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An increase in environmental pollution resulting from toxic heavy metals and metalloids 
[e.g., cadmium (Cd), arsenic (As), and lead (Pb)] causes serious health risks to humans 
and animals. Mitigation strategies need to be developed to reduce the accumulation of 
the toxic elements in plant-derived foods. Natural and genetically-engineered plants with 
hyper-tolerant and hyper-accumulating capacity of toxic minerals are valuable for 
phytoremediation. However, the molecular mechanisms of detoxification and accumulation 
in plants have only been demonstrated in very few plant species such as Arabidopsis and 
rice. Here, we review the physiological and molecular aspects of jasmonic acid and the 
jasmonate derivatives (JAs) in response to toxic heavy metals and metalloids. Jasmonates 
have been identified in, limiting the accumulation and enhancing the tolerance to the toxic 
elements, by coordinating the ion transport system, the activity of antioxidant enzymes, 
and the chelating capacity in plants. We also propose the potential involvement of Ca2+ 
signaling in the stress-induced production of jasmonates. Comparative transcriptomics 
analyses using the public datasets reveal the key gene families involved in the JA-responsive 
routes. Furthermore, we show that JAs may function as a fundamental phytohormone 
that protects plants from heavy metals and metalloids as demonstrated by the evolutionary 
conservation and diversity of these gene families in a large number of species of the major 
green plant lineages. Using ATP-Binding Cassette G (ABCG) transporter subfamily of six 
representative green plant species, we propose that JA transporters in Subgroup 4 of 
ABCGs may also have roles in heavy metal detoxification. Our paper may provide guidance 
toward the selection and development of suitable plant and crop species that are tolerant 
to toxic heavy metals and metalloids.
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INTRODUCTION

Naturally occurring toxic heavy metals and metalloids are 
usually dispersed around the world at low levels; however, 
large quantities of them have been released into global ecosystems 
through various anthropogenic activities such as mining, smelting, 
and other industrial and agricultural activities (Tomar et  al., 
2015; Zhao et  al., 2015; Deng et  al., 2021). Heavy metals and 
metalloids are usually elements with a density higher than 
5  g cm−3 (Tchounwou et  al., 2012). Heavy elements displaying 
potential arrest on organisms growth, development, and 
productivity are classified as toxic heavy metals and metalloids 
(Järup, 2003; Clemens and Ma, 2016; Nguyen et  al., 2021; 
Paithankar et  al., 2021). The major threats to human health 
and the environment from heavy metals and metalloids are 
attributing to exposure to arsenic (As), cadmium (Cd), lead 
(Pb), and mercury (Hg; Järup, 2003). For example, a slow 
poisoning by Cd or As exposure may lead to overall increases 
in mortality and a range of diseases (Clemens and Ma, 2016). 
Ingestion is one of the major routes for human exposure to 
hazardous minerals, while the food chain represents the primary 
source (Rojas-Rueda et  al., 2021); therefore, we need to reduce 
the accumulation of the toxic minerals in the edible organs 
of plants.

In the plant kingdom, the phytotoxicity from Pb and Hg 
ranks upper most in the list of hazardous metals, while high 
concentration of the essential mineral copper (Cu) displaying 
higher toxicity than those of As and Cd. The median toxic 
concentrations of Pb, Hg, Cu, Cd, and As that reduces plant 
growth in solution culture are estimated as 0.30, 0.47, 2.0, 
5.0, 9.0  μM, respectively (Kopittke et  al., 2010). In addition 
to being environmental pollutants, other elements such as 
chromium (Cr), nickel (Ni), and other trace metals also cause 
considerable harm to humans and plants (Kan et  al., 2021). 
Therefore, high accumulation of toxic, nonessential minerals 
and excessive doses of essential minerals should be significantly 
reduced from plant-based food and animal feed. Strategies 
such as identifying new crop species and generating new crop 
cultivars with lower accumulating activity (Deng et  al., 2018, 
2019; Huang et  al., 2020; Huang and Zhao, 2020; Zhao and 
Wang, 2020), using natural or genetically engineered 
hyperaccumulating plants for phytoremediation have been 
proposed for the future food safety (Deng et  al., 2021).

As a primary defense-signaling hormone, jasmonates 
coordinate growth, and defense responses to developmental 
and various environmental cues (Ahmad et  al., 2016; Howe 
et  al., 2018; Yu et  al., 2019). Since the initial identification of 
methylester of JA (MeJA) as an odor of Jasminum grandiflorum 
flowers, major progress on the biosynthesis, metabolism, and 
modes of action in response to stresses and the developmental 
process of jasmonates have been elucidated. Additionally, 
Jasmonates signal plant defenses against biotic stressors such 
as insects and necrotrophic fungi (Wasternack and Song, 2017). 
Temporal and spatial regulation of jasmonate signaling is crucial 
in the elegant control of plant growth (Jin and Zhu, 2017), 
while JA biosynthesis for plant defense upon insect attack is 
rapidly activated (Yan et  al., 2018a). Herbivory defenses are 

usually regulated via Ca2+ signaling [e.g., glutamate receptor-
like proteins (GLRs), calmodulins (CaMs)] for wound signals 
transmission from leaf-to-leaf and activate JA-mediated plant 
defense (Nguyen et  al., 2018), which subsequently inactivate 
the JA biosynthesis repressor complex consisting of AtJAV1-
AtJAZ8-AtWRKY51 through interaction with AtJAV1 (Yan 
et  al., 2018a). In this review, we  mainly focus on the overview 
of gene families involved in the JA biosynthesis and signal 
transduction and their potential link to the tolerance of toxic 
metals and metalloids in plants.

Membrane-localized mineral transporters in the cellular and 
long-distance allocation of minerals play a significant role in 
the detoxification and accumulation of toxic heavy metals and 
metalloids in plants (Tomar et  al., 2015; Clemens and Ma, 
2016; Lindsay and Maathuis, 2017; Yamaji and Ma, 2017; Deng 
et  al., 2019, 2021; Hu et  al., 2020; Sharma et  al., 2020; Zhao 
and Wang, 2020; Liu et  al., 2021; Tang and Zhao, 2021). For 
example, Arabidopsis (Arabidopsis thaliana) Iron Regulated 
Transporter 1 (AtIRT1), a members of the ZIP (zinc-regulated 
transporter) family, is the primary transporter for Cd uptake 
(Lux et  al., 2011), while the translocation of Cd from roots 
(R) to shoots (SH) is mediated by two root pericycle-localized 
Heavy Metal ATPases (HMAs), AtHMA2, and AtHMA4 (Hussain 
et  al., 2004; Mills et  al., 2005). The homolog AtHMA3 is 
localized on the tonoplast and responsible for Cd sequestration 
from the cytosol into the vacuole (Chao et  al., 2012). On the 
other hand, proteins in the Natural Resistance Associated 
Macrophage Proteins family, AtNramp3 and AtNramp4, release 
Cd from vacuolar lumen to cytoplasm (Pottier et  al., 2015).

Although the vital functions of phytohormones, in their 
prospective regulatory networks, in sensing the stress generated 
by toxic heavy metals and metalloids have been demonstrated, 
evidence linking JA to the physiological responses to toxic 
elements are still lacking (Chmielowska-Bak et  al., 2014; Deng 
et al., 2020). The long-distance translocation and cellular mobility 
of toxic minerals can be  regulated by signaling molecules 
through membrane transport systems. For example, ABA can 
inhibit Cd and Arsenate [As(V)] uptake through ABI5-
MYB49-IRT1/HIPPs and WRKY6-PHT1;1 network, respectively 
(Hu et  al., 2020). Additionally, ABA promotes the chelation 
and compartmentation of heavy metals through ABA-responsive 
transcriptional factors (Hu et  al., 2020). Moreover, increasing 
pieces of evidence demonstrated the involvement of jasmonates 
consisting of JA and its derivatives such as jasmonoyl-l-isoleucine 
(JA-Ile) and methyl-JA in the detoxification and transport of 
toxic mineral stress (Maksymiec et  al., 2005; Chen et  al., 2014; 
Zhao et  al., 2016; Wang et  al., 2018; Bali et  al., 2019; Lei 
et  al., 2020b). Some regulatory mechanisms of jasmonates in 
response to toxic heavy metals and metalloids have been revealed 
in model plants (Lei et  al., 2020b) and major cereals such as 
rice (Oryza sativa) (Yu et  al., 2012; Azeem, 2018; Mousavi 
et  al., 2020), but the evolutionary origin linking JA signaling 
and plant tolerance to toxic elements is less studied in other 
green plants including green algae, bryophytes, lycophytes, ferns, 
and gymnosperms (Chen et  al., 2017; Adem et  al., 2020; Deng 
et  al., 2021). These regulatory mechanisms in algae and early-
divergent plants such as ferns may contribute to the removal 
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of heavy metals from water and soil (Ma et  al., 2001; 
Cheng et  al., 2019; Manara et  al., 2020).

