Wang et al., 2011). These results verified
the important role of organic acids in maintaining the cell
pH and iron balance. In addition, organic acids are important
intermediates of carbon metabolism in plant cells and play other
roles in controlling the whole-plant cell physiology, including
signaling messengers, modulators of transport across biological
membranes, protein modification of acetylation or succinylation
and nutrient element uptake from the soil, which can enhance the
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resistance of plants to a certain extent (López-Bucio et al., 2001;
Drincovich et al., 2016; Yang T.Y. et al., 2020).

Increasing Resistance to Oxidative
Damage via Antioxidant Enzymes and
Antioxidants
Osmotic stress and ionic stress caused by saline-alkali stress
further lead to the generation and accumulation of reactive
oxygen species (ROS), such as hydrogen peroxide (H2O2)
and hydroxyl radicals (OH−s). Luo et al. (2021) addressed
the mechanism of ROS production triggered by salinity. First,
NaCl induces the expression of Abscisic Acid-Insensitive 4
(ABI4), which can enhance RbohD expression but repress VTC2
expression. Then activated RbohD promotes ROS production
while VTC2 repression impairs ROS scavenging. Therefore,
this ABI4-RbohD/VTC2 regulatory module positively promotes
ROS accumulation (Luo et al., 2021). Accumulated ROS will
disrupt the normal physiological functions of cells, resulting
in metabolic disorders. There is a set of scavenging systems
including antioxidant enzymes and antioxidants for reducing
the stress of ROS in plants. The main antioxidant enzymes
include superoxide dismutase (SOD), catalase (CAT), peroxidase
(POD), glutathione peroxidase (GPX), glutathione reductase
(GR) and ascorbic acid peroxidase (APX). SOD is the first
line of defense of the antioxidant system in plants and can
transform accumulated superoxide molecules into oxygen and
H2O2, after which CAT, APX, and POD convert H2O2 into
water and oxygen. In addition, these enzymes work together to
scavenge MDA produced from lipid peroxidation to the protect
membrane structure. Antioxidants include mainly glutathione
(GSH), ascorbic acid (ASA), mannitol, flavonoids, anthocyanins
and vitamin E. These compounds are distributed in different
parts of cells to regulate the balance of ROS in cells. Based
on the functions of antioxidant enzymes and antioxidants, it is
possible to alleviate the injury to cells caused by saline-alkali stress
through the cooperation of the two.

A study on rice showed that cell membranes were severely
damaged by alkali stress and that the contents of MDA and H2O2
increased significantly, which stimulated the plants’ antioxidant
defense system. The activities of antioxidant enzymes such as
SOD, POD, CAT, and APX significantly increased. After a 98%
solution of natural anthocyanin exogenous antioxidants was
applied, impaired phenotypic characteristics such as wilting,
chlorophyll damage and cell death were relieved, and the ROS
that accumulated were scavenged (Zhang et al., 2017). A high-
salt environment further stimulates the plant response to alkali
stress. Sun et al. (2019) reported that under relatively low alkali
stress, the activities of SOD and CAT in sorghum seedlings
essentially did not change, but under a high-salt environment,
with an increase in alkalinity, POD activity increased significantly
(Sun et al., 2019). Other studies have also shown that plants can
reduce oxidative damage by regulating the activity of antioxidants
and antioxidant enzymes to better adapt to salt-alkali stress
environments. A study on two different sensitive maize varieties
(JY417, a highly salt-tolerant cultivar) and (XY335, a salt-
sensitive cultivar) showed that saline-alkali stress could increase

both ASA and GSH contents. High ASA and GSH contents
ensured the successful cyclization of ASA-GSH, which plays an
important role in maintaining protein stability and the structural
integrity of the biomembrane system and prevents membrane
lipid peroxidation. By cooperating with APX, GR and other
antioxidant enzymes, ASA and GSH constitute a cyclical system
that effectively removes free radicals, thereby enhancing the
antioxidant ability and maintaining the balance of active oxygen
metabolism in cells to further effectively alleviate damage caused
by salt-alkali stress (Fu et al., 2017). A Medicago sativa L. MsSiR
overexpression enhanced the alkali tolerance of transgenic plants
by increasing the GSH content (Sun et al., 2020). Moreover, many
studies have shown that the application of exogenous compounds
such as, hydrogen sulfide, GABA, 28-homobrassinolide, 24-
epibrassinolide, melatonin, salicylic acid, kinetin, jasmonic acid
and nitric oxide confers salinity and alkalinity tolerance by
upregulating the antioxidant system, ascorbate-glutathione cycle,
and glyoxalase system in various plants including soybean, Malus
hupehensis, muskmelon, Brassica juncea, Pisum sativum, pepper
and tomato cultivars (Ahmad et al., 2017, 2018; Ahanger et al.,
2018; Kaur et al., 2018; Alam et al., 2019; Jin et al., 2019; Shams
et al., 2019; Kaya et al., 2020; Li H. et al., 2020), which indicates
the critical role of the antioxidant system in the stress response.

