

Identification and Functional Characterization of Plant MiRNA Under Salt Stress Shed Light on Salinity Resistance Improvement Through MiRNA Manipulation in Crops

OPEN ACCESS

Edited by:

Pasqualina Woodrow, University of Campania Luigi Vanvitelli, Italv

Reviewed by:

Arafat Abdel Hamed Abdel Latef, South Valley University, Egypt Tushar Suhas Khare, Savitribai Phule Pune University, India Vinay Kumar, Pune University, India

*Correspondence:

Tao Xu xutao_yr@126.com Tingting Dong dtt@jsnu.edu.cn [†]These authors have contributed equally to this work

Specialty section:

This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

Received: 08 February 2021 Accepted: 29 April 2021 Published: 17 June 2021

Citation:

Xu T, Zhang L, Yang Z, Wei Y and Dong T (2021) Identification and Functional Characterization of Plant MiRNA Under Salt Stress Shed Light on Salinity Resistance Improvement Through MiRNA Manipulation in Crops. Front. Plant Sci. 12:665439. doi: 10.3389/fpls.2021.665439 Tao Xu^{1*†}, Long Zhang^{1†}, Zhengmei Yang^{1,2†}, Yiliang Wei¹ and Tingting Dong^{1*}

¹ Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China, ² Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea

Salinity, as a major environmental stressor, limits plant growth, development, and crop yield remarkably. However, plants evolve their own defense systems in response to salt stress. Recently, microRNA (miRNA) has been broadly studied and considered to be an important regulator of the plant salt-stress response at the post-transcription level. In this review, we have summarized the recent research progress on the identification, functional characterization, and regulatory mechanism of miRNA involved in salt stress, have discussed the emerging manipulation of miRNA to improve crop salt resistance, and have provided future direction for plant miRNA study under salt stress, suggesting that the salinity resistance of crops could be improved by the manipulation of microRNA.

Keywords: miRNA, plant, salt stress, tolerance, salinity resistance, crop

INTRODUCTION

Salinity, as a major environmental stress factor, restricts crop growth and yield globally. It is reported that salinity affected a land area as large as 800 million hectares across the globe, accounting for 6% of the land (Abdel Latef et al., 2020; Attia et al., 2021). Approximately 20% of the irrigated soils are affected by salinity stress (Zhao et al., 2013), and 50% of arable land will be affected by 2050 (Butcher et al., 2016). Salt stress leads to changes in metabolic activity, cell wall damage, and cytoplasmic dissolution; it reduces the photosynthetic efficiency, accelerates aging, increases respiratory consumption and toxin accumulation, and eventually results in plant death (Osman et al., 2020; Abdel Latef et al., 2021). It is estimated that salinity can result in \$27.3 billion in agricultural damage every year (Qadir et al., 2014). On the other hand, regional food scarcity will persist continually, particularly in South Asia, sub-Saharan Africa, the Middle East, and where population increase is rapid but agricultural outputs are low (FAO, 2017). Therefore, breeding and growing salt-tolerant crops to utilize the marginal and high-salinity soils are one of the most

important strategies to meet the increase in food demand required by the estimated population in 2050 of 10 billion people (Mekonnen and Hoekstra, 2016; FAO, 2017; Morton et al., 2019).

MicroRNA (miRNA) is a non-coding single-stranded small RNA with a length of 21-24 nucleotides, and it acts as gene regulators to control the transcript abundance of its target gene. In the wild, miRNA exists in diverse organisms, including plants, animals, and microorganisms, and it regulates growth, development, signal transduction, response to adversity, and other biological processes. It was firstly discovered in Caenorhabditis (Lee and Ambros, 2001) and was then detected in four laboratories at approximately the same time in Llave et al. (2002), Mette et al. (2002), Park et al. (2002), Reinhart et al. (2002). After that, more and more plant miRNAs have been identified and functionally characterized in various plant species. MiRNA family names are listed in the order of publication, and miRNAs with similar sequences (usually fewer than 3 nt in difference) and common functions are classified as members of the same miRNA family (Wang Q. et al., 2014). Both the intraspecific conservation and interspecific differences of miRNAs are environmentally adaptive and evolve with the change in environment (Zhang et al., 2018). However, the evolution of miRNAs is conservative because some key target genes of miRNAs are conservative (Gramzow and Theißen, 2019).

Various enzymes and functional proteins are involved in the plant's miRNA biosynthesis and functions. The primary miRNA transcripts for plants are produced by RNA polymerase II from miRNA genes, and these then pair with complementary bases to form special hairpin structures (Budak and Akpinar, 2015). Then, the stem ring secondary structure is generated by the DICER-LIKE1 (Bielewicz et al., 2013). After the methylation catalyzed by HUA Enhance 1 at the 3' end, the double strand was transferred to the cytoplasm with the help of the transport protein HST. In the cytoplasm, this double-stranded miRNA is decomposed into mature single-stranded miRNA and integrated into RNA-induced silencing complex (RISC) cells, where miRNA interacts with the complementary target mRNA and activates the catalytic RISC with the assistance of Argonaute 1 (AGO1) (Koroban et al., 2016). There are two modes for miRNA to regulate gene expression: RNA cleavage and translation inhibition. The first mode is that miRNAs guide the Argonaute component of RISC to cleave a single phosphodiester bond opposite to the 10th and 11th nucleotides of the miRNA within complementary RNA. Then, the RISC will be free by releasing the fragments, and it then subsequently recognizes and cleaves another transcript (Jones-Rhoades et al., 2006). Afterward, the cleavage fragments are released to make the RISC competent for other RNA recognization and cleavage (Jones-Rhoades et al., 2006). MiRNA-mediated translational repression requires the participation of P-body components, a microtubulesevering enzyme, AGO1, and AGO10 (Brodersen et al., 2008). In addition, miRNA possibly prevents translation by triggering the sequestration of miRNA target in P-bodies (Chen, 2009). In addition, each miRNA can control multiple target genes (Haas et al., 2012). For instance, miR156 promotes floral meristem identity transformation by targeting SPL3, SPL4, and SPL5 in

Arabidopsis thaliana (Xu et al., 2016). A gene can also be regulated by multiple miRNAs. For example, miR31 and miR143 affect steroid hormone synthesis by targeting the FSHR receptor (Zhang et al., 2019).

MiRNAs can regulate plant growth, development, pathogens, and abiotic stress responses. MiR160, miR169, peu-miRn68, and 477b are involved in the hormone signaling crosstalk model of root growth and development in apple rootstock, A. thaliana and Populus (Sorin et al., 2014; Lian et al., 2018; Meng et al., 2020). Cs-miR414 and cs-miR828 are involved in tea bud dormancy (Jeyaraj et al., 2014). For pathogen stress regulations, miR397 plays a negative regulatory role in apple resistance to hepatitis B virus (Yu et al., 2020), miR396 affects the susceptibility to rice blast (Chandran et al., 2019), and miR528 increases the viral defense ability of Oryza sativa (Wu et al., 2017). In the aspect of abiotic stress regulations, miR399 and miR827 are important for the resistance to phosphorus deficiency (Hackenberg et al., 2013; Du et al., 2018). The lack of sulfur induces the expression of miR395 for the regulation of genes in the sulfur assimilation pathway (Kawashima et al., 2009). The expression of miR319 is crucial for the cold tolerance of rice (Yang et al., 2013). MiR399 regulates Arabidopsis flowering at different temperatures (Kim et al., 2011). Recently, the comparative antagonistic expression profile of miR169 indicates that the miR169 family is a general regulator of various abiotic stresses (Rao et al., 2020). In addition, the over-expression of miR156 changes the expression level of other miRNAs, thus increasing the contents of anthocyanins, flavonoids, and flavonols and decreasing the total lignin content, suggesting the essential role of miRNAs in nutritional processes (Wang et al., 2020).