Physiological roles of the mineral transporters (Adem et  al., 
2020; Hu et al., 2020; Deng et al., 2021) and jasmonates signaling 
(Howe and Yoshida, 2019; Monte et al., 2019) may vary among 
plant species, but heavy metals and metalloids elevate endogenous 
JA levels in many plants. The growing number of plant genomes 
(Kersey, 2019) and transcriptomes (One Thousand Plant 
Transcriptomes Initiative, 2019) has enabled the comparative 
evolutionary analysis of key gene families relevant to the 
resistance of element contaminates in green plants, which will 
be helpful in searching for potential mitigation practices. Here, 
we summarize molecular interaction between jasmonate signaling 
and heavy metals detoxification in plants. We  also trace the 
origin and evolution of the core components linking JA signaling 
and tolerance to toxic metals and metalloids in plants. For 
topics on JA signaling and heavy metal and metalloid tolerance 
in plants, some recent reviews are suggested (Clemens and 
Ma, 2016; Howe et  al., 2018; Wasternack and Feussner, 2018; 
Deng et  al., 2020, 2021; Zhao and Wang, 2020).

OVERVIEW OF JASMONATES MEDIATED 
REGULATORY NETWORK

The Biosynthesis and Metabolism of 
Jasmonates
Jasmonates are synthesized from α-linolenic acid (α-LeA) through 
the octadecanoid pathway (Wasternack and Feussner, 2018). 
α-LeA is released from galactolipids of chloroplast membranes 
by chloroplast-targeted galactolipases encoded by Defective in 
Anther Dehiscence 1 (DAD1) and its homologs including Dongle 
(DGL) and DAD1-like lipases (DALL) (Ishiguro et  al., 2001; 
Hyun et  al., 2008; Ruduś et  al., 2014). The position C-13 of 
α-LeA is converted to 13S-hydroperoxyoctadecatrienoic acid 
(13-HPOT) by the plastid-localized 13-Lipoxygenases (13-LOXs). 
Subsequently, the generation of oxophytodienoic acid [OPDA; 
cis-(+)-12-oxophytodienoic acid] from 13-HPOT is catalyzed 
by a two-step reaction required allene oxide synthases (AOSs; 
Laudert et  al., 1996; Sivasankar et  al., 2000) and allene oxide 
cyclases (AOCs; Ziegler et  al., 1997, 2000). The transport of 
OPDA from plastids to peroxisomes is essential for the next 
steps including OPDA reduction and ß-oxidation of the carboxylic 
acid side chain in higher plants (Wasternack and Song, 2017; 
Howe and Yoshida, 2019). The efflux of OPDA from plastids 
is mediated by outer chloroplast envelope-localized JASSY (Guan 
et  al., 2019), while the import of OPDA into the peroxisomes 
is partially reliant on peroxisomal ABC-transporter 1 (PXA1) 
in Arabidopsis (AtABCD1; Theodoulou et  al., 2005). JASSY is 
a chloroplast membrane-localized 12-oxophytodienoic acid 
(OPDA) transporter, while AtABCD1 is a member of the 
D-subgroup of the ATP-Binding Cassette (ABC) transporter 
family. The conversion of OPC-8 [3-oxo-2-(2-pentenyl)-
cyclopentane-1-octanoic acid] from OPDA is produced by 
peroxisomal OPDA reductases (OPRs; Schaller et  al., 2000; 
Stintzi and Browse, 2000). OPC-8:CoA ligase 1 (OPCL1) is 
required for the formation of OPC-CoA ester (Koo et al., 2006; 

Kienow et  al., 2008) and then three rounds of ß-oxidation 
are catalyzed by acyl-CoA oxidases (ACXs; Schilmiller et  al., 
2007), the multifunctional proteins (MFPs), and l-3-ketoacyl-CoA 
thiolases (KATs; Cruz Castillo et  al., 2004; Li et  al., 2005; 
Wasternack and Feussner, 2018). The generated (+7)-iso-JA 
[also known as (3R,7S)-JA or JA] is then transported to the 
cytoplasm for further modifications.

Among the JA derivatives in higher plants, the conjugated 
(+)-7-iso-JA-Ile (JA-Ile) is the most biologically active form 
(Han, 2017). The conjugation between (+)-7-iso-JA and isoleucine 
is catalyzed by JA conjugate synthase (JA-amino acid synthetase, 
JAR1), a member of the GH3 family (AtGH3.11; Staswick and 
Tiryaki, 2004). The deconjugation is cleaved by IAA-Ala-Resistant 
3 (IAR3) and IAA-Leu Resistant-like 6 (ILL6) of the ILR1-like 
amidohydrolase (IAH; Widemann et  al., 2013; Koo, 2018). 
Furthermore, the oxidative inactivation from JA-Ile to 12-hydroxy-
JA-Ile (12OH-JA-Ile) is mediated by the cytochrome P450 
subfamily of CYP94 proteins, including CYP94B1, CYP94B2, 
CYP94B3, and CYP94C1 (Koo et  al., 2011; Heitz et  al., 2012; 
Bruckhoff et al., 2016). Recently, Jasmonate-Induced Oxygenases 
(JOXs) have been identified as the enzymes responsible for the 
hydroxylation and inactivation of the JA (Caarls et  al., 2017). 
In addition to JA-Ile, methyl jasmonate (MeJA) is another well-
known form of jasmonates in stress response and development 
in most land plants. The methyl esterification form is produced 
by the activity of jasmonic acid carboxyl methyltransferase (JMT; 
Seo et  al., 2001). Apart from the conjugation, methylation, 
esterification, hydroxylation, and carboxylation, JA is also able 
to be  modified by sulfation and O-Glycosylation, which may 
be required for transport and storage (Wasternack and Song, 2017; 
Wasternack and Feussner, 2018).

The Perception and Core Components of 
Jasmonates Signaling
The fine-tuning of JA-signaling is regulated by synergistic and 
antagonistic activities of various signaling components. The 
active JA-Ile is perceived via a complex of co-receptors, consisting 
of Coronatine Insensitive 1 (COI1) and jasmonate-ZIM domain 
proteins (JAZs; Xie et  al., 1998; Xu et  al., 2002; Yan et  al., 
2009; Sheard et  al., 2010; Yan et  al., 2018b). In Arabidopsis, 
the F-box protein COI1 is able to physically interact with 
CULLIN 1 (AtCUL1), RING-box1 (AtRbx1), Skp1-like proteins 
(AtASK1), or (AtASK2) to assemble Skp1/Cullin/F-box protein 
ubiquitin E3 ligase complex SCFCOI1 (Xu et  al., 2002). JAZs 
function as negative regulators of the transcription factors such 
as MYC-related transcriptional activators (MYC, a subgruop 
of transcriptional factor belonging to the basic helix-loop-helix 
(bHLH) proteins; Kazan and Manners, 2013) and jasmonate-
associated VQ motif gene 1 (JAV1; Hu et  al., 2013a). In the 
absence of active JAs, MYCs are repressed by JAZs and the 
interacting partners [TOPLESS (TPL), TPL-related proteins 
(TRPs)], and Novel Interactor of JAZ (NINJA; Pauwels et  al., 
2010). In the presence of JA-Ile, JAZs are ubiquitinated and 
degraded, thus released MYCs can activate the expression of 
JA responsive genes and trigger downstream responses (Pauwels 
et  al., 2010). Notably, the SCFCOI1-JAZ-MYC complex relays 
JAs-specific regulatory signals to generate transcriptional 
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regulation through Mediator 25 (MED25) (Çevik et  al., 2012; 
Chen et al., 2012). Upon degradation of JAZ repressors, MED25 
interacts with MYC2 and recruits Histone Acetyltransferase 1 
(HAC1) as well as Pol II to the promoters of MYC2 target 
genes, and thereby activate their expression (An et  al., 2017). 
The activity of MYC2 is then inhibited by Jasmonate-Associated 
MYC2-like (AtJAMs) in Arabidopsis (Sasaki-Sekimoto et  al., 
2013; Liu et al., 2019; Wasternack, 2019). Additionally, proteins 
such as Arabidopsis Histone Deacetylase 6 (AtHDA6; Wu et al., 
2008) and AtHDA19 (Zhou et  al., 2005) have been shown to 
play a role in regulating gene expression involved in JA signaling.