Increasing Endogenous Hormone
Synthesis by Regulating the Expression
of Related Genes
Changes in hormones are an important factor that affect
normal plant growth and development under saline-alkali stress.
Gibberellin (GA), auxin (IAA), abscisic acid (ABA), cytokinin
(CK), ethylene (ET), salicylic acid (SA) and jasmonic acid (JA) are
indispensable hormones for plant adaptations to stress, and the
concentrations of these hormones are regulated by the expression
of hormone-related genes (Ciura and Kruk, 2018; Korver et al.,
2018; Kumar et al., 2019). For example, the endogenous GA
(GA1 and GA4) content was shown to be less inhibited by
saline-alkali stress in a resistant rice variety than in a sensitive
variety, and the expression level of GA synthesis-related genes
was higher in the former. Several key GA biosynthesis and
catabolism-related genes, OsGA20ox, OsGA3ox, and OsGA2ox,
in rice were found to participate in the response to saline-alkali
stress. The expression of OsGA20ox1 in the sensitive variety
decreased but was maintained at a relatively constant level
in the resistant variety. Compared with that in the sensitive
variety, the expression of OsGA20ox3 in the resistant variety
was strongly induced in response to saline-alkali stress (Li
et al., 2019). Therefore, the resistance mechanisms of plants
to salt-alkali stress may be related to the biosynthesis and
metabolism of GA. As key hormones for plant growth, IAA and
CK accumulate and are widely distributed in root tips to cope
with high-pH environments (Xu et al., 2012). The AUX/LAX
family of influx carriers and the PIN family of efflux carriers
mediate the polar transport of IAA, which is very important
for the distribution and accumulation of IAA in plant roots
(Blilou et al., 2005; Overvoorde et al., 2010). Under alkaline
stress, the expression of the IAA-related genes ARF5, GH3.6,
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SAUR36, and SAUR32 and the CK-related gene IPT5 in the
roots of apple rootstocks was significantly induced, and the
contents of IAA and CK greatly increased, thereby increasing
the alkali resistance of the apple rootstocks (Liu et al., 2019).
Another study confirmed that ET can stimulate the expression
of AUX1 and IAA biosynthesis-related genes to increase the
accumulation of IAA, thereby regulating the inhibition of root
elongation affected by alkaline stress (Li et al., 2015). ABA is
an important plant hormone for plant growth, development
and responses to stress. Studies have shown that in the ABA
signaling pathway, the expression of five genes (SaPYL4−1,
SaPYL4−2, SaPYL4−3, SaPYL4−4, and SaPYL5−1) related to
ABA receptors in Sophora alopecuroides is downregulated under
salt and alkali treatment. These genes regulate stomatal closure
by promoting the accumulation of ABA, thereby reducing the
inhibitory effect of saline-alkali stress on photosynthesis and
allowing plants to better adapt to the stress environment (Guo
et al., 2015; Yan et al., 2020). In sorghum plants, the expression
levels of SbNCED3, SbPP2C09, SbPP2C23, SbPP2C52, SbPP2C54,
SbPP2C58, SbSAPK1, SbSAPK5, and SbSAPK9 were significantly
upregulated under saline-alkali stress, indicating that these genes
may play an important role in ABA signaling under salt-alkali
stress (Ma et al., 2019). These results indicate that an increase
in hormone content enhances the salt-alkali resistance of plants.
The application of exogenous hormones such as ABA, SA, and
JA also alleviated harmful effects of salt and alkali stresses on
various plants, which further verified the role of hormones in
enhancing plant resistance (Ahanger et al., 2019; Ali et al., 2020;
Li X. et al., 2020).

MOLECULAR MECHANISMS OF PLANT
RESPONSES TO SALINE-ALKALI
STRESS

Activation of Signal Transduction
Pathways
The signal transduction pathways of saline-alkali stress mainly
include the salt overly sensitive (SOS) pathway, protein kinase
pathway and ABA pathway. Among them, the SOS pathway is
used for signal transduction under ionic stress, while the protein
kinase pathway and ABA pathway are involved mainly in osmotic
signal transduction (Zhu, 2016).

The SOS pathway is the first salt-alkali stress signal
transduction pathway established in plants and is responsible for
the efflux of Na+ in cells. In this signaling pathway, the EF-hand
chiral calcium-binding proteins Salt Overly Sensitive 3 (SOS3)
and SOS3-Like Calcium-Binding Protein (SCaBP8)/Calcineurin
B-like Protein 10 (CBL10) are essential for the activation
of the SOS signaling pathway. These proteins belong to the
CBL/SCaBP protein family, with an EF-hand structural region
that can bind calcium ions. Calcium signals can be generated
under the stimulation of salt stress (Zhu, 2016). Salt Overly
Sensitive 2 (SOS2) is a Ser/Thr protein kinase that acts as an
intermediate hub in the SOS signaling pathway. When plants
grow in a saline-alkali environment, SOS3 and SCaBP8 activate

SOS2 after sensing the calcium signal and combine to form a
SOS3-SOS2 protein kinase complex. Activated SOS2 interacts
with SOS1 in the PM and then regulates and activates it
by phosphorylation, whose Na+/H+ antitransport activity can
export Na+ accumulated in the cytoplasm to the outside of the
cell. A study has proven that SpSOS1 can improve plant salt
tolerance by regulating ion homeostasis and protecting the PM
against oxidative damage under salt stress (Zhou et al., 2018).
Reverse genetics experiments also verified that SOS1 in PM plays
a critical role in the salt tolerance of rice by controlling Na+
homeostasis and contributing to the sensing of sodicity stress
(El Mahi et al., 2019). In addition, activated SOS2 can also
activate the Na+/H+ antiporter NHX1 (Na+/H+ Exchanger 1)
located within the vacuolar membrane by phosphorylation so
that the accumulated Na+ in the cytoplasm is sequestered into
the vacuole to maintain ion homeostasis. A study has shown that
upregulation of MdNHX1 expression can enhance salt tolerance
in apple plants (Zou et al., 2021). Therefore, the SOS signaling
pathway is very important for the salt stress response process.