Noticeably, it is demonstrated that miRNA plays important roles in plant salinity responses and adaptation through various miRNA-mediated biological processes, including signal transduction, membrane transport, protein biosynthesis and degradation, photosynthesis, and transcription. In the present review, we mainly discuss the recent research progress on saltstress-related miRNA in plants and the future research direction about miRNA in the salinity stress research field to come up with a strategy to improve the agronomic traits of stress tolerance through the manipulation of miRNAs.

IDENTIFICATION AND EXPRESSION OF PLANT MIRNAS UNDER SALT STRESS

In recent years, with the rapid development of biotechnology, such as microarray and high-throughput deep sequencing, thousands of plant miRNAs were identified under salt stress. As shown in **Table 1**, different concentrations (80–600 mM) of NaCl and treatment time (3 h to 15 days) were applied for salt stress treatments for identifying salt-responsive miRNA (**Table 1**). MiRNAs were detected in leaf, root, stem, and flower separately or in the whole seedling (**Table 1**). Fu et al. identified 1,077 miRNAs in *Zea mays*, comprising the highest number of identified miRNAs in various crops among the reports (Fu et al., 2017). Moreover, 882, 876, 693, and 650 miRNAs were identified in *Mesembryanthemum*

TABLE 1 | The identification of plant miRNAs under salt stress by deep-sequencing.

Latin name of sample	Sampling location	Salt stress treatment concentration/time	Number of miRNAs	References
Arabidopsis thaliana	Root, bud	150 mM NaCl/7 d	118	Pegler et al., 2019
Brassica juncea	Seedling	150 mM Nacl, 200 mM NaCl/3 h, 6 h, 12 h, 24 h	51	Bhardwaj et al., 2014
Brassica oleracea	Flower	80 mM NaCl/15 d	81	Tian et al., 2014
Cicer arietinum	Root	150 mM NaCl/12 h	181	Kohli et al., 2014
Cicer arietinum	Root	250 mM NaCl/2 h	284	Khandal et al., 2017
Eutrema salsugineum 🕏	Seedlings	300 mM NaCl/0 h, 5 h, 12 h	99	Wu et al., 2016
Glycine max	Mature nodules	125 mM NaCl/6 h	238	Dong et al., 2013
Halostachys caspica 🕏	Root	600 mM NaCl/48 h	272	Yang et al., 2015
Hordeum bulbosum	Stem	250 mM NaCl/2 w	54	Liu and Sun, 2017
Hordeum vulgare	The plant body	100 mM NaCl/3 h, 8 h, 27 h	152	Deng et al., 2015
Hordeum vulgare	Seedling, leaves, roots	2% NaCl/-	259	Lv et al., 2012
Ipomoea batatas	Leaves, roots	150 mM NaCl/-	650	Yang et al., 2020
Lagenaria siceraria(Molina)Standl	Root	100 mM Nacl/4 h	91	Xie J. et al., 2015
Leymus chinensis	Seedling	100 mM NaCl and 200 mM NaHCO ₃ /24 h	148	Zhai et al., 2014
Linum usitatissimum	-	50 mM NaCl/18 h	332	Yu et al., 2016
Malvaceae Gossypium	Leaves	150 mM Nacl/2 h, 4 h, 8 h	225	Yin et al., 2017
Malvaceae Gossypium	Seedling	0.5% NaCl/10 d	337	Xie F. et al., 2015
Medicagosativa	Root	300 mM NaCl/8 h	453	Long et al., 2015
Medicago truncatula	Seedling	20 mM NaCl + Na ₂ SO4 5 mM Na ₂ CO3 + NaHCO3/72 h	876	Cao et al., 2018
Mesembryanthemum crystallinum 🕏	Seed	200 mM NaCl/60 h	967	Jian et al., 2016
Mesembryanthemum crystallinum	Seedling, root	200 mM NaCl/6 h	135	Chiang et al., 2016
Musa nana	Root	0mm (CTR), 100mm (TR100), and 300mm (TR300) NaCl/48 h	181	Lee et al., 2015
Oryza glaberrima	Leaves	200 mM NaCl/48 h	498	Mondal et al., 2018
Oryza coarctata 🐲	Root	450 mM NaCl/24 h	433	Mondal et al., 2015
Oryza sativa	Leaves	200 mM NaCl/15 d	357	Tripathi et al., 2018
Orvza sativa	Root. stem	256 mM NaCl/9 h	275	Parmar et al., 2020
Panicumvirgatum	Seedling	0.5% NaCl/10 d	273	Xie et al., 2014
Paulownia	Seedling	0.2%, 0.4% and 0.6% NaCl/20 d	187	Fan et al., 2016
Phoenix dactvlifera	Seedling, leaves and roots	300 mM NaCl/72 h	422	Yaish et al., 2015
Populus euphratica	Leaves, roots	300 mM NaCl/3w	428	Si et al., 2014
Populus tomentosa	Seedling	200 mM NaCl/10 h	187	Ren et al., 2013
, Raphanus sativus	Root	200 mM NaCl/3 h, 6 h, 12 h, 24 h, 48 h, 96 h	204	Sun et al., 2015
Reaumuria soongorica 🕏	Seed	43, 273 mM NaCl/-	101	Zhang H. et al., 2020
Rhizophora mangle, Heritiera littoralis	Leaves	340 mM NaCl/96 h	147	Gharat and Shaw, 2015
Saccharum officinarum	Shoot, root	170 mM NaCl/-	131	Bottino et al., 2013
Salicornia europaea	Root, stem	200 mM NaCl/0 h, 12 h, 7 d	241	Feng et al., 2015
Sesamum indicum	Seedling	—/12 h, 24 h	442	Zhang Y. et al., 2020
Solanum melongena	Root	150 mM NaCl/24 h	98	Zhuang et al., 2014
Spartina alterniflora 🕏	Leaf and root	500 mM sea salt/6, 12, 24, 72 h	902	Zandkarimi et al., 2015
Suaeda maritima 🕏	Aerial portions	255 mM NaCl/9 h	147	Gharat and Shaw, 2015
Thellungiella salsuginea 🛷	Leaves, roots	200 mM NaCl/24 h	246	Zhang et al., 2013
Triticum aestivum	Seedling	200 mM NaCl/7 d	317	Han et al., 2018
Triticum monococcum subsp. monococcum	Leaves, roots	100 mM NaCl/0, 3 h, 6 h. 12 h. 24 h	167	Ünlü et al., 2018
Triticum turgidum ssp. dicoccoides	The plant body	150 mM NaCl/0 h, 3 h, 6 h, 12 h, 24 h	212	Feng et al., 2017
Vicia faba	Seedling	150 mM NaCl/2 w	693	Alzahrani et al., 2019
Zea mays	Leaves and roots	250 mM NaCl/12 h	1077	Fu et al., 2017
- Zea mays	Maize ears	_/_	102	Liu et al., 2014

ø indicates the plant name of halophyte; - indicates no related information.

crystallinum, *Medicago truncatula*, *Vicia faba*, and *Ipomoea batatas*, respectively (Jian et al., 2016; Cao et al., 2018; Alzahrani et al., 2019; Yang et al., 2020). The numbers of identified miRNA vary from dozens to hundreds, which may be due to the plant species, tissue specificity, development stage, and salt stress treatment methods. However, the large-scale identification of miRNAs under salt stress is very necessary and essential, and it lays a solid foundation for the further illumination of the miRNA network.