Arabidopsis Jasmonate Transporter 1 (AtJAT1) is a member 
of the ABC transporters (AtABCG16), which controls efflux of 
JA-Ile into the nuclear and cellular regions (Li et  al., 2017b). 
In addition, four homologs of AtJAT1 including AtJAT2~5 
(AtABCG1/6/20/2) have been identified as the candidates of 
jasmonate transporters (Wang et  al., 2019a). Among them, 
AtJAT2 is localized in the peroxisomes and may facilitate the 
export of JA into the cytosol, while the plasma membrane-
localized AtJAT3/4/5 may be  involved in the subcellular 
distribution of jasmonates (Wang et  al., 2019a). Furthermore, 
the long-distance transport of JAs from wounded to undamaged 
leaves seems to be  mediated by Arabidopsis Glucosinolate 
Transporter 1 (AtGTR1), belonging to a member of Nitrate 
Transporter 1/Peptide Transporter Family (NPF) and encoding 
by AtNPF2.10 (Saito et  al., 2015; Ishimaru et  al., 2017). 
Downstream signaling and physiological responses to jasmonates 
are transduced by the JAZ–transcription factor modules in plants 
(Pauwels and Goossens, 2011; Qi et  al., 2015; Hu et  al., 2017; 
Jin and Zhu, 2017; Howe et  al., 2018; Yan et  al., 2018b; Howe 
and Yoshida, 2019). For example, subgroup IIIb basic helix–
loop–helix proteins (bHLHs) including Inducer of CBF Expression 
1 (ICE1) and ICE2 form complexes with JAZs to promote cold 
acclimation responses in both Arabidopsis (Hu et  al., 2013b) 
and banana (Zhao et  al., 2013). In rice, OsJAZ9 interacts with 
transcription factor, OsbHLH062, to alter ion homeostasis (Wu 
et  al., 2015), while Rice Salt Sensitive3 (OsRSS3) mediates the 
interaction between OsJAZ8/9/11 and OsbHLH089/094, leading 
to reprogramming root growth in high salinity environments 
through JA-responsive pathways (Toda et  al., 2013).

JASMONATES CONTRIBUTE TO PLANT 
TOLERANCE TO TOXIC HEAVY METALS 
AND METALLOIDS

Growing evidence demonstrates the positive roles of JA in the 
detoxification of and tolerance to toxic heavy metals and 
metalloids (Yan et  al., 2013; Per et  al., 2016; Zhao et  al., 2016; 
Li et  al., 2017a; Wang et  al., 2018; Bali et  al., 2019; Lei et  al., 
2020b; Mousavi et  al., 2020). Numerous physiological studies 
demonstrate that endogenous jasmonates levels in plants rapidly 
elevate when exposed to heavy metals and metalloids (Rakwal 
et  al., 1996; Maksymiec et  al., 2005; Rodríguez-Serrano et  al., 
2006; Ronzan et  al., 2019; Lei et  al., 2020b). The dynamics 
of jasmonates accumulation in the leaves of Arabidopsis exposed 
to high Cu or Cd display a biphasic character. An initial, 

rapid increment, of JA levels occurs and reaches a maximum 
at 7  h after the Cu or Cd treatments, followed by a rapid 
decrease during the next 7  h. The highest levels of JA induced 
by Cu and Cd were 4-fold and approximately 7-fold of the 
control, respectively. Then, a phase of repeated but slow 
incremental increases of JA content was observed in the leaves 
(Maksymiec et  al., 2005). JA concentration in the roots of 
Arabidopsis is also elevated following the treatment of Cd for 
6  h, the content is higher than control at 3  days but shows 
no significant difference after 7 days (Lei et al., 2020b). Increased 
levels of JAs are observed in Cu- or Cd-treated runner bean 
(Phaseolus coccineus; Maksymiec et  al., 2005), Cd-treated pea 
(Pisum sativum; Rodríguez-Serrano et  al., 2006), Ni-exposed 
woody shrub Daphne jasmine (Wiszniewska et  al., 2018), and 
Cu-affected rice leaves (Rakwal et  al., 1996). Moreover, the 
increased production of JA in hyperaccumulator Noccaea (Thlaspi) 
praecox by Cd is dependent on mechanically puncturing or 
fungal infection (Llugany et  al., 2013), indicating the positive 
roles of Cd-induced JA in metal hyperaccumulators under 
abiotic and biotic stresses. However, it was found that Zn-induced 
while salicylic acid (SA) pathway (not JA pathway) is activated 
when the metal hyperaccumulator plant Noccaea caerulescens 
inoculated with Pseudomonas syringae (Fones et  al., 2013). For 
metalloids, JA-Ile content in rice roots is rapidly increased by 
the application of arsenite [As(III)] for 8 h (Ronzan et al., 2019).

Consistently, exogenous JAs are widely employed to alleviate 
the plant growth inhibition caused by heavy metals and 
metalloids. For example, 0.25, 0.5, and 1  μM MeJA alleviates 
As(III) toxicity in rice (Mousavi et  al., 2020; Verma et  al., 
2020), the elongation of rice roots pretreated with 0.5–5  μM 
JA mediated significantly less inhibition of root elongation by 
As(V) than non-treated plants (Wang et  al., 2018). Exogenous 
application of 25 μM JA improved tolerance of rapeseed (Brassica 
napus) to Cd toxicity (Ali et  al., 2018), while 1  μM MeJA 
partially regulated As(III) stress in oilseed (B. napus; Farooq 
et  al., 2016), Ni stress in maize (Zea mays; Azeem, 2018) and 
soybean (Glycine max; Sirhindi et  al., 2016), Cd toxicity in 
mustard (Per et al., 2016), faba bean (Vicia faba; Ahmad et al., 
2017), and Solanaceae (Solanum nigrum; Yan et  al., 2015b). 
The combined action of Cd and Cu in Avicennia marina can 
be  partially diminished by the addition of JA or MeJA (Yan 
et  al., 2015a). Taken together, these observations indicate that 
the elevated JA induced by toxic metals is a common stress 
responsive mechanism in different plant species.