Plants can respond to alkali and salt stress by regulating
osmotic stress signaling pathways including mitogen-activated
protein kinases (MAPKs), Ca2+-dependent protein kinases
(CDPKs) and CBL-interacting protein kinases (CIPKs) (Shah
et al., 2021; Zhang et al., 2021). The MAPK cascade includes
MAPKKK, MAPKK, and MAPKs, which are responsible mainly
for transmitting extracellular signals into cells. Upstream
MAPKKK is first activated by phosphorylation, and MAPKK and
MAPK are in turn phosphorylated and activated sequentially.
Activated MAPK can phosphorylate transcription factors
and other signaling molecules to regulate the expression of
downstream genes (Colcombet and Hirt, 2008; Lee et al., 2015).
As Ca2+ sensors, CDPKs and CIPKs can directly convert
upstream Ca2+ signals into downstream phosphorylation signals
to initiate further downstream signal transduction. They play
an important role in the transcription process and are an
important regulatory protein commonly found in plants (Kudla
et al., 2018). Typical CDPKs generally have four domains: a
variable N-terminal domain (VNTD), Ser/Thr protein kinase
domain (PKD), self-inhibitory junction domain (JD) and
calmodulin (CaM)-like regulatory domain (CaM-LD). Studies
have shown that when plants are stimulated by stresses such
as low or high temperatures, high salt and drought, specific
Ca2+ signals form in the cells. Ca2+ directly binds to the
CaM-like regulatory domain with an EF-hand-shaped structure
at the C-terminus. Changes in the conformation of CDPKs
expose the kinase active site and activate kinase activity. In
addition, the PKD region activates the substrate by binding
ATP or GTP and transferring the γ-phosphate group to the
receptor hydroxyl residue, thereby triggering a variety of
physiological responses in plants (Kudla et al., 2010; Liese and
Romeis, 2013; Yip Delormel and Boudsocq, 2019). According
to a report, a tyrosine phosphatase AtPFA-DSP3 can modulate
the salt stress response of Arabidopsis by interacting with
and dephosphorylating MAPK family members MPK3 and
MPK6, suggesting the importance of MAPK moleculars for
plant salt tolerance (Xin et al., 2021). GsMAPK4-overexpressing
soybean plants and SeMAPKK-overexpressing Arabidopsis
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both showed significantly increased tolerance to salt stress,
suggesting their positive regulatory effects on the salinity
tolerance of plants (Qiu et al., 2019; Rehman et al., 2020).
Studies on CDPK members showed that CPK12 was involved
in plant adaptation to salt stress by regulating Na+ and H2O2
homeostasis in Arabidopsis (Zhang H. et al., 2018). CPK11
improves salt tolerance in transgenic Arabidopsis plants by
regulating Na+ and K+ homeostasis and stabilizing photosystem
II (Borkiewicz et al., 2020). CDPK2 plays a positive role in the
salt stress response in potato by promoting ROS scavenging
and chlorophyll stability and inducing stress-responsive genes,
conferring tolerance to salinity (Grossi et al., 2021). Multiple
CIPK members participate in the salt stress response. In two
genotypes of switchgrass cultivars (a salt-alkali tolerant genotype
and a sensitive genotype), CIPK expression was upregulated
mainly in the salt-tolerant cultivars, but the expression in the
salt-alkali-sensitive variety was still very low (Zhang et al.,
2021). In soybean, GmPKS4 improves soybean tolerance to
salt and salt-alkali stresses. The overexpression of GmPKS4
enhances the scavenging of ROS, osmolyte synthesis, and
transcriptional regulation of stress-related genes (Ketehouli
et al., 2021). In Brachypodium distachyon, BdCIPK31 positively
regulates salt stress in stomatal closure, ion homeostasis, ROS
scavenging, osmolyte biosynthesis, and transcriptional regulation
of stress-related genes (Luo Q. et al., 2017). NtCIPK9 increases
transgenic plant salt tolerance by promoting the expression of
genes controlling ion homeostasis (Lu et al., 2020). ZmCIPK42
enhances salt tolerance in maize through interaction with
calcineurin B-like protein 1 and 4 (ZmCBL1, ZmCBL4), as well
as a proteinase inhibitor (ZmMPI) (Chen et al., 2021). PpCIPK1
modulates plant salt tolerance in Physcomitrella patens by ionic
homeostasis, H2O2 accumulation, regulating photosynthetic
activity. Moreover, the overexpression of PpCIPK1 could
completely rescue the salt-sensitive phenotype of sos2-1 to
wild-type levels in Arabidopsis, suggesting the powerful function
of PpCIPK1 (Xiao et al., 2021). Taken together, these results
indicate that the MAPK and CDPK cascade signaling pathways
may mediate the response of a variety of plants to salt and alkali
stress indifferent ways. More extensive research needs to be
carried out in the future.

The ABA pathway includes both ABA-dependent and ABA-
independent types, which are involved in the regulation of
osmosis, ions, and reactive oxygen species under salt stress by
regulating the expression of several tolerance genes (Sah et al.,
2016; Yu Z. et al., 2020). The ABA-dependent pathway means
that gene expression is induced by exogenous or endogenous
ABA, and the ABA-independent pathway is a way in which gene
expression is not only induced by ABA but also affected by
biotic or abiotic stress (Fujii and Zhu, 2009; Cutler et al., 2010;
Umezawa et al., 2010). The ABA signaling pathway has four
core components: (1) a pyrabactin resistance 1/PYR1-like/ABA
receptor regulatory component (PYR1/PYL/RCAR), which is
the main receptor of ABA; (2) 2C-type protein phosphatases
(PP2Cs), which is negative regulators of ABAs; (3) sucrose
non-degradable related protein kinase 2 (SnRK2s), which is a
unique Ser/Thr protein kinase; and (4) an ABA-response element
(ABRE)-binding protein (AREB)/ABRE-binding factor (ABF)

(Kulik et al., 2011; Nakashima and Yamaguchi-Shinozaki, 2013;
Tian et al., 2015; Singh et al., 2016). In the absence of
ABA or under low ABA concentrations, PP2C can interact
with dephosphorylated SnRK2 and inhibit SnRK2 activity,
thereby inhibiting ABA signaling. When ABA accumulates in
plants under adverse stress conditions, the receptor RCAR
binds to ABA and competitively binds to PP2Cs to release
SnRK2. Activated SnRK2s then activate and phosphorylate the
downstream transcription factor AREB/ABF and initiate the
ABA response to regulate various processes of plant growth
and development under adverse stress conditions (Fujita et al.,
2013; Nakashima and Yamaguchi-Shinozaki, 2013). Studies
have shown that, among the 10 members of SnRK2 family
in Arabidopsis, the expression of SnRK2.1-SnRK2.10 except
SnRK2.9 can be induced by NaCl (Kobayashi et al., 2004).
Overexpression of PtSnRK2.5 and PtSnRK2.7 in Arabidopsis
increased the tolerance of the transgenic plants to salt stress
(Song et al., 2016). Moreover, overexpression of a novel
gene, AsSnRK2D, in tobacco significantly improved the plant
tolerance to dehydration or salinity stress. The molecular
mechanism might be attributed to the significantly upregulated
transcripts of several environmental stress-inducible genes,
including dehydrins, cell signaling components, transcription
factors, antioxidative enzymes, and proline biosynthesis (Xiang
et al., 2020). In addition, GsSKP21, as a Glycine soja S-phase
kinase-associated protein, plays a critical regulatory role in the
ABA-mediated stress response. Overexpression of GsSKP21 in
Arabidopsis dramatically increased the plant tolerance to alkali
stress and mediated ABA signaling by altering the expression
levels of the ABA signaling-related and ABA-induced genes
(Liu A. et al., 2015).

Induction of Transcription Factor
Expression
During signal transduction in response to salt-alkali stress,
transcription factors serve as a bridge between stimulus signals
and associated genes. They receive upstream signals and regulate
the expression of related downstream resistance genes by binding
to their corresponding cis-regulatory sequences. Transcriptome
analysis of switchgrass and alfalfa indicated that the expression
levels of many transcription factors were significantly modified
in response to saline-alkaline stress. They belong to major
transcription factor families such as AP2/ERF, NAC, HD-
zip/bZIP, MYC/MYB, WRKY, and bHLH, many of whose
members have been shown to be related to the salt-alkali stress
response (An et al., 2016; Wang J. et al., 2020; Shah et al., 2021;
Zhang et al., 2021).