The expression levels of miRNA are up- or down-regulated by salinity stress. For instance, the expression of miR167 in panicle is negatively correlated with the increase of salt concentration (Jodder et al., 2018). In cotton, miR156, miR157, and miR172 are up-regulated at 0.25% NaCl, but their expression decreases with increasing salt concentration (Wang et al., 2013). The expression of miR164 also decreases with the increase of salt stress in maize (Shan et al., 2020). Macovei et al. found that the expression levels of Osa-miR414, -miR164e, and -miR408 significantly decrease with increased salt stress and further regulate the occurrence of genes to resist external salt stress by increasing the content of helicases (Macovei and Tuteja, 2012). In addition, some miRNAs are expressed differently in the early and late stages of salt stress treatment. For example, zma-miR169 displays initial up-regulation and subsequent down-regulation under salt stress (Luan et al., 2015). MiRNAs and their targets, such as cotton miR156-SPL2, miR159-TCP3, miR162-DCL1, miR395-APS1, and miR396-GRF1, exhibit negative correlation on expression levels (Wang et al., 2013).

Table 2 shows the expression levels of some representative miRNAs in plants under salt stress. MiR156, miR319, and miR528 are induced by salinity stress (Wang et al., 2013; Stief et al., 2014; Zhou and Luo, 2014; Xie F. et al., 2015; Yuan et al., 2015), while miR164 and miR397 are repressed (Macovei and Tuteja, 2012; Wang et al., 2013; Gupta et al., 2014; Qin et al., 2015; Xie F. et al., 2015; Lu et al., 2017), which were confirmed at least in two plant species (Table 2). Interestingly, the expression levels of nine miRNAs (e.g., miR159, miR168, miR169, miR172, miR393, miR395, miR396, miR399, and miR408) were promoted in some plant species but were inhibited in the other plant species. For instance, salinity stress increases the expression of miR393 in Arabidopsis thaliana, Triticum aestivum, and Agrostis stolonifera, but decreases the expression of miR393 in Oryza sativa, Gossypium sp., and Spartina alterniflora (Xia et al., 2012; Gupta et al., 2014; Iglesias et al., 2014; Qin et al., 2015; Xie F. et al., 2015; Zhao et al., 2019). Similarly, the expression of miR396 is increased by salinity in Solanum lycopersicum, Nicotiana tabacum, and Agrostis stolonifera but decreased in Arabidopsis thaliana, Oryza sativa, and Spartina alterniflora (Gao et al., 2010; Chen L. et al., 2015; Qin et al., 2015; Cao et al., 2016; Yuan et al., 2019). Up- or down-regulated gene expression usually suggests potential positive or negative functional role. However, the same miRNA has an opposite expression pattern in different plant species under salinity stress conditions, suggesting the same miRNA may play a diverse role in different plant species under salt stress. Moreover, the expression levels of some miRNAs, including miR167, miR390, miR394, miR402, and miR414 were only investigated in very few plant species under

salinity stress (**Table 2**). Considering some miRNAs displayed totally different expressions in different species, their expression patterns need to be investigated in more plant species under salinity stress conditions.

MIRNA STUDIES IN HALOPHYTE PALNTS

Glycophyte plants, such as *Arabidopsis* and rice, can only survive at salinity levels 0–100 mM NaCl without any capability to adapt to high salt stress (Horie et al., 2012), whereas some remarkable halophytes can tolerate salinity levels as high as >1000 mM NaCl (Flowers and Colmer, 2008; Munns and Tester, 2008). To an extent, the salt-sensitive glycophytes may not provide enough insights into salt tolerance mechanisms, and the halophytes may have more value for expanding our knowledge about salt resistance mechanisms. Therefore, the exploration of the role of halophyte miRNAs in salinity adaptation can offer compelling contributions for devising strategies of resistance improvement in crops through genetic engineering and plant selection programs. However, there are not many reports on the discovery of saltresponsive miRNAs in halophytes (**Table 1**).

The halophyte plant Suaeda maritima grows naturally along the seashore. The expression of S. maritima sma-miR2 and sma-miR5 increases under the influence of seawater, suggesting their metabolic regulatory roles specific to saline environments (Gharat and Shaw, 2015). Eutrema salsugineum, a close relative of A. thaliana, can thrive in high salt conditions ranging from 100 to 500 mM (Amtmann, 2009). E. salsugineum has been developed as a valuable model plant for salt stress-tolerance study because its salinity tolerance is extreme, its lifetime is short, its seed production is copious, and its transformation is easy (Zhu, 2000; Amtmann et al., 2005). Zhang et al. (2013) identified 246 miRNAs candidates in E. salsugineum. In addition, 26 conserved miRNAs and 4 novel miRNAs were found to display a significant response to salt stress in *E. salsugineum* (Zhang et al., 2013; Wu et al., 2016). Recently, 88 conserved miRNAs and 13 novel miRNAs were identified from Reaumuria soongorica seeds treated with various NaCl concentrations, providing a useful reference for salt resistance improvement of seed germination (Zhang H. et al., 2020). A total of 135 conserved miRNAs and the hairpin precursor of 12 novel mcr-miRNAs were found from M. crystallinum seedlings treated with 200 mM NaCl (Chiang et al., 2016). Oryza coarctata is a wild relative of rice and grown in saline water. Mondal et al. found 338 known and 95 novel miRNAs in salt-treated O. coarctata leaves, providing a miRNA-target networking that is involved in salt stress adaption (Mondal et al., 2015). Halostachys caspica (Bieb.), a salt-tolerant short shrub, can be naturally grown on the field with a salt concentration as high as 100 g/kg dry soil (Song et al., 2006). (Yang et al., 2015) found that 31 conserved miRNAs and 12 novel miRNAs were significantly up-regulated, and 48 conserved miRNAs and 13 novel miRNAs were significantly down-regulated by salinity stress in H. caspica. A set of miRNAs were also identified in a salt marsh monocot halophyte smooth cordgrass (Spartina alterniflora Loisel) and another plant named salt cress

TABLE 2 | The expression of representative plant miRNAs under salt stress.