At the molecular level, toxic element-induced JA is largely 
attributed to the upregulated genes encoding the enzymes for 
JA biosynthesis. We summarized some key signaling components 
in Figure  1. For example, the expression levels of AtLOX3, 
AtLOX4, and AtAOS are rapidly increased in the roots subjected 
to Cd for 1  h (Lei et  al., 2020b). The Cu-increased JA 
accumulation in rice is likely through the enhanced expression 
of genes encoding JA biosynthesis-related enzymes such as 
phospholipase, LOXs, 12-Oxo-PDAreductase (OPR), AOS (Lin 
et  al., 2013). Moreover, transcriptomic analyses reveal that 
the pathways of JA biosynthesis and signaling are activated 
in rice roots under As(V) stress (Huang et  al., 2012). The 
expression levels of seven genes including OsDAD1;2, OsDAD1;3, 
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FIGURE 1 | Biosynthesis, metabolism and transport of jasmonic acid (JA) in plant cells. The expression levels of genes encoding enzymes involved in JA synthesis 
and metabolic pathways are upregulated or downregulated by heavy metals and metalloids [copper (Cu), arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb)] 
in rice and Arabidopsis. FADs, fatty acid desaturases; PLAs, phospholipases A; DAD1, defective in Anther Dehiscence 1; PLDs, phospholipases D; DGLs, DONGLE, 
a homolog of DAD1; LOXs, lipoxygenases; AOSs, allene oxide synthases; AOCs, allene oxide cyclases; OPRs, OPDA reductases; OPCL1, OPC-8:0 CoA ligase 1; 
ACXs, acyl-CoA oxidase; MFPs, multifunctional proteins; AIM1, abnormal inflorescence meristem1; KATs, ketoacyl-CoA-thiolases; JMT, jasmonic acid carboxyl 
methyltransferase; JOXs, jasmonate-induced oxygenases; IAR3, IAA-Ala-resistant 3; ILL6, IAA-Leu resistant-like 6; JAR1, JA-amino acid synthetase; α-LeA, 
α-linolenic acid; 13-HPOT, 13-hydroperoxylinoleic acid; 12, 13-EOT, 12, 13-(S)-epoxy-octadecanoic acid; OPDA, 12-oxo-phytodienoic acid; OPC-8:0, 
3-oxo-2(29-[Z]pentenyl) cyclopentane-1-octanoic acid; OPC-8:0-CoA, 3-oxo-2-(cis-29-pentenyl)-cyclopentane-1-octanoyl CoA; JASSY, A chloroplast outer 
membrane protein; PXA1, peroxisomal ABC-transporter 1; and JAT, jasmonic acid transporter.
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FIGURE 2 | Expression pattern of OsCOI1, OsMYC2, and OsJAZs in response to Cu, Cd, As, and Cr treatments. The heat map was generated with TBtools (Chen 
et al., 2020), which shows the expression of core JA signaling genes compared with those under the control conditions. Samples are from roots (R), seedlings (SE), 
and shoots (SH), respectively. The data are displayed as Log2 fold change (Log2 FC). Original data are from Huang et al. (2012), Yu et al. (2012), Lin et al. (2013), 
Dubey et al. (2014), Tang et al. (2014), and Tan et al. (2017).

OsLOX2;1, OsLOX2;3, OsAOS1, OsAOS2, and OsAIM1 with 
putative functions in JA biosynthesis were elevated with As(V) 
exposure (Huang et  al., 2012). Increased levels of OsJAR1;2 
and OsJAR1;3 for MeJA deactivation where found but 
significantly decreased transcripts of OsJMT1, OsJMT2, and 
OsJMT4 (Huang et  al., 2012) for JA-Ile production suggest 
that the JA signaling in rice root under As(V) stress is mainly 
dependent on JA-Ile (Figure  1). Increased expression levels 
of putative OsDADs, OsLOXs, OsAOSs, and OsAOCs are 
ubiquitously detected in rice plants with the treatments of 
Cu (Lin et  al., 2013), and Cd (Tan et  al., 2017), however, 
more OsOPRs are inducible by Cd (Tan et al., 2017). Recently, 
expression levels of JA biosynthesis genes including 
OsLOX1/9/11, OsAOS4, OsAOC, OsOPR1, and OsJAR1 have 
been markedly upregulated in the roots of rice oswrky28 
knockout mutant, indicating the negative role of OsWRKY28 in 
JA generation. Decreased As concentration is detected in the 
SH of mutant but it does not relate to changes in the expression 
of As(V) transporter genes (Wang et  al., 2018). Consistently, 
the JA-deficient mutant plants are more sensitive to heavy 
metal stress than that of wild type. For instance, the AtAOS 
knockout Arabidopsis exhibited more serious chlorosis symptoms 
and shorter root length with Cd exposure (Lei et  al., 2020b). 
Tomato mutant suppressor of prosystemin-mediated responses 
2 (spr2) without chloroplast fatty acid desaturase (FAD) activity 
display dramatically reduced biomass and increased Cd 
accumulation due to the severe reduction in JA (Zhao et  al., 
2016). When exposed to As(III), rice jasmonate-biosynthetic 
mutant coleoptile photomorphogenesis 2 (cpm2) displays reduced 
number of adventitious roots and inhibited As(III) root-to-shoot 
translocation (Ronzan et  al., 2019). Therefore, a better 

understanding of the physiological responses and molecular 
interactions between JA biosynthesis and toxic minerals may 
guide future application of JAs in alleviating the toxicity in 
many food crops and plant species.

JA SIGNALING PATHWAYS IN 
RESPONSE TO TOXIC ELEMENTS

Although the physiological roles of jasmonates in reducing 
the toxicity of mineral elements have been demonstrated, the 
molecular mechanisms on the detoxification and reduced 
transport and accumulation of toxic elements are unclear. Here, 
we  proposed a putative JA regulatory network in response to 
heavy metals and metalloids by analyzing the published datasets.

Responses of genes encoding proteins consisting of the 
SCFCOI1-JAZ complex critical for JA signaling are investigated 
by using the published transcriptomic datasets of rice (Figure 2). 
A total of 15 JAZs have been identified in the rice genome 
(Ye et  al., 2009). The transcripts of six genes encoding OsJAZs 
(OsJAZ5/6/9/10/11/12) were upregulated by As(V) in rice roots 
(Huang et  al., 2012). Similarly, the expression of OsJAZs was 
elevated in the roots of rice seedlings (SE) subjected to As(III) 
(OsJAZ6/8/9/11/12; Yu et al., 2012), Cd (OsJAZ6/9/10/11/12/13; 
Tang et  al., 2014; Tan et  al., 2017), and Cu (OsJAZ5~12; Lin 
et  al., 2013; Figure  2), but the transcription of OsJAZ6~12 is 
inhibited in the rice shoots exposed to As(III) (Yu et al., 2012). 
A dramatically reduced expression of OsJAZ9 was observed 
in the shoots treated with a high concentration of As(III) for 
6 h. No significant difference in the expression levels of OsJAZ1~4 
was detected between As(III) stress and control conditions in 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. Jasmonate Signaling and Toxic Elements

Frontiers in Plant Science | www.frontiersin.org 7 April 2021 | Volume 12 | Article 665842

both roots and shoots (Figure  2). The expression levels of 
OsMYC2, a putative transcriptional factor that directly regulates 
JA responsible genes, is slightly reduced in the roots but 
increased in the shoots with As(III) stress (Yu et  al., 2012). 
Further, the abundance of OsCOI1 transcripts is hardly altered 
under toxic heavy metals and metalloids (Figure  2; Huang 
et  al., 2012; Yu et  al., 2012; Lin et  al., 2013; Dubey et  al., 
2014; Tang et  al., 2014; Tan et  al., 2017). Although molecular 
and physiological evidence of these proteins in heavy metals 
and metalloids have not been elucidated in rice, the results 
in Arabidopsis showed that JA insensitive AtCOI1 knockout 
line exhibits severe growth retardation under Cd treatment 
and cannot be  recovered with the application of exogenous 
MeJA (Lei et al., 2020b), indicating the involvement of AtCOI1 in 
JA-mediated tolerance to Cd stress.