The AP2/ERF transcription factor family is a large family
unique to plants with at least one or two highly conserved
DNA-binding domains, which are involved in regulating plant
growth, development and responses to abiotic stress (Phukan
et al., 2017). GsERF6 significantly enhanced plant tolerance to
alkaline stress in transgenic Arabidopsis, probably by inducing
plant hormones such as ABA and ET as signaling molecules to
activate a number of hormone- and stress-responsive genes, such
as RAB18, RD29A, RD29B, and COR47 genes, and some ERF-like
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genes (Yu et al., 2016). ItERF can improve Arabidopsis thaliana
salt tolerance by activating the expression of stress-related genes
through binding to the GCC-box (Wu J. et al., 2019). Genome-
wide analysis in adzuki bean showed that the expression of 13
ERF genes was induced in response to saline-alkaline stress.
Overexpression of VaERF3 in transgenic Arabidopsis enhances
saline-alkaline tolerance by activating the transcription of stress-
responsive genes in an ABA-dependent manner (Li W. Y. et al.,
2020). GsERF71 enhances the tolerance of transgenic Arabidopsis
plants to alkaline stress by upregulating the expression levels of
H+-ATPase and by modifying auxin accumulation in transgenic
plants (Yu et al., 2017). In rice, OsSTAP1 functions as an
AP2/ERF transcriptional activator, and plays a positive role in
salt tolerance by decreasing the Na+/K+ ratio and maintaining
cellular redox homeostasis (Wang Y. et al., 2020). Other ERF
family members such as LkERF-B2, ERF38, MbERF11 are also
reported to improve salinity tolerance (Cao et al., 2019; Cheng
et al., 2019; Han et al., 2020).

Recent studies have shown that bZIPs participate in bZIP
transcriptional activation under bicarbonate-alkali stress
and alter stress-related physiological indicators (such as
reducing the accumulation of MDA and increasing both the
activity of POD and the content of chlorophyll) and gene
expression (excess GsbZIP67 expression in alfalfa) to improve
salt-alkali tolerance (Wu et al., 2018). Members of the bZIP
transcription factor family have been identified in a variety
of higher plants. Plant-specific HD-Zip I transcription factor
MdHB-7 regulates salt tolerance in transgenic apple (Malus
domestica). The overexpression of MdHB-7 reduced the salt
stress-induced damage, maintained ion homeostasis, and
promoted the detoxification of ROS, while MdHB-7 RNAi
lines showed the opposite performance (Zhao et al., 2021).
Populus nigra PnHB7 transcription factor overexpression in
tobacco also improved the resistance of transgenic plants to
salt stress. Transcriptome analysis of overexpressed tobacco
showed that hormone-related protein genes, oxidase genes
and transcription factor protein genes in the ABA signaling
pathway were significantly upregulated, suggesting that
PnHB7 plays an important role in the ABA regulation
pathway (Yu X. et al., 2020). A novel bZIP transcription
factor, ChbZIP1, from the alkaliphilic microalgae Chlorella
sp. BLD has been reported to increase the alkali resistance
of plants. Overexpression of ChbZIP1 in Arabidopsis showed
that ChbZIP1 can enhance plant adaptation to alkali stress
through the active oxygen detoxification pathway, suggesting
its promising potential in genetically improving plant tolerance
to alkali stress (Qu et al., 2021). bZIP transcription factors
are similar to MYB/MYC transcription factors in terms of
their regulation, participation in ABA-dependent pathway
signal transduction, and perception of stress signals to regulate
gene expression.

Under long-term salt-alkali stress, the members of the MYB
transcription factor family exhibited the most significant changes
in alfalfa, and the expression of most MYB transcription
factors tended to increase (Coskun et al., 2016). In the
analysis of alfalfa transcripts, the MYB family was the
transcription factor family whose members presented the

second strongest response to salt stress after AP2 members,
indicating that MYBs play an important role in alfalfa salt-alkali
resistance (Postnikova et al., 2013). Transcriptional profiling
reveals that the MYB transcription factor MsMYB4 contributes
to the salinity stress response of alfalfa. The introduction of
MsMYB4 significantly increased salinity tolerance in transgenic
Arabidopsis plants in an ABA-dependent manner (Dong et al.,
2018). GmMYB68 overexpression enhanced salt-alkali resistance
in soybean, whose osmotic adjustment and photosynthetic
rates were stronger than those of GmMYB68-RNAi and wild-
type plants. Importantly, the overexpression of GmMYB68
also increased the grain number and 100-grain weights under
salt stress, indicating the value of its practical application to
increase crop yields (He et al., 2020). GmMYB3a, as another
MYB transcription factor, showed a negative regulatory effect
on soybean response to salt-alkali stress. Overexpression of
GmMYB3a reduced physiological parameters, including soluble
sugar, free proline, and chlorophyll contents, and photosynthetic
rate and downregulated a set of key genes associated with plant
defense signal pathways in the transgenic plants (He et al., 2018).
TaMYB86B encodes an R2R3-type MYB transcription factor.
Overexpression of TaMYB86B can increase the salt resistance of
wheat by regulating ion homeostasis to maintain an appropriate
osmotic balance and decrease ROS levels (Song et al., 2020b).
The R2R3-MYB transcription factor AtMYB49 modulates salt
tolerance in Arabidopsis by modulating the cuticle formation and
antioxidant defense. Overexpression of AtMYB49 in Arabidopsis
increases Ca2+ accumulation in leaves, reduces oxidative damage
and improves the membrane integrity through upregulation of
the expression of genes encoding PODs and SODs and LEAs and
decreases non-stomatal leaf water loss by positively modulating
cutin deposition in leaves through upregulation of genes classified
into cutin, suberin and wax biosynthesis during salt stress. These
actions are probably achieved through ABA-dependent signaling
pathways with the involvement of at least ABF3 and ABI5
(Zhang P. et al., 2020).