MiRNA	Expression level								
	Arabidopsis thaliana	Oryza sativa	Solanum lycopersicum	Gossypium hirsutum	Zea mays	Triticum aestivum	Nicotiana tabacum	Agrostis stolonifera	Spartina alterniflora
MiR156	↑ Stief et al., 2014			Leaf (0-0.25%)↓, (0.25-0.5%)↑; Root (0-0.1%)↑, (0.2-0.25%)↓, (0.25-0.5%)↑ Wang et al., 2013	↑ Kang et al., 2020		∱ Kang et al., 2020		
MiR159				↑ Xie F. et al., 2015; Wang et al., 2013		↓ Wang B. et al., 2014			
MiR164	↓ Lu et al., 2017	↓ Macovei and Tuteja, 2012		↓ Xie F. et al., 2015	↓ Fu et al., 2017	↓ Gupta et al., 2014			↓ Qin et al., 2015
MiR167			↓ Jodder et al., 2018	Leaf (0-0.1%)↑; Root (0.1-0.5%)↓, (0-0.1%)↑, (0.1-0.5%)↓Wang et al., 2013					
MiR168	↑ Ding et al., 2009					↓ Gupta et al., 2014			↓ Qin et al., 2015
MiR169	↑ Zhao et al., 2009			↓ Yin et al., 2012	↓ (1-48h), ↑ (15d) Luan et al., 2014				↓ Qin et al., 2015
MiR172				Leaf ↓; Root (0-0.1%)↓, (0.1-0.25%)↑, (0.25-0.5%)↓ Wang et al., 2013		↑ Gupta et al., 2014			
MiR319				↑ Xie F. et al., 2015				↑ Zhou and Luo, 2014	
MiR390				↓ Yin et al., 2017					
MiR393	↑ Iglesias et al., 2014	↓ Xia et al., 2012		↓ Xie F. et al., 2015		↑ Gupta et al., 2014		↑ Zhao et al., 2019	↓ Qin et al., 2015
MiR394a	↑ Song et al., 2013								
MiR394b	↑ Song et al., 2013								
MiR395				Leaf (0-0.1%)↑; Root (0.1-0.5%)↓, (0-0.1%)↑, (0.1-0.5%)↓, Wang et al., 2013			↑ Frazier et al., 2011		↓ Qin et al., 2015
MiR396	↓ Gao et al., 2010	↓ Yuan et al., 2019	↑ Cao et al., 2016	↑ Wang et al., 2013			↑ Chen L. et al., 2015	↑ Yuan et al., 2019	↓ Qin et al., 2015
MiR397				Leaf (0-0.25%) ↓, (0.25-0.5%) ↑ Wang et al., 2013		↓ Gupta et al., 2014			
MiR398	↓ Jagadeeswaran et al., 2009			Leaf (0-0.25%)↓, (0.25-0.5%)↑; Root (0-0.1%)↑, (0.1-0.5%) ↓ Wang et al., 2013		↓ Wang B. et al., 2014	∱Leng et al., 2017		
MiR399	↑ Guddeti et al., 2005			↓ Wang et al., 2013					↓ Qin et al., 2015
MiR402	↑ Kim et al., 2010a								
MiR408	↑ Guo et al., 2018	↓ Macovei and Tuteja, 2012		↓ Xie F. et al., 2015			↑ Guo et al., 2018		
MiR414		↓ Macovei and Tuteja, 2012							
MiR528		↑ Yuan et al., 2015						↑ Yuan et al., 2015	

 \uparrow and \downarrow indicate the expressions of miRNAs are increased and decreased, respectively.% indicates the salt concentration.

TABLE 3 | The functions of miRNA under salt stress.

Species	Common Name	MiRNA name	Target gene	Salt tolerance phenotype	Method/Technology	References
Malus domestica	Apple	MiR156a	MdSPL13	Overexpressing MiR156a weakened salt resistance in apple, whereas MdSPL13 strengthened	MiR156a and SPL13 overexpression	Ma et al., 2020
Populus euphratica		Peu-miR164	PeNAC070, PeNAC012, PeNAC028	Promoted lateral root development, delayed stem elongation, and increased sensitivity to drought and salt stresses in PeNAC070 transgenic plants	Overexpress PeNAC070 in <i>Arabidopsis</i>	Lu et al., 2017
Glycine max	Soybean	MiR169	GmNFYA3	Reduced leaf water loss, enhanced drought tolerance and increased sensitivity to high salinity and exogenous ABA in GmNFYA3 overexpression plants	Overexpress GmNFYA3 in <i>Arabidopsis</i>	Ni et al., 2013
Glycine max	Soybean	Gma-miR172c	Glyma01g39520	Soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic <i>Arabidopsis thaliana</i>	Overexpress of soybean miR172c	Li et al., 2016
Glycine max	Soybean	MiR172c	NNC1	Overexpression and knockdown of miR172c activity resulted in substantially increased and reduced root sensitivity to salt stress, respectively	Overexpress miR172c and knockdown miR172c	Sahito et al., 2017
Agrostis stolonifera	Creeping bentgrass	Osa-miR319a	AsPCF5, AsPCF6, AsPCF8, AsTCP14	Enhanced drought, salt tolerance, increased leaf wax content and water retention, but reduced sodium uptake	Overexpressing Osa-miR319a in creeping bentgrass	Zhou and Luo, 2014; Zhou et al., 2013
Panicum virgatum	Switchgrass	Osa-miR319b	PvPCF5	Osa-miR319b positively regulated ET synthesis and salt tolerance	Overexpress Osa- miR319b, target mimic miR319 in swithgrass	Liu et al., 2019
<i>Populus</i> spp.	Poplar	MiR390	ARF3.1, ARF3.2, ARF4	Stimulated LR development and increased salt tolerance	Overexpress and knockdown (STTM) miR390 in poplar	He et al., 2018
Helianthus tuberosus	Jerusalem artichoke	MiR390	TAS3, ARF3/4	May play an active role in salt tolerance	Bioinformatics, gene cloning and RT-qPCR analyses	Wen et al., 2020
Arabidopsis thaliana	Arabidopsis	MiR393	TIR1, AFB2	MiR393ab mutant shows reduced inhibition of LR number and length, increased levels of ROS in LRs, and reduced APX enzymatic activity	miR393ab double mutant was obtained from the cross of miR393a-1 and miR393b-1	Iglesias et al., 2014
Arabidopsis thaliana	Arabidopsis	MiR393	TIR1	Enhanced salt tolerance in mTIR1 transgenic plant	Overexpressing miR393-resistant form mTIR1 in <i>Arabidopsis</i>	Chen Z. et al., 2015
Oryza sativa	Rice	OsmiR393	OsTIR1, OsAFB2	Reduced tolerance to salt and drought, increased tillers and early flowering	Overexpressing OsmiR393 in rice	Xia et al., 2012
Oryza sativa	Rice	Osa-miR393	LOC_Os02g06260, LOC_Os05g41010, LOC_Os05g05800	Transgenic plants were more sensitive to salt and alkali treatment	Overexpressing Osa-miR393 in rice and <i>Arabidopsis</i>	Gao et al., 2011
Agrostis stolonifera	Creeping bentgrass	Osa-miR393a	AsTIR1, AsAFB2	Improved salt stress tolerance associated with increased uptake of potassium	Overexpressing Osa-miR393a in creeping bentgrass	Zhao et al., 2019
Arabidopsis thaliana	Arabidopsis	MiR394a/b	LCR	MiR394a/b over-expression and <i>lcr</i> (LCR loss of function) mutant plants are hypersensitive to salt stress, but LCR over-expressing plants display the salt-tolerant phenotype	Overexpressing miR394a/b and LCR in <i>Arabidopsis</i>	Song et al., 2013
Arabidopsis thaliana	Arabidopsis	MiR395c, MiR395e	APS1, APS3, APS4, SULTR2;1	Overexpression of miR395c or miR395e retarded and accelerated, respectively, the seed germination of <i>Arabidopsis</i> under high salt or dehydration stress conditions	Overexpression of miR395c or miR395e in <i>Arabidopsis</i>	Kim et al., 2010b
Oryza sativa	Rice	Osa-miR396c	LOC_Os01g32750, LOC_Os02g45570, LOC_Os04g5119	Reduced salt and alkali stress tolerance	Overexpressing osa-miR396c in rice and <i>Arabidopsis</i>	Gao et al., 2010

(Continued)