Plant mineral transporters are critical for the accumulation 
and detoxification of heavy metal metals and metalloids through 
uptake, xylem/phloem loading and unloading, as well as 
sequestration (Sharma et  al., 2020; Zhao and Wang, 2020; 
Deng et al., 2021). Various toxic metal transporters in distinct 
families have been identified and characterized during the 
last few decades (Che et  al., 2018; Huang et  al., 2020; Tang 
and Zhao, 2021). Recently, it has been revealed that jasmonates 
coordinate the transport systems of the toxic minerals to 
restrict accumulation and enhance tolerance (Lei et al., 2020b; 
Mousavi et  al., 2020; Verma et  al., 2020). For instance, the 
expression of the AtIRT1, AtHMA2, and AtHMA4 genes 
responsible for Cd uptake and long-distance translocation 
from root to shoot is decreased by exogenous MeJA along 
with reduced Cd accumulation in SE and enhanced tolerance 
(Lei et  al., 2020b). Accordingly, upregulated expression of 
HMAs, as well as the increased Cd content and sensitivity 
to Cd were detected in JA-deficient mutant ataos, which can 
be  restored by the application of exogenous MeJA (Lei et  al., 
2020b). Pivotal transporters such as OsLsi1 (rice low silicon 1), 
OsLsi2 (Ma et  al., 2008), Nodulin 26-like intrinsic proteins 
(NIPs; Deng et  al., 2020), OsNramp1 (Tiwari et  al., 2014), 
and OsABCC1 (Song et  al., 2014; Deng et  al., 2018) function 
in the uptake, root-to-shoot translocation, compartmentation 
and deposition of arsenite [As(III)] or As(III)-phytochelatins 
(PCs) complex in rice. MeJA reduced As accumulation in 
rice by modulating the expression of genes for As(III) uptake 
(OsLsi1, OsLsi2, OsNIP1;1, and OsNIP3;1), translocation and 
distribution [OsLsi6, and Inositol Transporter 5 (OsINT5)], 
as well as detoxification (OsNRAMP1 and OsABCC2; Mousavi 
et  al., 2020; Verma et  al., 2020). Although some transporters 
and genes responsible for the accumulation and detoxification 
of Cu, Ni, and Pb have been identified (Deng et  al., 2013; 
Du et  al., 2015; Fan et  al., 2016; Huang et  al., 2016; Lange 
et  al., 2017; Garcia de la Torre et  al., 2020), the involvement 
of those transporters in JA-mediated detoxification (Azeem, 
2018; Bali et al., 2019) have not been elucidated. Furthermore, 
the direct transcriptional factors controlling JA-responsive 
transporter genes are not identified.

The ameliorating effects of jasmonates partially rely on the 
induced capacity of chelating and reactive oxygen species (ROS) 
scavenging. The thiol-contained peptides such as glutathione 

(GSH), PCs, and metallothioneins (MTs) play crucial roles in 
protecting plants from heavy metals and metalloids stress 
(Leszczyszyn et  al., 2013; Hu et  al., 2020; Deng et  al., 2021). 
Both JA and heavy metals induced the transcription of genes 
for GSH synthesis including γ-glutamylcysteine synthetase (γ-ECS), 
glutathione synthetase (GSH), and glutathione reductase (GR; 
Xiang and Oliver, 1998). Exogenous MeJA increased GR activities 
and GSH-pools in Cd-stressed rice, leading to reduced Cd 
uptake and then enhanced Cd tolerance (Singh and Shah, 
2014). Similar effects of jasmonates are observed in soybean 
under Cd stress (Noriega et  al., 2012). Cd-induced expression 
of type-2 metallothionein gene (KoMT2) in the leaves of Kandelia 
obovata is restored by exogenous application of MeJA, which 
leads to the inhibited Cd uptake and root-to-shoot translocation 
(Chen et  al., 2014). On the other hand, production of ROS 
including hydrogen peroxide (H2O2) and malondialdehyde 
(MDA) content in plants is increased significantly by mineral 
stress, while the activities of classic antioxidant enzymes such 
as catalase (CAT), peroxidase (POD), superoxide dismutase 
(SOD), ascorbate peroxidase (APX), and GR can be  enhanced 
by jasmonates for detoxification and promotion of plant growth 
(Rodríguez-Serrano et  al., 2006; Huang et  al., 2012; Noriega 
et al., 2012; Singh and Shah, 2014; Sirhindi et al., 2016; Azeem, 
2018; Bali et  al., 2019; Mousavi et  al., 2020). Furthermore, 
pretreatment with JA effectively ameliorated Cd-induced oxidative 
stress through increasing the heme oxygenase activity, but the 
enhancement can be  abolished by irreversible HO-1 inhibitor 
Zn-protoporphyrin IX. The results indicated that heme oxygenase 
is also involved in the JA-elevated ROS scavenging capacity 
responding to heavy metals and metalloids (Noriega et al., 2012). 
Many transcriptional factors such as AtZAT6 and AtWRKY12 
have been identified as activators or repressors of AtGSH1 (Hu 
et al., 2020), but their regulation by JA still needs to be elucidated. 
In addition, comparative biochemical and transcriptional profiling 
has identified differently expressed genes and proteins responsive 
to heavy metals and metalloids stress (Huang et  al., 2012; Yu 
et  al., 2012; Lin et  al., 2013; Tang et  al., 2014; Kumar et  al., 
2015; Srivastava et  al., 2015; Tan et  al., 2017); however, the 
involvement of these genes in JA-responsive signaling pathways 
needs to be  investigated in the future.

REGULATORY COMPONENTS OF 
JA-RESPONSIVE SIGNALING PATHWAYS 
IN RESPONSE TO TOXIC ELEMENTS

Plant response to heavy metals and metalloids should 
be  integrated into breeding programs to optimize their growth, 
development, and metabolism for survival. Although large 
number of functional proteins involved in the accumulation 
and detoxification of toxic elements have been identified (Clemens 
and Ma, 2016; Lindsay and Maathuis, 2017; Lei et  al., 2020a; 
Sharma et  al., 2020; Zhao and Wang, 2020; Tang and Zhao, 
2021), the signal transmission from mineral stress sensing to 
the regulation of downstream genes is less known. Regulatory 
models at molecular levels in various plant species have been 
proposed based on the systematic transcriptomic and biochemical 
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FIGURE 3 | Jasmonic acids limit the accumulation and enhance the tolerance to the toxic elements by coordinating the transport system, activity of antioxidant 
enzymes, and chelating capacity in plants. Heavy metals and metalloids trigger the generation of JA partially via the ROS or Ca2+ signaling routes, in which Ca2+ 
channels such as annexins and GLRs may be involved. Active forms of JAs are perceived and transmitted to the downstream targets including secondary 
transcriptional factors through SCFCOI-JAZ complex. The enhanced tolerance and reduced accumulation of toxic elements is attributed to the enhanced ROS 
scavenging activity, chelating capacity, and coordinated transport system. GLRs, glutamate receptor-like proteins; CaMs, calmodulins; CMLs, CaM-like proteins; 
CBLs, calcineurin B-like proteins; CDPKs, calcium-dependent protein kinases. GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins; γ-ECS, 
γ-glutamylcysteine synthetase; GR, glutathione reductase; CAT, catalase; POD, peroxidase; SOD, superoxide dismutase; and APX, ascorbate peroxidase.

analyses (DalCorso et al., 2010; Huang et al., 2012; Yu et al., 2012; 
Deng et  al., 2020; Wang et  al., 2020). Usually, the regulatory 
networks consist of rapidly activated ROS production and 
calcium (Ca) oscillation, which can be perceived by Ca-binding 
proteins and magnified via kinases and further downstream 
pathways such as phytohormones, transport systems, and ROS 
scavenging, are precisely modulated to induce an appropriately 
reactive physiological response (Deng et  al., 2020).

Heavy metals and metalloids are proposed as potent abiotic 
elicitors for triggering JA accumulation and signaling (Xiang 
and Oliver, 1998; Maksymiec et  al., 2005). We  suggest that 
common components can be  found in the JA pathways 
induced by insect herbivory, toxic minerals, and other abiotic 
stresses. Here, we  highlight that the roles of Ca2+ in the 
mitigation of heavy metals toxicity that may partially rely 
on activating JA (Figure 3). Ca2+ influxes and phosphorylation 
status are immediately changed when plants are subject to 
insect attack (Yan et  al., 2018a), As(V) (Yu et  al., 2012), 

and Cd (Zhang et  al., 2020a). Ca channels and transporters 
including autoinhibited Ca2+-ATPases (ACAs), GLRs, cyclic 
nucleotide-gated channels (CNGCs), two-pore Ca2+ channels 
(TPCs), the hyperosmolality-gated calcium-permeable channels 
(OSCAs), Ca2+/H+ exchangers (CAXs), and annexin proteins 
(ANNs) are involved in the biosynthesis and signaling of 
JA. Then the information encoded in the Ca2+ signatures 
can be  translated into phosphorylation of specific target 
proteins for further responses via different Ca sensors, including 
calmodulins (CaMs), CaM-like proteins (CMLs), calcineurin 
B-like proteins (CBLs), CBL-interacting protein kinases 
(CIPKs), and calcium-dependent protein kinases (CDPKs; 
Gao et  al., 2018; Wang et  al., 2019c; Deng et  al., 2020). 
JAZ-interacting proteins such as MYC2 regulates JA responsive 
genes (Kazan and Manners, 2013; Howe et  al., 2018), but 
the transcriptional regulators linking JA perception and 
downstream responses including chelation, ROS scavenging 
capacity, and mineral transport are not well studied (Figure 3).
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EVOLUTION OF JASMONATES-MEDIATED 
DETOXIFICATION OF HEAVY METALS 
AND METALLOIDS IN GREEN PLANTS

The molecular mechanisms of jasmonate biosynthesis and 
signaling have been well elucidated in model plants, such as 
Arabidopsis (Howe et  al., 2018; Wasternack and Strnad, 2019). 
Many proteins critical for the detoxification and accumulation 
of heavy metals and metalloids are also traced to the ancestral 
green algae (Hu et  al., 2020; Deng et  al., 2021). This implies 
the possibility that the regulatory network linking jasmonates 
and plant responses to toxic metals and metalloids seems to 
be  evolutionarily conserved. Therefore, comparative genetic 
analyses were conducted to identify and trace the evolutionary 
history of the key genes and families involved.