The WRKY gene family, as a plant-specific transcription
factor group, plays important roles in many different response
pathways to saline and alkali stresses (Li W. et al., 2020).
A large number of WRKYs have been functionally characterized
in plants. In sweet potato (Ipomoea batatas L.), 79 IbWRKY
transcription factors were identified and 35 IbWRKY genes
showed significantly expression changes upon NaCl treatment
(Qin et al., 2020). In the sugar beet genome, a total of
58 putative BvWRKY genes were identified. BvWRKY10 in
shoots and BvWRKY16 in roots were remarkably upregulated
by alkaline stress (Wu G. Q. et al., 2019). In Iris lactea var.
chinensis, the expression of IlWRKY1 was notably increased
under NaCl stress, suggesting that IlWRKY1 may be involved
in I. lactea var. chinensis sodium salt responses (Tang et al.,
2018). Overexpression of SlWRKY28 improved the tolerance
of Populus davidiana × Populus bolleana to saltine-alkaline
stress by inducing regulation of the enzyme gene in the ROS
scavenging pathway (Wang X. et al., 2020). GmWRKY16 could
be induced to express by salt in soybean. GmWRKY16 transgenic
Arabidopsis showed improved salt tolerance by activating the
expression of AtWRKY8, KIN1, and RD29A in the ABA pathway
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(Ma et al., 2018). In alfalfa, MsWRKY11 was upregulated in
response to salinity and alkalinity stresses. Overexpression of
the MsWRKY11 gene enhanced salt tolerance in soybean by
increasing soluble protein and proline contents and reducing
ROS levels, but the detailed regulatory mechanisms remain to
be further investigated (Wang Y. et al., 2018). MdWRKY100
overexpression enhanced salt tolerance in M. domestica, which
was upregulated by the miR156/SPL regulatory module (Ma et al.,
2021). MxWRKY64, which is a new WRKY transcription factor
gene from Malus xiaojinensis, was induced to express by salt stress
in M. xiaojinensis seedlings. Overexpression of MxWRKY64
in transgenic A. thaliana contributed to morphological and
physiological indicators, suggesting its important role in the
response to salt stress (Han et al., 2021). However, not all WRKYs
found will improve salt or alkali tolerance. The transcription
factor SbWRKY50 from sweet sorghum is negatively involved in
the salt response, reducing salt tolerance in A. thaliana by directly
binding to the upstream promoter of SOS1 and HKT1 to control
ion homeostasis (Song et al., 2020a). The maize ZmWRKY114
gene also negatively regulates salt-stress tolerance in transgenic
rice by attenuating ABA signaling (Bo et al., 2020).

The plant-specific NAC transcription factor family has
received much attention in responses to salinity and alkali stress
(Marques et al., 2017; Khan et al., 2018). Plant adaptation to
environments with high salinity and alkalinity may be related
to the different patterns of action of NAC factors. ThNAC13
was reported to improve salt and osmotic stress tolerance in
Transgenic Tamarix and Arabidopsis by enhancing the ROS-
scavenging capability and adjusting the osmotic potential (Wang
L. et al., 2017). Overexpression of GsNAC019 in Arabidopsis
resulted in enhanced tolerance to alkaline stress at the seedling
and mature stages, but reduced ABA sensitivity, implying that
GsNAC019 may contribute to alkaline stress tolerance via the
ABA signal transduction pathway and regulate the expression
of downstream stress-related genes such as AtRD29B (Cao
et al., 2017). Under salt stress, the MdNAC047 gene was
significantly induced and MdNAC047 directly activated the
expression of MdERF3 by binding to its promoter, facilitating
ethylene release, which enhanced the plant tolerance to salt
stress (An et al., 2018). Zhang et al. (2015) revealed that
wheat TaNAC47 enhanced salt tolerance by interacting with
ABRE cis-elements, implying that TaNAC47 may participate in
the ABA-dependent signaling pathway. Moreover, PeNAC036
overexpression enhanced Arabidopsis plant salt stress responses,
while transgenic plants overexpressing PeNAC034 in Arabidopsis
and PeNAC045 in poplar were sensitive to salt (Lu et al., 2018).
These results indicate versatile roles of NAC in the responses to
salt and alkali stress in plants.

Upregulation of Salt-Alkali Resistance
Gene Expression
Salt-alkali stress induces the expression of related resistance
genes, which are involved mainly in osmotic regulation, ion
homeostasis, oxidative activity and hormone signal transduction.
Studies have shown that in response to high-pH stress, the
expression of genes involved in ionic homeostasis and starch and

sucrose metabolism is significantly upregulated in cotton. These
genes in turn induce plant hormone signal transduction and key
enzyme activity to counteract ion toxicity (Zhang B. et al., 2018).

Resistance genes related to osmotic regulation are involved
mainly in the synthesis of key enzymes needed for osmotic
regulation. Studies have shown that MsGSTU8 in transgenic
tobacco increases the soluble sugar content under salt-alkali
stress. In addition, the expression of genes related to proline
biosynthesis, including NtP5Cs, NtLEA5, and NtLEA14, was
upregulated. This shows that the expression of genes involved
in the synthesis of osmotic substances increases plant resistance
(Du et al., 2019). 11-pyrroline-5-carboxylate synthetase (P5CS)
is a key enzyme involved in the biosynthesis of proline.
Upregulated expression of PutP5Cs unigenes under salt-
alkali stress significantly increased the content of proline in
P. tenuiflora, mediating osmotic adaptation to saline-alkaline soil
(Ye et al., 2019).

Some saline-alkali resistance genes encoding reverse transport
protein/channel ions, including the PutAKT1, PutCAX1,
PutNHA1, HKT, and NHX genes, play an important role in
the response to ion stress. Studies have shown that PutAKT1
is involved in mediating K+ absorption. The expression of
PutAKT1 in Arabidopsis increases the K+ content and decreases
the Na+ content in the shoots and roots (Ardie et al., 2010).
Under saline-alkali stress, the expression of NHX2 is upregulated
in cotton root and leaf tissues (Zhang et al., 2016). OsHKT1;4
and OsHKT1;5 in rice can alleviate the effects of excessive Na+
and reduce ion toxicity (Kobayashi et al., 2017). In addition,
salt stress induces the expression of AtHKT1;1 in Arabidopsis,
reduces the Na+ content in plants and reduces toxicity
(An et al., 2017).

Antioxidant-related genes in plants induce the synthesis of
key antioxidant enzymes such as SOD, POD, CAT, and GSH,
thereby removing active oxygen to protect organisms from
oxidative damage. Glutathione S-transferase (GST) is a large
multifunctional protective cellular enzyme in plants. Members
of the GST family quench reactive molecules and catalyze the
binding of GSH to hydrophobic and electrophilic substrates,
thereby protecting cells from oxidative damage (Liu et al.,
2017; Kayum et al., 2018). Overexpression of the MsGSTU8
gene in transgenic tobacco induced the expression of three
ROS detoxification-related genes (NtSOD, NtPOD, and NtCAT),
which in turn reduced the accumulation of ROS and the
content of MDA; increased the activity of SOD, POD, and
CAT; and improved the resistance of transgenic tobacco to
salt-alkali stress (Du et al., 2019). Based on a large number
of studies on the tolerance of plants under salt/alkali stress, a
type of plant metallothionein (MT) related to the resistance of
plants under extreme environmental stress has been identified.
MTs compose a family of low-molecular weight (7–10 kDa)
proteins that are rich in Cys and can bind to metals in a
variety of organisms. When plants are exposed to metal and/or
saline-alkali stress, MT function is triggered in the plants.
MTs in plants can be divided into four types according to
the distribution of Cys: MT1, MT2, MT3, and MT4 (Cobbett
and Goldsbrough, 2002). The cysteine within MTs directly
participates in the process of removing ROS, which reduces
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TABLE 1 | List of genes associated with salinity and alkalinity adversity response in plants.