TABLE 3 | Continued

Species	Common Name	MiRNA name	Target gene	Salt tolerance phenotype	Method/Technology	References
Agrostis stolonifera	Creeping bentgrass	Osa- miR396c	GRF	Enhanced salt tolerance associated with improved water retention, increased chlorophyll content, cell membrane integrity, and Na ⁺ exclusion during high salinity exposure	Overexpressing Osa-miR396c in creeping bentgrass	Yuan et al., 2019
Solanum pimpinellifolium	Tomato	Sp-miR396a- 5p	GRF1,GRF3, GRF7,GRF8	Enhanced its tolerance to salt, drought and cold stresses	Overexpressiing Sp-miR396a-5p in tobacco	Chen L. et al., 2015
Arabidopsis thaliana	Arabidopsis	MiR399f	ABF3, CSP41b	Plants overexpressing miR399f exhibited enhanced tolerance to salt stress, but hypersensitivity to drought	Overexpressing miR399f in <i>Arabidopsis</i>	Baek et al., 2016
Arabidopsis thaliana	Arabidopsis	MiR402	DEMETER-LIKE protein3	Accelerated the seed germination and seedling growth of <i>Arabidopsis</i> under salt stress conditions	Overexpression of miR402 in <i>Arabidopsis</i>	Kim et al., 2010a
Arabidopsis thaliana	Arabidopsis	MiR408	Plantacynin, Cupredoxin, Uclacyanin, LAC3	Improved tolerance to salinity, cold and oxidative stress, but enhanced sensitivity to drought and osmotic stress	Overexpressing miR408 in <i>Arabidopsis</i>	Ma et al., 2015
Triticum aestivum	Wheat	Tae-miR408	TaCLP1	Significantly increased cell growth under high salinity and Cu ²⁺ stresses	Overexpressing TaCLP1 in yeast	Feng et al., 2013
Triticum aestivum	Wheat	TaemiR408	TaCP,TaMP,TaBCP, TaFP,TaKRP,TaABP	Enhanced stress tolerance, improved phenotype, biomass, and photosynthesis behavior under salt treatments	Overexpressing TaemiR408 in tobacco	Bai et al., 2018
Salvia miltiorrhiza	-	Sm-miR408	Copper-binding proteins, Laccase	Promoted seed germination and reduced the accumulation of ROS under salt stress, positive responses to salt tolerance	Overexpressing Sm-miR408 in tobacco	Guo et al., 2018
<i>Gossypium</i> spp.	Cotton	MiR414c	GhFSD1	Overexpressing miR414c increased sensitivity to salinity stress, yielding a phenotype similar to that of GhFSD1-silenced cotton	Silence <i>GhFSD1</i> in cotton, overexpressing ghr- miR414c and <i>GhFSD1</i> in <i>Arabidopsis</i>	Wang et al., 2019
Arabidopsis thaliana	Arabidopsis	MiR417	At1g04150, At1g17730, At5g66460, At5g49680, At4g11130, At1g48310, At3g06400, At1g19850	Seed germination of the transgenic plants was retarded under high salt condition	Overexpress miRNA417 in <i>Arabidopsis</i>	Jung and Kang, 2007
Agrostis stolonifera	Creeping bentgrass	Osa-miR528	ASAAO, ASCBP1	Shortened internodes, increased tiller number, and upright growth, enhances tolerance to salinity stress and nitrogen starvation	Overexpressing Osa-miR528 in creeping bentgrass	Yuan et al., 2015
Gossypium hirsutum	Cotton	MiRNVL5	GhCHR	Arabidopsis constitutively expressing miRNVL5 showed hypersensitivity to salt stress	Ectopic expression of miRNVL5 and GhCHR in <i>Arabidopsis</i>	Gao et al., 2016

(*Thellungiella salsuginea*) (Zhang et al., 2013; Zandkarimi et al., 2015). These identified miRNAs in halophytes can be further projected as potential miRNAs for developing salt tolerance in glycophyte crops.

FUNCTIONS OF MIRNA UNDER SALT STRESS

Numerous plant miRNAs have been identified under salt stress, but not many miRNAs have been functionally characterized in detail. **Table 3** shows us the miRNAs responsive to salt stress, and these which were functionally studied by transgenetic approaches, such as overexpression and knocked down/out of the miRNA itself or its targets (**Table 3**). For instance, miR394a/b over-expression and *lcr* (functional loss of miR394 target LCR) mutant plants are hypersensitive to salt stress, but LCR over-expressing plants display the salt-tolerant phenotype (Song et al., 2013). MiR393 is a comparative well-studied plant miRNA in different plant species, including *Arabidopsis*, rice, and creeping bentgrass. MiR393ab mutant shows reduced inhibition of LR (lateral root) number and length, increased levels of ROS in LRs, and reduced APX enzymatic activity (Iglesias et al., 2014). Over-expressing Osa-mR393 in rice and *Arabidopsis* reduces tolerance to salt and drought and increases tillers and early flowering (Gao et al., 2011; Xia et al., 2012), while over-expressing miR393-resistant form mTIR1 in Arabidopsis enhances salt tolerance in mTIR1 transgenic plant (Chen Z. et al., 2015). However, over-expressing Osa-miR393a in creeping bentgrass improves salt stress tolerance associated with the increased uptake of potassium (Zhao et al., 2019), suggesting that the same miRNA or different miRNA from the same miRNA family may have different promotion and inhibition effects on salt tolerance in different plants. A similar situation was found for miRNA396, that is, over-expressing Osa-miR396c reduced salt and alkali stress tolerance in rice and Arabidopsis (Gao et al., 2010), but enhanced salt tolerance associated with improved water retention, increased chlorophyll content, cell membrane integrity, and Na⁺ exclusion during high salinity exposure in creeping bentgrass (Yuan et al., 2019). Additionally, over-expressing Sp-miR396a-5p in tobacco enhanced its tolerance to salt, drought, and cold stresses (Chen L. et al., 2015). The overexpression of miR395c or miR395e retarded and accelerated, respectively, the seed germination of Arabidopsis under high salt or dehydration stress conditions (Kim et al., 2010b).

Over-expressing miR156a weakens salt resistance in apples, whereas its target gene MdSPL13 strengthens salt resistance (Ma et al., 2020). Transgenic Arabidopsis plants over-expressing the target gene PeNAC070 of miR164 exhibits promoted LR development, delayed stem elongation, and increased sensitivity to salt stress (Lu et al., 2017). Over-expressing the target gene GmNFYA3 of miR169 reduces leaf water loss, enhances drought tolerance, and increases sensitivity to high salinity and exogenous ABA (Ni et al., 2013). Over-expression of miR172c substantially increased the sensitivity of plant roots to salt stress, and the removal of miR172c would decrease the sensitivity of plant roots to salt stress, respectively (Li et al., 2016; Sahito et al., 2017). Osa-miR319a and mi319b positively regulate salt tolerance in creeping bentgrass and swithgrass, respectively (Zhou et al., 2013; Zhou and Luo, 2014; Liu et al., 2019). MiR390 increases LR growth under salt stress via the auxin pathway (He et al., 2018). Additionally, over-expressing miR399f, miR402, and miR408 in Arabidopsis, Tae-miR408 and Sm-MIR408 in tobacco, and Osa-miR528 in creeping bentgrass increases salinity tolerance (Kim et al., 2010a; Feng et al., 2013; Ma et al., 2015; Yuan et al., 2015; Baek et al., 2016; Bai et al., 2018; Guo et al., 2018), indicating that these miRNAs enhance plant salt stress adaptation. By contrast, over-expressing miR414c, miR417, and miRNVL5 increases sensitivity to salinity stress (Jung and Kang, 2007; Gao et al., 2016; Wang et al., 2019). Collectively, these results suggest that the agronomic trait of salinity stress tolerance could be enhanced by the manipulation of miRNA or its target.