Comparative Genetic and Evolutionary 
Analysis of Genes in Jasmonates 
Pathways
Many core components of jasmonate signaling have been 
identified and the intact signaling pathway is established. 

Many enzymes participating in the synthesis of JA and conversions 
from JA to JA-Ile or MeJA are upregulated by the treatments 
of toxic heavy metals and metalloids (Figures 1–3). The potential 
orthologs genes with over 20% similarity of the proteins critical 
for the biosynthesis, metabolism, transport, and signaling are 
identified through comparative genetic analysis of the genomic 
datasets from 38 species in three algal and eight land plant 
lineages (Chen et  al., 2017; Adem et  al., 2020).

The genetic similarity analysis of the candidate proteins 
reveals that HDAs display the highest similarity across the green 
plants, followed by KATs, ACXs, and FADs. The lower similarity 
of orthologs was found among JAMs, JMT, JAZ, and NINJA 
(Figure  4). Most orthologs of the enzymes required for the 
de novo synthesis of JA have been identified in the examined 
land plants and a basal Streptophyte alga Klebsormidium flaccidum 
(Figure  4). For instance, the PpAOS1 and PpAOS2 from the 
moss Physcomitrella patens (Stumpe et  al., 2006), MpAOS1 and 
MpAOS2 from the liverwort Marchantia polymorpha, and KfAOS 
from K. flaccidum (Koeduka et  al., 2015) exhibit enzymatic 
properties similar to those of angiosperms despite the different 
specificities of their substrates (Scholz et  al., 2012). Functional 
analysis of MpAOC in M. polymorpha (Yamamoto et al., 2015), 

FIGURE 4 | Similarity heat map of JA-related proteins involved in biosynthesis, metabolism, transport, and signaling in different plant and algal species. Candidate 
protein sequences were selected by BLASTP searches, which satisfied E value <10−10 and query coverage >50%. Colored circles indicate protein sequence 
similarity from 20 (Blue) to 100% (red). The heat map is generated by using TBtools (Chen et al., 2020). Space without colored circles indicates no proteins that 
satisfied the selection criteria. FADs, fatty acid desaturases; PLAs, phospholipases A; PLDs, phospholipases D; DGLs, DONGLE, a homolog of DAD1; LOXs, 
lipoxygenases; AOS, allene oxide synthase; AOCs, allene oxide cyclases; OPRs, OPDA reductases; OPCL1, OPC-8:0 CoA ligase 1; ACXs, acyl-CoA oxidases; 
MFPs, multifunctional proteins; AIM1, abnormal inflorescence meristem 1; KATs, ketoacyl-CoA-thiolases; JMT, jasmonic acid carboxyl methyltransferase; JOXs, 
jasmonate-induced oxygenases; IAHs, ILR1-like amidohydrolases; CYP94s, cytochrome P450 94s enzymes; JASSY, A chloroplast outer membrane protein with a 
START domain; PXA1, peroxisomal ABC-transporter 1; JATs, ATP-binding cassette G transporters; JAZs, Jasmonate-ZIM domain proteins; COI1, coronatine 
insensitive 1; MYCs, bHLH ZIP transcription factors; JAMs, jasmonate-associated MYC2-Like transcription factors; TPL, TOPLESS protein; NINJA, novel interactor 
of JAZ; MED25, mediator25; HACs, histone acetyltransferases; and HADs, histone deacetylases.
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as well as PpAOC1 and PpAOC2 from P. patens 
(Stumpe et al., 2010), showed the similar activity and subcellular 
localization to the AOCs in flowering plants. Consistently, JA 
has been detected in K. flaccidum (Hori et al., 2014), indicating 
the origin of JA synthesis can be  traced to the Streptophyte 
algae – the sister group of land plants. Only OPDA but not 
JA is detectable in the moss P. patens (Stumpe et  al., 2010) 
despite all the putative enzymes are identified in this moss 
species, implicating that the putative enzymes consisting of 
ORPs, OPCL1, ACXs, MFPs, abnormal inflorescence meristem1 
(AIM1), and KATs may display diverse function as compared 
to those in higher plants (Han, 2017).

Four JA transporters have been isolated and functionally 
characterized in Arabidopsis (Figure 1). AtJAT1 (Li et al., 2017b) 
and AtPXA1 (Theodoulou et  al., 2005) belong to the G- and 
D-subgroup of ABC transporter family, respectively, while 
AtGTR1 is classified in the subgroup of NPF2s (Saito et  al., 
2015; Ishimaru et al., 2017), however, JASSY seems independent 
from the known transporter families (Guan et  al., 2019). The 
absence of JASSY and NPFs (Hu et  al., 2020) in red algae 
(Figure  4) demonstrates that the origin of JA-Ile and OPDA 
transporters may have arisen from Streptophyte or even earlier 
from Chlorophyte algae, which is consistent with evolutionary 
origin the biosynthesis of JAs. The orthologs of AtJAT1 are 
widely distributed in almost all of the examined species except 
the two Rhodophytes (Figure  4), confirming our previous 
analysis using the whole ABC family of 130 members 
(Hu et  al., 2020). JA can be  converted to derivatives through 
the metabolic reactions mediated by different groups of enzymes. 
The generation of two major active forms, JA-Ile and MeJA, 
is catalyzed by the enzymes JAR1 and JMTs, respectively (Seo 
et  al., 2001; Staswick and Tiryaki, 2004). It appears that gene 
families in JA metabolism are less conserved in these examined 
species compared to those in JA biosynthesis and transport 
(Figure  4). JMTs for converting JA to MeJA are common in 
examined angiosperms, gymnosperms, moss P. patens, liverwort 
M. polymorpha, and streptophytes K. flaccidum (Figure 4). The 
homologs proteins of JAR1 required for the generation of active 
JA-Ile are identified in vascular plants and the ancestral 
streptophyte algae K. flaccidum but not the other genomes 
consisting of rhodophyte, chlorophyte, and streptophyte algae, 
liverworts, and mosses. These results may indicate that the 
active forms of JA in these might not be  contributed to JA-Ile 
and/or MeJA. Consistently, the ligands that bind the COI1 
receptor in M. polymorpha are OPDA isomers but not 
JA-Ile (Monte et  al., 2018).

The core components of JA signaling consist of a co-receptor 
SCFCOI-JAZ complex, which employs JA-Ile as the ligand in 
higher plants (Howe et  al., 2018). In Arabidopsis, JAZs belong 
to the TIFY superfamily (Pauwels and Goossens, 2011), while 
COI1 is an E3 ubiquitin ligase and is a part of an SCF complex 
(SCFCOI1; Xie et al., 1998). Interestingly, the comparative genetic 
analysis showed COI1 is one of the highest conserved proteins 
among most of the examined species, but JAZs are less conserved, 
whereby they are missing in most of the algae species except 
K. flaccidum (Figure 4). However, MpCOI1 from M. polymorpha 
is the receptor of OPDA but not JA-Ile resulting from a single 

residue substitution (Monte et  al., 2018), implying the 
co-evolution of JA biosynthetic mechanism and receptor 
specificity in vascular plants. There are 13 members of JAZs 
in Arabidopsis (Howe et  al., 2018) but only one member in 
M. polymorpha, MpJAZ, which is closer to V-subgroup of 
AtJAZs including AtJAZ3/4/9 (Monte et  al., 2019). MpJAZ 
displays the wound-induced expression, nuclear localization, 
interactions with MYCs, as well as hormone-triggered 
degradation, which is similar to that of JAZs in Arabidopsis 
(Monte et  al., 2019). The MpJAZ mutant shows severe 
developmental defects but can be  complemented by AtJAZ3, 
indicating the conserved physiological functions of JAZ in land 
plants (Howe and Yoshida, 2019; Monte et  al., 2019). The 
diversification and late evolution of JAZs in higher plants may 
have equipped the genes with additional functions (e.g., abiotic 
stress tolerance) apart from the common biotic stress responses 
to wound and insect damage. However, the function and origin 
of JAZs still require detailed investigations in the future.