Gene name Source of species Regulatory functions Types of
saline- alkali
stress

Tolerance Transgenic
species

References

VaERF3 Adzuki bean Promote proline accumulation;
decrease MDA and ROS contents;
promote the expression of stress
responsive genes

NaHCO3 + Overexpression in
Arabidopsis

Li W. Y. et al.,
2020

MsGSTU8 Alfalfa (Medicago
sativa)

Maintain the chlorophyll content;
improve antioxidant enzyme activity and
soluble sugar levels; reduce ion
leakage, ROS accumulation and MDA
content

Na2CO3 +NaHCO3 + Overexpression in
tobacco

Du et al., 2019

MsMYB4 Alfalfa (Medicago
sativa)

Increase the plants’ salinity tolerance in
an ABA-dependent manner

NaCl + Overexpression in
Arabidopsis

Dong et al.,
2018

MsWRKY11 Alfalfa Increase the contents of chlorophyll,
proline, soluble sugar, SOD and CAT;
reduce the relative electrical
conductivity, the contents of MDA and
ROS; Increase pods per plant, seeds
per plant and 100-seed weight

NaCl or
Na2CO3 +NaHCO3

+ Overexpression in
soybean

Wang X. et al.,
2018

MsSiR Alfalfa (Medicago
sativa)

Increase the GSH content NaHCO3 + Overexpression in
alfalfa

Sun et al., 2020

MdHB-7 Apple (Malus
domestica)

Reduce root damage; maintained ion
homeostasis; detoxify ROS

NaCl + Overexpression
and RNAi in apple

Zhao et al.,
2021

MdWRKY100 Apple (Malus
domestica)

Increase chlorophyll content, reduce
H2O2 and MDA levels

NaCl + Overexpression in
Apple

Ma et al., 2021

MdNAC047 Apple (Malus
hupehensis)

Directly activate the expression of
MdERF3 and facilitate ethylene release

NaCl + Overexpression in
apple and
Arabidopsis

An et al., 2018

AtHKT1 Arabidopsis Reduce Na+ toxicity NaCl + Gene knockout and
complementation in
Arabidopsis

An et al., 2017

CPK12 Arabidopsis Regulate Na+ and H2O2 homeostasis NaCl + RNAi mutation in
Arabidopsis

Zhang H. et al.,
2018

AtMYB49 Arabidopsis Modulate the cuticle formation and
antioxidant defense

NaCl + Gene knockout and
overexpression in
Arabidopsis

Zhang P. et al.,
2020

BdCIPK31 Brachypodium
distachyon

Promote stomatal closure, ion
homeostasis, ROS scavenging,
osmolyte biosynthesis, and regulation
of stress-related genes

NaCl + Overexpression in
tobacco

Luo Q. et al.,
2017

ChbZIP1 Chlorella sp. BLD Active stress response gene such as
GPX1, DOX1, CAT2, and EMB by
binding G-box 2 motif and active
oxygen detoxification pathway

NaHCO3 + Overexpression in
Arabidopsis

Qu et al., 2021

CsTGase Cucumber Regulate PA metabolism and Na+/K+

balance
NaCl + Overexpression in

tobacco
Zhong et al.,
2020

GsPPCK3 Glycine soja Decrease ion leakage and MDA
content, increase chlorophyll content
and root activity

NaHCO3 + Overexpression in
Medicago sativa

Sun et al., 2014

ItERF Iris typhifolia Activate the expression of stress-related
genes through binding to the GCC-box

NaCl + Overexpression in
Arabidopsis

Wu J. et al.,
2019

LkERF-B2 Larix kaempferi Higher content of chloroplast pigments;
the activity of SOD and POD was also
enhanced

NaCl + Overexpression in
Arabidopsis

Cao et al.,
2019

ZmCPK11 Maize (Zea mays) Regulate Na+ and K+ homeostasis and
stabilizing photosystem II

NaCl + Overexpression in
Arabidopsis

Borkiewicz
et al., 2020

ZmCIPK42 Maize (Zea mays) Interaction with ZmCBL1, ZmCBL4,
and ZmMPI

NaCl + Overexpression in
maize and
Arabidopsis

Chen et al.,
2021

(Continued)
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TABLE 1 | Continued

Gene name Source of species Regulatory functions Types of
saline- alkali
stress

Tolerance Transgenic
species

References

ZmWRKY114 Maize (Zea mays) Regulate stress- and ABA-related gene
expression

NaCl − Overexpression in
rice

Bo et al., 2020

MxWRKY64 Malus xiaojinensis Higher activities of SOD, POD, and
CAT, higher contents of proline and
chlorophyll, while MDA content was
lower

NaCl + Overexpression in
Arabidopsis

Han et al., 2021

NtCIPK9 Nitraria tangutorum Promote the expression of genes
controlling ion homeostasis

NaCl + Overexpression in
Arabidopsis

Lu et al., 2020

AsSnRK2D Oat Modulate the expression of
stress-inducible genes including
dehydrins, cell signaling components,
transcription factors, antioxidative
enzymes, and proline biosynthesis

NaCl + Overexpression in
tobacco

Xiang et al.,
2020

PpCIPK1 Physcomitrella
patens

Regulate ionic homeostasis, H2O2

accumulation, photosynthetic activity
NaCl + Gene knockout in

P. patens
Xiao et al.,
2021

PtSnRK2.5 PtSnRK2.7 Poplar (Populus
trichocarpa)

Increase survival rates and metabolic
regulatory genes expression

NaCl + Overexpression in
Arabidopsis

Song et al.,
2016

PeNAC036 Populus euphratica Upregulate the expression of COR47,
RD29B, ERD11, RD22 and DREB2A

NaCl + Overexpression in
Arabidopsis

Lu et al., 2018

PeNAC034 Populus euphratica Downregulate the expression of
COR47, RD29B, ERD11, RD22 and
DREB2A

NaCl − Overexpression in
Arabidopsis

Lu et al., 2018

PeNAC045 Populus euphratica Decrease net photosynthesis rate,
stomatal conductance and transpiration
rate

NaCl − Overexpression in
poplar

Lu et al., 2018

PnHB7 Populus nigra Increase expression of some TFs and
stress-defense-related genes in ABA
pathway