DISCUSSION AND FUTURE PROSPECTS

In the face of soil salinization, the cultivation of saline-tolerant plants is one of the most economical and effective technologies for biological improvement. Understanding the molecular mechanisms of miRNAs in abiotic stress provides an effective tool for plant breeding, especially in the context of climate and human-induced environmental changes. The essential regulating role of miRNAs in plant salt stress response reveals that miRNA could be applied for salt resistance improvement in crops. The salinity resistance of transgenic plants can be remarkably increased by over-expressing miRNA or knocking down/out the target gene of miRNA. Alternatively, the salinity resistance can be promoted by knocking down/out miRNA, which has a negative effect on salinity response, or over-expressing the target gene of the miRNA. Considering that one miRNA may have more than one targets that would cause totally different effects on plants, we should carefully consider the miRNA effects on crop growth, development, and the sensitivity to other abiotic stresses when optimizing the salinity resistance by miRNA manipulation.

The homologous tetraploid was more tolerant to salt stress than the diploid. Moreover, novel miRNAs induced by genome replication were identified, suggesting salt-responsive miRNAs could be screened by comparative analysis on the plant materials with different ploidy and salinity stress tolerance to explain the key roles of miRNA in achieving better salt stress tolerance. Generally, miRNAs are evolutionarily conserved in their functions in response to salt stress. However, the same miRNAs or different miRNAs from the same miRNA family may have different plants. Therefore, the function of some miRNAs should be widely studied in different species, especially in crops.

Moreover, considering the significant number of salt- stressresponsive miRNAs identified by using powerful technology (such as high throughput sequencing), only a few miRNAs have been functionally characterized. Therefore, after the identification of plant miRNAs under salinity stress, further studies should be focused on the exploration of function, which will be very crucial for the salt tolerance improvement through miRNA manipulation in crops. Additionally, miRNAs may affect the plant stress tolerance through their interaction with ABA biosynthesis and the regulation of auxin response factors, The investigation of the crosstalk between miRNA and plant hormone will thus expand our knowledge and understanding of the role of plant miRNAs under stress conditions. Finally, the construction of the plant miRNA network in salt stress response will shed light on the salinity resistance improvement through miRNA manipulation in crops.

AUTHOR CONTRIBUTIONS

TX conceived and designed this manuscript. TX, LZ, and ZY wrote the manuscript. YW and TD helped to revise the manuscript. All authors read and approved the manuscript.

FUNDING

This work was supported jointly by the projects of the National Natural Science Foundation of China (32072117 and 31701481), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (19KJA510010), and the Key R&D Program of Xuzhou-Modern Agriculture (KC20039).

REFERENCES

- Abdel Latef, A. A., Abu Alhmad, M. F., Kordrostami, M. F., Abo-Baker, A. E., and Zakir, A. (2020). Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J. Plant Growth Regul. 39, 1293–1306. doi: 10.1007/ s00344-020-10065-9
- Abdel Latef, A. A., Omer, A. M., Badawy, A. A., Osman, M. S., and Ragaey, M. M. (2021). Strategy of salt tolerance and interactive impact of *Azotobacter chroococcum* and/or *Alcaligenes faecalis* inoculation on canola (*Brassica napus* L.). plants grown in saline soil. *Plants* 10:110. doi: 10.3390/plants100 10110
- Alzahrani, S. M., Alaraidh, I. A., Khan, M. A., Migdadi, H. M., Alghamdi, S. S., and Alsahli, A. A. (2019). Identification and characterization of salt-responsive microRNAs in *Vicia faba* by high-throughput sequencing. *Genes* 10:303. doi: 10.3390/genes10040303
- Amtmann, A. (2009). Learning from evolution: thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. *Mol. Plant* 2, 3–12. doi: 10.1093/mp/ssn094
- Amtmann, A., Bohnert, H. J., and Bressan, R. A. (2005). Abiotic stress and plant genome evolution. Search for new models. *Plant Physiol.* 138, 127–130. doi: 10.1104/pp.105.059972
- Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., et al. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physiobiochemical characteristics of tomato grown under salinity stress. *Plants* 10:388. doi: 10.3390/plants10020388
- Baek, D., Chun, H. J., Kang, S., Shin, G., Park, S. J., Hong, H., et al. (2016). A Role for *Arabidopsis* miR399f in salt, drought, and ABA signaling. *Mol. Cells* 39, 111–118. doi: 10.14348/molcells.2016.2188
- Bai, Q., Wang, X., Chen, X., Shi, G., Liu, Z., Guo, C., et al. (2018). Wheat miRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes. *Front. Plant Sci.* 9:499. doi: 10.3389/fpls.2018.00499
- Bhardwaj, A. R., Joshi, G., Pandey, R., Kukreja, B., Goel, S., Jagannath, A., et al. (2014). A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in *Brassica juncea (Czern)* L. *PLoS One* 9:e92456. doi: 10.3389/fpls.2018.00499
- Bielewicz, D., Kalak, M., Kalyna, M., Windels, D., Barta, A., Vazquez, F., et al. (2013). Introns of plant pri-miRNAs enhance miRNA biogenesis. *EMBO Rep.* 14, 622–628. doi: 10.1038/embor.2013.62
- Bottino, M. C., Rosario, S., Grativol, C., Thiebaut, F., Rojas, C. A., Farrineli, L., et al. (2013). High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. *PLoS One* 8:e59423. doi: 10.1371/ journal.pone.0059423
- Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., et al. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. *Science* 30 320, 1185–1190. doi: 10.1126/science. 1159151
- Budak, H., and Akpinar, B. A. (2015). Plant miRNAs: biogenesis, organization and origins. *Funct. Integr. Genomics* 15, 523–531. doi: 10.1007/s10142-015-0451-2
- Butcher, K., Wick, A. F., Desutter, T., Chatterjee, A., and Harmon, J. (2016). Soil salinity: a threat to global food security. *Agron. J.* 108, 2189–2200. doi: 10.2134/ agronj2016.06.0368
- Cao, C., Long, R., Zhang, T., Kang, J., Wang, Z., Wang, P., et al. (2018). Genomewide identification of microRNAs in response to salt/alkali stress in *Medicago truncatula* through high-throughput sequencing. *Int. J. Mol. Sci.* 19:4076. doi: 10.3390/ijms19124076
- Cao, D., Wang, J., Ju, Z., Liu, Q., Li, S., Tian, H., et al. (2016). Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. *Plant Sci.* 247, 1–12. doi: 10.1016/j. plantsci.2016.02.012
- Chandran, V., Wang, H., Gao, F., Cao, X. L., Chen, Y. P., Li, G. B., et al. (2019). MiR396-OsGRFs module balances growth and rice blast disease-resistance. *Front. Plant Sci.* 9:1999. doi: 10.3389/fpls.2018.01999
- Chen, L., Luan, Y., and Zhai, J. (2015). Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility

to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep. 34, 2013–2025. doi: 10.1007/s00299-015-1847-0