The involvement of ATP-Binding Cassette G (ABCG) 
transporter proteins in both JA transport and heavy metal 
detoxification has led us to explore whether there are any links 
by further analyses of the ABCG subfamily using six representative 
plant species. We  obtained 21, 41, 18, 20, 52, and 43 potential 
members in K. flaccidum, P. patens, the fern Azolla filiculoides, 
Picea abies, rice, and Arabidopsis, respectively (Figure  5A). The 
195 ABCG proteins can be  classified into four subgroups 
(Figure 5B). ABCGs are multifunctional transporters employing 
both phytohormones (Kretzschmar et al., 2012; Sasse et al., 2015) 
and heavy metals as substrates. The heavy metals-responsive 
ABCGs including AtABCG36 (Kim et  al., 2007), AtABCG40 
(Lee et  al., 2005), OsABCG36 (Fu et  al., 2019), OsABCG43 
(Oda et al., 2011), and OsABCG44 and are mainly in Subgroup 2 
(Figure 5B). The plasma membrane-localized Cd efflux transporters 
AtABCG36 (Strader and Bartel, 2009) and AtABCG37 (Ruzicka 
et al., 2010) function as indole-3-butyric acid (IBA) transporters 
too (Figure  5C). Likewise, the Pb efflux pump AtABCG40 is 
also an abscisic acid (ABA) uptake transporter (Kang et  al., 
2010). Three additional transporters AtABCG25, AtABCG31, 
and AtABCG30 cooperatively facilitate ABA from the endosperm 
to the embryo to repress seed germination together with 
AtABCG40 (Figure  5C; Kang et  al., 2010, 2015). The other 
ABA transporter AtABCG22 is required for stomatal regulation 
(Figure 5C; Kuromori et  al., 2011). AtABCG14 (Ko et  al., 2014; 
Zhang et  al., 2014) and OsABCG18 (Zhao et  al., 2019b) are 
essential for the root-to-shoot translocation of cytokinins including 
trans-zeatin, trans-zeatin riboside. The hormone transporters, 
AtABCG22, AtABCG25, and jasmonic acid transporters (JATs) 
are mainly located in subgroup  4 (Figure  5B). Given the close 
phylogenetic relationships of ABCG orthologs that have functions 
in the transport of heavy metals (Pb and Cd) and ABA and 
IBA in Subgroup 2, it would be interested to explore the ABCGs 
in Subgroup 4 that contain unique JATs and putative transporters 
for heavy metals and metalloids in the future.

MYCs belong to the IIIe-subgroup of bHLHs, which have 
been demonstrated as the primary transcriptional factors inducing 
the expression of JA response genes (Kazan and Manners, 2013; 
Zander et al., 2020). The typical MYC proteins consist of three 
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functional domains, JAZ-interaction Domain (JID), Topologically 
Associated Domain (TAD), and bHLH (Figure  6A). JID and 
TAD are located in the N-terminal region of the protein and 
responsible for the interaction of JAZs, and the binding and 
transactivation of MED25, respectively. Additionally, bHLH is 
required for heterodimerization and binding to the G-box 
sequence in target promoters (Kazan and Manners, 2013; 
Figure  6A). In our results, the putative MYCs are found in 
all land plants, the streptophyte alga K. flaccidum and three 
Chlorophyte algae (Figures  4, 6B). Using the key member 
AtMYC2 (Zander et al., 2020) as our search query, we obtained 
953 orthologs from the OneKP database (Figure  6B; One 
Thousand Plant Transcriptomes Initiative, 2019). Sequence 
alignment analyses exhibited highly conserved bHLH domain 
of the MYCs in the representative species of the major green 
plant lineages, suggesting a potential early evolution of bHLH 
domain in chlorophyte algae (Figure  6C). Consistent with the 
evolution of JAZs, JID domains are found to be  less conserved 
in the selected green plants, indicating the JAZ-JID signaling 
may have diversified for multiple functions in biotic and 
abiotic stress response in higher plants (Figure  6D). 

Histone acetyltransferase encoding by HAC1 is an activator of 
MYC2-regulated transcription through interaction protein of 
MED25 (Wang et  al., 2019b), a subunit of conserved multi-
subunit co-regulatory complex essential for Pol II-dependent 
transcription in eukaryotic cells (An et  al., 2017). Moreover, 
TAD motifs are absent in M. polymorpha and less conserved 
in the two algal species (Figure  6E), despite the putative 
interacting MED25 proteins, which can be  observed in M. 
polymorpha, algae species K. flaccidum, Chlamydomonas 
reinhardtii, and Volvox Carteri (Figure 4). The predicted origin 
of HAC orthologs is analogical to that of MED25, implicating 
the possibility of co-evolution of the two proteins. However, 
the protein-protein interactions and evolution between MYCs 
and the putative candidate genes need to be  validated in some 
key species. JAMs negatively regulate the JA responses as the 
competitors of MYC2  in Arabidopsis (Sasaki-Sekimoto et  al., 
2013). Different from the widely presented of bHLHs in land 
plants and Streptophytes (Hu et  al., 2020), JAMs belong to 
the IIId-subgroup of bHLHs and are seed plant-specific 
(Figure  4). The putative co-repressor TPLs are presented in 
all examined green plants, while the bridge protein NINJAs is 

A

C
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FIGURE 5 | Phylogenetic analysis and phytohormone transport of ATP-Binding Cassette G (ABCG) subfamily. Number (A) and phylogenetic tree (B) of ABCGs 
identified in six representative plant species including five land plants and a basal Streptophyte alga. Four major subgroups of ABCGs are shown by different lines. 
The homologs from the same organism are shaded with the same background color, except the Arabidopsis JA transporters (AtJATs). The heavy metal-responsive 
members including AtABCG36/40, and OsABCG36/43/44 are labeled with black symbols. (C) The known subcellular localization of functional characterized ABCGs 
in various plant species. ABCG homologs with are obtained from the references (Saha et al., 2015; Hwang et al., 2016; Cho et al., 2020) and databases (https://
www.uniprot.org/, https://www.fernbase.org/, https://congenie.org/, and http://www.plantmorphogenesis.bio.titech.ac.jp), the phylogenetic tree is generated by 
using MEGA7 (Kumar et al., 2016). At, Arabidopsis thaliana; Os, Oryza sativa; Mt, Medicago truncatula; Kf, Klebsormidium flaccidum; Af, Azolla filiculoides; Pa, 
Picea abies; Pp, Physcomitrella patens; PhPDR1, Petunia hybrida pleiotropic drug resistance 1; tZ, trans-zeatin; tZR, trans-zeatin riboside; cZ, cis-zeatin; cZR, cis-
zeatin riboside; iP, isopentenyladenine; iPR, isopentenyladenosine. SL, strigolactone; IBA, indole-3-butyric acid; ABA, abscisic acid; JA, jasmonic acid; and 
JA-Ile, jasmonoyl-isoleucine.
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FIGURE 6 | Evolutionary conservations and diversity of MYC2s orthologs in green plant species (A) simplified schematic diagram of the AtMYC2 protein and the 
conserved domains. JID, TAD, and bHLH are functional domains interacting with JAZs, Mediator 25 (MED25), and the cis-element G-box in the promoters of 
JA-responsive genes, respectively. (B) Phylogenetic trees of MYC proteins in representative species of major lineages of green plants using OneKP database. The 
tree is generated using the maximum-likelihood method. Clades are indicated by different colors. Alignment of the bHLH (C), JID (D), and TAD (E) domains among 
11 representative green plant species. JID, JAZ-interaction domain; TAD, topologically associated domain; bHLH, basic helix–loop–helix motif; and JAZs, 
jasmonate-ZIM domain proteins.
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mainly found in land plants (Figure  4), which are consistent 
with the previous analyses (Han, 2017). Moreover, the potentially 
epigenetic regulators HDAs show very high similarity among 
36 detected species (Figure 4). In summary, the 30 gene families 
encoding biosynthesis, metabolism, transport, and signaling of 
JA and its derivatives are found in most tested land plants 
and are originated from the basal streptophyte algae (26 out 
the 30 gene families). However, the level of sequence similarity 
and conservation vary largely among the gene families. These 
analyses indicate that the function of the orthologs of SCFCOI1-
JAZ-MYC complex in JA signaling may be  the fundamental 
machinery required for adaptation to the terrestrial environment 
and its associated presence of heavy metals and metalloids.