NaCl + Overexpression in
tobacco

Yu X. et al.,
2020

CDPK2 Potato Promote ROS scavenging, chlorophyll
stability and salt-tolerant gene induction

NaCl + Overexpression in
potato

Grossi et al.,
2021

OsHKT1;5 Rice Mediate Na+ exclusion in the phloem to
prevent Na+ transfer to young leaf
blades

NaCl + T-DNA insertion
mutation in rice

Kobayashi
et al., 2017

OsSTAP1 Rice Decrease the Na+/K+ ratio, increasing
the activities of antioxidant enzymes

NaCl + Overexpression in
rice

Wang Y. et al.,
2020

SeMAPKK Salicornia europaea Improve plant growth NaCl + Overexpression in
Arabidopsis

Rehman et al.,
2020

SlWRKY28 Salix linearistipularis Regulating enzyme genes associated
with ROS scavenging pathway

NaHCO3 + Overexpression in
Populus
davidiana× P. bolleana

Wang X. et al.,
2020

SpSOS1 Sesuvium
portulacastrum

Regulate ion homeostasis and
protecting the plasma membrane
against oxidative damage

NaCl + Overexpression in
Arabidopsis

Zhou et al.,
2018

GsMAPK4 Soybean (Glycine
soja)

Improve plant growth NaCl + Overexpression in
soybean

Qiu et al., 2019

GmWRKY16 Soybean (Glycine
max)

Regulate transcription of the stress-
and ABA-responsive genes with ABA
and proline accumulation, and MDA
decrease.

NaCl + Overexpression in
Arabidopsis

Ma et al., 2018

GmPKS4 Soybean (Glycine
max)

Enhance the scavenging of ROS,
osmolyte synthesis, and the
transcriptional regulation of
stress-related genes

NaCl+NaHCO3 + Overexpression in
soybean and
Arabidopsis

Ketehouli et al.,
2021

GmMYB68 Soybean (Glycine
max)

Adjust osmotic and photosynthetic
processes; increased grain number and
100-grain weight

NaCl or
Na2CO3

+ Overexpression and
RNAi in soybean

He et al., 2020

(Continued)

Frontiers in Plant Science | www.frontiersin.org 11 June 2021 | Volume 12 | Article 667458

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-667458 May 29, 2021 Time: 18:8 # 12

Fang et al. Plant Response to Salt-Alkali Stress

TABLE 1 | Continued

Gene name Source of species Regulatory functions Types of
saline- alkali
stress

Tolerance Transgenic
species

References

GmMYB3a Soybean (Glycine
max)

Free Pro content decrease;
photosynthesis rate decrease; reduced
the transcription of stress related genes

NaCl or
Na2CO3

− Overexpression in
soybean

He et al., 2018

GsSKP21 Soybean (Glycine
soja)

Altering the expression of ABA
signaling-related and ABA-induced
genes

NaHCO3 + Overexpression in
Arabidopsis

Liu A. et al.,
2015

GsERF6 Soybean (Glycine
soja)

ABA and ET signaling pathways NaHCO3 + Overexpression in
Arabidopsis

Yu et al., 2016

GsERF71 Soybean (Glycine
soja)

Upregulate H+-ATPase expression and
by modifying auxin accumulation

NaHCO3 + Overexpression in
Arabidopsis

Yu et al., 2017

GsNAC019 Soybean (Glycine
soja)

Regulate expression of
stress-responsive genes, decreases
plant ABA sensitivity, recognize
AtRD29B promoter

NaHCO3 + Overexpression in
Arabidopsis

Cao et al.,
2017

SsMT2 Suaeda salsa Directly bind ion and trigger other
genes’ function, or indirectly improve
ROS scavenging

NaCl or
NaHCO3

+ Overexpression in
Arabidopsis

Jin et al., 2017

SbWRKY50 Sweet sorghum Directly binding to the upstream
promoter of SOS1 and/or HKT1 to
control ion homeostasis

NaCl − Overexpression in
Arabidopsis and
sweet sorghum

Song et al.,
2020a

ThNAC13 Tamarix hispida Enhance the ROS-scavenging
capability and adjusting osmotic
potential

NaCl + Overexpression and
RNAi in T. hispida;
Overexpression in
Arabidopsis

Wang L. et al.,
2017

TaMYB86B Wheat Regulate ion homeostasis, maintain
osmotic balance and decrease ROS
levels

NaCl + Overexpression in
wheat

Song et al.,
2020b

TaNAC47 Wheat Up-regulate stress responsive genes in
ABA pathway, including AtRD29A,
AtRD29B, AtCOR47, AtRD20,
AtGSTF6, and AtP5CS1 by binding
ABRE cis-element

NaCl + Overexpression in
Arabidopsis

Zhang et al.,
2015

the accumulation of ROS in cells (Nzengue et al., 2012). For
example, the SsMT2 gene can improve a plant’s H2O2-scavenging
ability and can maintain H2O2 at low levels in transgenic
Arabidopsis, thereby improving tolerance (Jin et al., 2017). This
shows that MT2 may have an antioxidant effect by participating
in reducing the accumulation of ROS, thereby reducing cell
damage, and that MT2 plays no part in metal sequestration.
Phosphoenolpyruvate carboxylase (PEPC) is a strictly regulated
cytoplasmic enzyme that plays a role in carbon fixation during
photosynthesis. The role of PEPC kinase (PPCK) is to control
the phosphorylation state and biological activity of PEPC.
Studies have shown that PEPC/PPCK plays an important role
in responses to environmental stress. One of the best examples
is the significant increase in PPCK activity under salt stress
(García-Mauriño et al., 2003; Peng et al., 2012; Monreal et al.,
2013). Studies of alfalfa plants expressing the GsPPCK3 gene
have shown that under alkaline stress, transgenic alfalfa plants
present increased resistance (Sun et al., 2014). In addition,
transglutaminases (TGases), which are enzymes catalyzing the
posttranslational modification of proteins, were induced by salt
stress in cucumber. Ectopic overexpression of CsTGase in tobacco
showed that CsTGase enhanced salt tolerance by regulating
antioxidant activities, the Na+/K+ balance, and PA metabolism

in transgenic lines (Zhong et al., 2020). Some genes associated
with salinity and alkalinity adversity response in plants are seen
in Table 1.

Epigenetic Changes
Plant tolerance to saline-alkali stress also involves the regulation
of epigenetic mechanisms, mainly DNA methylation and histone
modification. These heritable changes can influence chromatin
structure, which results in gene expression alterations without
changes in the underlying DNA sequence (Verhoeven et al., 2010;
Zhang et al., 2010; Ganguly et al., 2017; Hewezi, 2018).