- Chen, X. (2009). Small RNAs and their roles in plant development. *Annu. Rev. Cell Dev. Biol.* 25, 21–44. doi: 10.1146/annurev.cellbio.042308.113417
- Chen, Z., Hu, L., Han, N., Hu, J., Yang, Y., Xiang, T., et al. (2015). Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol. 56, 73–83. doi: 10.1093/pcp/ pcu149
- Chiang, C. P., Yim, W. C., Sun, Y. H., Ohnishi, M., Mimura, T., Cushman, J. C., et al. (2016). Identification of ice plant (*Mesembryanthemum crystallinum* L.) microRNAs using RNA-seq and their putative roles in high salinity responses in seedlings. *Front. Plant Sci.* 7:1143. doi: 10.3389/fpls.2016.01143
- Deng, P., Wang, L., Cui, L., Feng, K., Liu, F., Du, X., et al. (2015). Global identification of microRNAs and their targets in barley under salinity stress. *PLoS One* 10:e0137990. doi: 10.1371/journal.pone.0137990
- Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., and Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. *Ann. Bot.* 103, 29–38. doi: 10.1093/aob/mcn205
- Dong, Z., Shi, L., Wang, Y., Chen, L., Cai, Z., Wang, Y., et al. (2013). Identification and dynamic regulation of microRNAs involved in salt stress responses in functional soybean nodules by high-throughput sequencing. *Int. J. Mol. Sci.* 14, 2717–2738. doi: 10.3390/ijms14022717
- Du, Q. G., Wang, K., Zou, C., Xu, C., and Li, W. X. (2018). The *PILNCR1*-miR399 regulatory module is important for low phosphate tolerance in maize. *Plant Physiol.* 177, 1743–1753. doi: 10.1104/pp.18.00034
- Fan, G., Li, X., Deng, M., Zhao, Z., and Yang, L. (2016). Comparative analysis and identification of miRNAs and their target genes responsive to salt stress in diploid and tetraploid *Paulownia fortunei* seedlings. *PLoS One* 11:e0149617. doi: 10.1371/journal.pone.0149617
- FAO (2017). *The Future of Food and Agriculture Trends and Challenges*. Rome: Food and Agriculture Organization of the United Nations.
- Feng, H., Zhang, Q., Wang, Q., Wang, X., Liu, J., Li, M., et al. (2013). Target of tae-miR408, a chemocyanin-like protein gene (*TaCLP1*), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. *Plant Mol. Biol.* 83, 433–443. doi: 10.1007/s11103-013-0101-9
- Feng, J., Wang, J., Fan, P., Jia, W., Nie, L., Jiang, P., et al. (2015). High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol. 15:63. doi: 10.1186/ s12870-015-0451-3
- Feng, K., Nie, X., Cui, L., Deng, P., Wang, M., and Song, W. (2017). Genome-Wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (*Triticum turgidum* ssp. dicoccoides). *Genes* 8:156. doi: 10.3390/genes8060156
- Flowers, T. J., and Colmer, T. D. (2008). Salinity tolerance in halophytes. *New Phytol.* 179, 945–963. doi: 10.1111/j.1469-8137.2008.02531.x
- Frazier, T. P., Sun, G., Burklew, E., and Zhang, B. (2011). Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. *Mol. Biotechnol.* 49, 159–165. doi: 10.1007/s12033-011-9387-5
- Fu, R., Zhang, M., Zhao, Y., He, X., Ding, C., Wang, S., et al. (2017). Identification of salt tolerance-related microRNAs and their targets in maize (*Zea mays* L.) using high-throughput sequencing and degradome analysis. *Front. Plant Sci.* 8:864. doi: 10.3389/fpls.2017.00864
- Gao, P., Bai, X., Yang, L., Iv, D., Li, Y., Cai, H., et al. (2010). Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. *Planta* 231, 991–1001. doi: 10.1007/s00425-010-1104-2
- Gao, P., Bai, X., Yang, L., Lv, D., Pan, X., Li, Y., et al. (2011). Osa-MIR393: a salinity- and alkaline stress-related microRNA gene. *Mol. Biol. Rep.* 38, 237–242. doi: 10.1007/s11033-010-0100-8
- Gao, S., Yang, L., Zeng, H. Q., Zhou, Z. S., Yang, Z. M., Li, H., et al. (2016). A cotton miRNA is involved in regulation of plant response to salt stress. *Sci. Rep.* 6:19736. doi: 10.1038/srep19736
- Gharat, S. A., and Shaw, B. P. (2015). Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants. BMC Plant Biol. 15:301. doi: 10.1186/s12870-015-0682-3
- Gramzow, L., and Theißen, G. (2019). Plant miRNA conservation and evolution. *Methods Mol. Biol.* 1932, 41–50. doi: 10.1007/978-1-4939-9042-9_3

- Guddeti, S., Zhang, D. C., Li, A. L., Leseberg, C. H., Kang, H., Li, X. G., et al. (2005). Molecular evolution of the rice miR395 gene family. *Cell Res.* 15, 631–638. doi: 10.1038/sj.cr.7290333
- Guo, X., Niu, J., and Cao, X. (2018). Heterologous expression of salvia miltiorrhiza microRNA408 enhances tolerance to salt stress in *Nicotiana benthamiana*. *Int. J. Mol. Sci.* 19:3985. doi: 10.3390/ijms19123985
- Gupta, O. P., Meena, N. L., Sharma, I., and Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. *Mol. Biol. Rep.* 41, 4623–4629. doi: 10.1007/s11033-014-3333-0
- Haas, U., Sczakiel, G., and Laufer, S. D. (2012). MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3'-UTR via altered RNA structure. *RNA Biol.* 9, 924–937. doi: 10.4161/rna.20497
- Hackenberg, M., Shi, B. J., Gustafson, P., and Langridge, P. (2013). Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. *BMC Plant Biol.* 13:214. doi: 10.1186/1471-2229-13-214
- Han, H., Wang, Q., Wei, L., Liang, Y., Dai, J., Xia, G., et al. (2018). Small RNA and degradome sequencing used to elucidate the basis of tolerance to salinity and alkalinity in wheat. *BMC Plant Biol.* 18:195. doi: 10.1186/s12870-018-1415-1
- He, F., Xu, C., Fu, X., Shen, Y., Guo, L., Leng, M., et al. (2018). The microRNA390/trans- acting short interfering RNA3 module mediates lateral root growth under salt stress via the auxin pathway. *Plant Physiol*. 177, 775–791. doi: 10.1104/pp.17.01559
- Horie, T., Karahara, I., and Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. *Rice* 5:11. doi: 10.1186/1939-8433-5-11
- Iglesias, M. J., Terrile, M. C., Windels, D., Lombardo, M. C., Bartoli, C. G., Vazquez, F., et al. (2014). MiR393 regulation of auxin signaling and redoxrelated components during acclimation to salinity in *Arabidopsis. PLoS One* 9:e107678. doi: 10.1371/journal.pone.0107678
- Jagadeeswaran, G., Saini, A., and Sunkar, R. (2009). Biotic and abiotic stress downregulate miR398 expression in *Arabidopsis. Planta* 229, 1009–1014. doi: 10. 1007/s00425-009-0889-3
- Jeyaraj, A., Chandran, V., and Gajjeraman, P. (2014). Differential expression of microRNAs in dormant bud of tea [*Camellia sinensis* (L.) O. Kuntze]. *Plant Cell Rep.* 33, 1053–1069. doi: 10.1007/s00299-014-1589-4
- Jian, H., Wang, J., Wang, T., Wei, L., Li, J., and Liu, L. (2016). Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. *Front. Plant Sci.* 7:658. doi: 10.3389/fpls.2016.00658
- Jodder, J., Das, R., Sarkar, D., Bhattacharjee, P., and Kundu, P. (2018). Distinct transcriptional and processing regulations control miR167a level in tomato during stress. *RNA Biol.* 15, 130–143. doi: 10.1080/15476286.2017.1391438
- Jones-Rhoades, M. W., Bartel, D. P., and Bartel, B. (2006). MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53. doi: 10.1146/ annurev.arplant.57.032905.105218
- Jung, H. J., and Kang, H. (2007). Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol. Biochem. 45, 805–811. doi: 10.1016/j.plaphy.2007.07.015
- Kang, T., Yu, C. Y., Liu, Y., Song, W. M., Bao, Y., Guo, X. T., et al. (2020). Subtly manipulated expression of zmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. *Front. Plant Sci.* 10:1664. doi: 10.3389/fpls.2019.01664
- Kawashima, C. G., Yoshimoto, N., Maruyama-Nakashita, A., Tsuchiya, Y. N., Saito, K., Takahashi, H., et al. (2009). Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. *Plant J.* 57, 313–321. doi: 10.1111/j.1365-313X.2008.03690.x
- Khandal, H., Parween, S., Roy, R., Meena, M. K., and Chattopadhyay, D. (2017). MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. *Sci. Rep.* 7:4632. doi: 10.1038/s41598-017-04906-z
- Kim, J. Y., Kwak, K. J., Jung, H. J., Lee, H. J., and Kang, H. (2010a). MicroRNA402 affects seed germination of *Arabidopsis thaliana* under stress conditions via targeting demeter- like protein3 mRNA. *Plant Cell Physiol.* 51, 1079–1083. doi: 10.1093/pcp/pcq072
- Kim, J. Y., Lee, H. J., Jung, H. J., Maruyama, K., Suzuki, N., and Kang, H. (2010b). Overexpression of microRNA395c or 395e affects differently the seed germination of *Arabidopsis thaliana* under stress conditions. *Planta* 232, 1447– 1454. doi: 10.1007/s00425-010-1267-x