Linking JA Signaling to Transport and 
Detoxification of Heavy Metals and 
Metalloids
Jasmonic acid-mediated decreased accumulation and 
detoxification of heavy metals and metalloids is largely dependent 
on the transport system, antioxidant effect, chelation, and 
sequestration functions. Our previous analyses reveal that 
homologs of ZIPs including AtIRT1 critical for Cd uptake 
were identified in almost all examined green plants (Hu et  al., 
2020). HMAs for Cd/Zn transporting and PHTs for As(V) 
allocation, NIPs for As(III) mobility, ABC transporters for 
GSH- or phytochelatins (PCs)-conjugated heavy metal 
detoxification and sequestration represent the early evolution 
from ancestral algae (Deng et  al., 2021). The putative NIPs 
are consistent with the finding that NIPs originate from 
horizontal gene transfer of bacterial aquaporin group with As 
efflux activity (Pommerrenig et  al., 2020). Genes encoding 
putative glutathione synthetases (GSH1 or γ-ECS, GSH2 
homologs) can be  traced to an ancestral streptophyte alga K. 
flaccidum, however, the potential phytochelatin synthetase (PCS) 
orthologs for PCs generation are mainly presented in vascular 
plants (Hu et  al., 2020). ROS play multiple beneficial roles 
at low concentrations, but cause cellular damage through 
oxidative stress at high concentrations. ROS are the byproducts 
of aerobic metabolism, the homologs of enzymes for ROS 
scavenging and signaling are evolutionarily conserved among 
all examined land plant species and the ancestor chlorophyte 
algae (Zhao et  al., 2019a).

Calcium signaling is involved in JA regulatory network and 
also plays important roles in the transmission of the signals 
generated by heavy metals and metalloids stress to physiological 
responses (Zhang et  al., 2020a). Comparative genomic and 
evolutionary studies reveal the widespread occurrence of channels, 
pumps, and transporters likely to be  involved in Ca signaling 
(Verret et al., 2010; Edel et al., 2017; Thor et al., 2020). Putative 
ACAs and TPCs have been identified in red algae Porphyra 
yezoensis, the number of ACA members is rapidly expanded 
in land plants since the arise of ACAs of green algae C. 
reinhardtii, however, the members of TPCs are likely to 
be  reduced in the examined of higher plants (Cai et  al., 2017; 
Chen et  al., 2017). CNGCs and GLRs are generally present 
in land plants and green algae, furthermore, isoforms of GLRs 

but not CNGCs have been found in seaweed P. yezoensis and 
brown alga Ectocarpus siliculosus (Cai et  al., 2017; Chen et  al., 
2017). Furthermore, The CNGC family have been greatly 
expanded in seed plants, while increased number of GLRs is 
emerging since the arise of aquatic fern species Salvinia cucullata 
and A. filiculoides (Verret et  al., 2010; De Bortoli et  al., 2016; 
Cai et  al., 2017). However, canonical CNGC does not exist 
in unicellular algae species including Ostreococcus lucimarinus, 
V. carteri, and C. reinhardtii because the lacking of plant 
CNGC-specific motif (De Bortoli et al., 2016). Moreover, further 
alignment of functional domains reveals the common residues 
responsible for ion selectivity and gating among land plant 
glutamate receptors are different to algae (De Bortoli et  al., 
2016). ANNs are suggested as a novel type of Ca2+ channel, 
the homologs are also widely present in Chlorophyta green 
algae, Bryophyta, Lycophyta, and vascular plants, besides, two 
domains containing well-conserved calcium-binding sites have 
been identified in many plants (Clark et  al., 2012). Homologs 
of CAXs are widely observed in most of the examined plant 
species; moreover, there has been an expansion and diversification 
of CAX family within flowering plants (Emery et  al., 2012). 
Furthermore, protein similarity analyses reveal that they are 
highly conserved in seed plants (Cai et  al., 2017; Chen et  al., 
2017). The Ca-dependent channel (DUF221) domain-containing 
OSCAs are conserved across eukarryotes. Phylogenetic analysis 
of OSCAs reveals four clades of land plant homologs, homologs 
from the moss P. patens, and the spikemoss Selaginella 
moellendorffii are classified into the clade comprising of osmotic-
responsive AtOSCA1.2 (Hou et al., 2014), indicating the possibly 
conserved functions among land plants.

The Ca sensors CaMs are well conserved in eukaryotes, 
whereas CMLs are mainly found in land plants and algae, 
however, the number of genes of the two families are not 
directly linked to the genome size of the organism (Mohanta 
et al., 2017). The genetic similarity of the Ca dependent protein 
kinases including CBLs, CDPKs, and CIPKs is higher than in 
land plants and streptophyte algae, and the value in chlorophyte 
algae is still higher than 30% (Edel et  al., 2017; Zhao et  al., 
2019a), indicating the extremely early origination of Ca signaling. 
Furthermore, the diversity and abundance of calcium-signaling 
components are increased at a far greater rate than general 
genomic expansion (Marchadier et  al., 2016; Edel et  al., 2017). 
CBLs and their interacting partners CIPKs families have been 
expanded multiple times during the evolution of plants, resulting 
from retrotransposition, tandem duplication, and whole-genome 
duplication (Kleist et  al., 2014). Most recent studies reveal 
that the highly specific interaction, together with asymmetric 
expression patterns to overcome the relatively imbalanced 
duplicates of CIPKs and CBLs (Zhang et  al., 2020b).

CONCLUSION

In summary, heavy metals and metalloids elevate endogenous 
JA levels to alleviate the toxicity possibly through Ca-mediated 
signaling, enhanced ROS scavenging capacity, chelation activity, 
and coordinated transport systems (Figures  1–4). The origin 
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of both JA regulated downstream responses to toxic metals 
and the putative upstream regulators are most likely in parallel 
with the arising of JA biosynthesis and metabolism since 
Streptophyte algae – the sister clade of land plants 
(Figures  4–6). We  reviewed pieces of information linking 
JA signaling and the detoxification of heavy metals and 
metalloids that are suggested to be  the priorities in future 
research work. These are: (1) identification of the critical Ca 
channels and sensors responsible for the toxic mineral-induced 
JA production, (2) discovery of the key transcriptional factors 
directly regulating downstream genes of the toxic mineral-
induced JA production, (3) investigation the functional 
conservation and diversity of the heavy metal and metalloid 
stress-related and JA-responsive components via genetic 
complementation in evolutionarily important model green 
plants such as Arabidopsis, rice, moss (P. patens), and algae 
(K. flaccidum), in addition, investigation of the conservation 
and diversity of metal accumulation-induced JA in defense 
signaling in various hyperaccumulators. The proposed research 
will shed light on the understanding of the molecular 
mechanisms of JA signaling and element tolerance, as well 
as the practices for mitigation of contamination or pollution 
caused by heavy metals and metalloids. The application of 
exogenous JA and the derivatives in crops trends to diminish 
the ingestion of toxic metals and metalloids via the food 

chain, while JA antagonists are candidates for phytoremediation 
by promoting accumulation activity of plants.
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