In plants, DNA methylation commonly occurs at cytosine
sites within CpG, CpHpG and CpHpH sequence contexts (He
et al., 2011; Lang et al., 2015). Cytosine methylation is established
through de novo methylation and maintenance methylation
mediated by RNA-directed DNA methylation (RdDM) pathway
and several DNA methyltransferases such as DRM1, DRM2,
MET1 and CMT3 (Matzke and Mosher, 2014). Methyl groups
on these cytosines can also be removed by either passive DNA
demethylation (failure to maintain methylation after replication)
or active DNA demethylation mediated by members of the
bifunctional DNA glycosidase subfamily including Demeter
(DME), Repressor of Silencing 1 (ROS1) and Demeter-like
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(DML) (Gehring et al., 2006; Morales-Ruiz et al., 2006; Zhu, 2009;
Lang et al., 2017; Park et al., 2017). By methylation/demethylation
processes, DNA methylation in plants can be dynamically
regulated and maintained at a proper level. Previous studies have
shown that gene expression in plants can be altered through
DNA hypomethylation or hypermethylation to adapt to salt-
alkali-stress environments (Marconi et al., 2013; Viggiano and
de Pinto, 2017). In a salt-tolerant Setaria italica L. cultivar, the
expression of stress-responsive genes is correlated with DNA
demethylation events under salinity stress (Pandey et al., 2017).
NtGPDL gene demethylation within the coding sequence of
tobacco was shown to be induced by salt stress, which increased
NtGDPL gene expression (Choi and Sano, 2007). However, in
Medicago truncatula and olive plants, salinity stress increased
DNA methylation levels, which regulated the expression of
several stress-responsive genes as a stress-adaptive response
(Yaish et al., 2018; Mousavi et al., 2019).

Nucleosome core complex histones undergo various
posttranslational modifications, including acetylation,
phosphorylation, ubiquitination, biotinylation, and sumoylation,
which influence chromatin structure and thus determine the
expression levels of some genes (Nathan et al., 2006; Camporeale
et al., 2007; Sridhar et al., 2007; Luo M. et al., 2017; Su et al.,
2017). Therefore, it is understandable that stress-induced
gene regulation is associated with histone modifications.
Under salt stress, changes in histone modification are involved

in the regulation of plant growth and development. Salt
stress was shown to increase flowering inhibitor Flowering
Locus C (FLC) expression in Arabidopsis by reducing the
interaction of the floral initiator Shk1 kinase binding protein
1 (SKB1) with chromatin and by reducing H4R3 symmetric
dimethylation (H4R3sme2) levels, thereby regulating flowering
time (Zhang et al., 2011). In maize roots, salt stress induces
changes in histone acetylation within the promoter regions of
cell cycle-related genes (Zhao et al., 2014; Zhou et al., 2014).
Elevated acetylation levels at H3K9 and H3K27 sites lead
to transcriptional activation of POX-encoding genes in Beta
vulgaris and Beta maritima under salt-stress conditions (Yolcu
et al., 2016). The transcription factor MsMYB4 is an important
component of the response of alfalfa to salinity stress. The
activation of MsMYB4 was reported to be associated with a
reduction in the DNA methylation status and an increase in
histone H3K4 trimethylation and H3K9 acetylation in the
promoter (Dong et al., 2020).

Many salt-responsive small RNAs have been documented
in plants, including miRNAs and siRNAs. Their functions in
response to salt stress in plants were reviewed by Kumar
et al. (2018). Further small RNA and degradome sequencing of
superior stress-tolerant wheat revealed 219 novel and 98 known
miRNA sequences. A number of target genes of the miRNAs
participating in multiple processes have been identified, among
which jasmonate signaling and carbohydrate metabolism are

FIGURE 2 | The response mechanism of plants to saline-alkali adversity.
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important for salinity tolerance, and proton transport is vital for
alkalinity tolerance (Han et al., 2018). In a typical halophyte,
Reaumuria soongorica, 13 novel miRNAs were discovered under
salt stress. miRNA-mRNA integrated analysis revealed that
miRNAs regulate the network response to salt stress during seed
germination through GA, auxin, and ABA signaling pathways
(Zhang H. et al., 2020). In addition, a comparative transcriptome
analysis revealed some new lncRNAs in sweet sorghum, including
lncRNA13472, lncRNA11310, lncRNA2846, lncRNA26929, and
lncRNA14798. They potentially participate in the response to
salt stress by regulating the expression of target genes related to
ion transport, protein modification, transcriptional regulation,
and material synthesis and transport (Sun et al., 2020). These
reports indicated the importance of epigenetic modification in
the response to saline and alkali stress.

Further work is needed to expound upon the epigenetic
regulatory mechanisms of plants in response to stress, especially
saline-alkali stress. Additional enzymes or proteins need to be
further explored, addressing how these enzymes, small RNAs
and their interacting proteins work together to control DNA
methylation and histone modification at specific loci that regulate
stress-responsive gene expression.

Perspectives
Soil salinization has become a serious worldwide problem
restricting the development of agroforestry. Research on the
resistance mechanism of plants in response to saline-alkali stress
is vital for selecting salt-tolerant varieties and utilizing saline land
(Figure 2). Currently, studies are mainly focused primarily on salt
stress and less on salt-alkali mixed stress. However, high salt and
high pH often occur concurrently in nature, and their synergistic
effect on plants is more harmful than the effect of either stress
alone. Therefore, studying the resistance mechanisms of plants
under mixed saline-alkali stress has more practical significance
for cultivating new resistant varieties, screening new tolerance

genes, and exploring new methods to improve plant tolerance to
saline-alkali-stress conditions.

Saline-alkali-stress-tolerant crop breeding is a hopeful avenue
for sustained agricultural development and the utilization of
saline-alkali land. Many candidate genes have been cloned, and
some genetically modified plants have been screened. However,
the expression of these transgenes was not high, or their effect was
not obvious, which may be related to the constitutive promoter
used. In addition, the evaluation of tolerant transgenic plants
has occurred mostly in laboratory or in greenhouse until now.
It may not work well when these plants are exposed to the natural
environment because of complex and variable field conditions
and interactions with abiotic or biotic factors. Thus, there is
still a long way to go. Nevertheless, with the development of
modern biotechnology, especially molecular markers and gene-
tagging methodologies, genome sequencing, microarray analysis
and bioinformatic analysis, more tools and strategies can be
applied to resolve the complex intriguing questions surrounding
saline-alkali resistance.
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