- Kim, W., Ahn, H. J., Chiou, T. J., and Ahn, J. H. (2011). The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in *Arabidopsis thaliana*. *Mol. Cells* 32, 83–88. doi: 10. 1007/s10059-011-1043-1
- Kohli, D., Joshi, G., Deokar, A. A., Bhardwaj, A. R., Agarwal, M., Katiyar-Agarwal, S., et al. (2014). Identification and characterization of Wilt and salt stressresponsive microRNAs in chickpea through high-throughput sequencing. *PLoS One* 9:e108851. doi: 10.1371/journal.pone
- Koroban, N. V., Kudryavtseva, A. V., Krasnov, G. S., Sadritdinova, A. F., Fedorova, M. S., Snezhkina, A. V., et al. (2016). The role of microRNA in abiotic stress response in plants. *Mol. Biol.* 50, 387–394. doi: 10.7868/S00268984160 20105
- Lee, R. C., and Ambros, V. (2001). An extensive class of small RNAs in *Caenorhabditis elegans*. *Science* 294, 862–864. doi: 10.1126/science.1065329
- Lee, W. S., Gudimella, R., Wong, G. R., Tammi, M. T., Khalid, N., and Harikrishna, J. A. (2015). Transcripts and microRNAs responding to salt stress in musa acuminata colla (AAA Group) cv. berangan roots. *PLoS One* 10:e0127526. doi: 10.1371/journal.pone.0127526
- Leng, X., Wang, P., Zhu, X., Li, X., Zheng, T., Shangguan, L., et al. (2017). Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance. *Funct. Integr. Genomics* 17, 697–710. doi: 10.1007/s10142-017-0565-9
- Li, W., Wang, T., Zhang, Y., and Li, Y. (2016). Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic *Arabidopsis thaliana*. J. Exp. Bot. 67, 175–194. doi: 10.1093/jxb/ erw404
- Lian, C. L., Yao, K., Duan, H., Li, Q., Liu, C., Yin, W. L., et al. (2018). Exploration of ABA responsive miRNAs reveals a new hormone signaling crosstalk pathway regulating root growth of *populus euphratica*. *Int. J. Mol. Sci.* 19:1481. doi: 10.3390/ijms19051481
- Liu, B., and Sun, G. (2017). MicroRNAs contribute to enhanced salt adaptation of the autopolyploid *Hordeum bulbosum* compared with its diploid ancestor. *Plant J*. 91(1):57–69. doi: 10.1111/tpj.13546
- Liu, H., Qin, C., Chen, Z., Zuo, T., Yang, X., Zhou, H., et al. (2014). Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. *BMC Genomics* 15:25. doi: 10.1186/1471-2164-15-25
- Liu, Y., Li, D., Yan, J., Wang, K., Luo, H., and Zhang, W. (2019). MiR319 mediated salt tolerance by ethylene. *Plant Biotechnol. J.* 17, 2370–2383. doi: 10.1111/pbi. 13154
- Llave, C., Kasschau, K. D., Rector, M. A., and Carrington, J. C. (2002). Endogenous and silencing-associated small RNAs in plants. *Plant Cell* 14, 1605–1619. doi: 10.1105/tpc.003210
- Long, R. C., Li, M. N., Kang, J. M., Zhang, T. J., Sun, Y., and Yang, Q. C. (2015). Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of *Medicago sativa* and *Medicago truncatula*. *Physiol. Plant* 154, 13–27. doi: 10.1111/ppl.12266
- Lu, X., Dun, H., Lian, C., Zhang, X., Yin, W., and Xia, X. (2017). The role of peu-miR164 and its target *PeNAC* genes in response to abiotic stress in *Populus euphratica*. *Plant Physiol. Biochem.* 115, 418–438. doi: 10.1016/j.plaphy.2017.04.009
- Luan, M., Xu, M., Lu, Y., Zhang, L., Fan, Y., and Wang, L. (2015). Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. *Gene* 55, 178–185. doi: 10.1016/j.gene.2014. 11.001
- Luan, M., Xu, M., Lu, Y., Zhang, Q., Zhang, L., Zhang, C., et al. (2014). Familywide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. *PLoS One* 9:e91369. doi: 10.1371/journal.pone.00 91369
- Lv, S., Nie, X., Wang, L., Du, X., Biradar, S. S., Jia, X., et al. (2012). Identification and characterization of microRNAs from barley (*Hordeum vulgare* L.) by high-throughput sequencing. *Int. J. Mol. Sci.* 13, 2973–2984. doi: 10.3390/ ijms13032973
- Ma, C., Burd, S., and Lers, A. (2015). MiR408 is involved in abiotic stress responses in Arabidopsis. Plant J. 84, 169–187. doi: 10.1111/tpj.12999
- Ma, Y., Xue, H., Zhang, F., Jiang, Q., Yang, S., Yue, P., et al. (2020). The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. *Plant Biotechnol. J.* 9, 311–323. doi: 10.1111/pbi.13464

- Macovei, A., and Tuteja, N. (2012). MicroRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (*Oryza sativa* L.). BMC Plant Biol. 12:183. doi: 10.1186/1471-2229-12-183
- Mekonnen, M. M., and Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Sci. Adv. 2:e1500323. doi: 10.1126/sciadv.1500323
- Meng, Y., Mao, J. P., Tahir, M. M., Wang, H., Wei, Y. H., Zhao, C. D., et al. (2020). Mdm-miR160 participates in auxin-induced adventitious root formation of apple rootstock. *Sci. Horticuamsterdam* 270:109442.
- Mette, M. F., van der Winden, J., Matzke, M., and Matzke, A. J. (2002). Short RNAs can identify new candidate transposable element families in *Arabidopsis. Plant Physiol.* 130, 6–9. doi: 10.1104/pp.007047
- Mondal, T. K., Ganie, S. A., and Debnath, A. B. (2015). Identification of novel and conserved miRNAs from extreme halophyte, *Oryza coarctata*, a wild relative of rice. *PLoS One* 10:e0140675. doi: 10.1371/journal.pone.0140675
- Mondal, T. K., Panda, A. K., Rawal, H. C., and Sharma, T. R. (2018). Discovery of microRNA-target modules of African rice (*Oryza glaberrima*) under salinity stress. *Sci. Rep.* 8:570. doi: 10.1038/s41598-017-18206-z
- Morton, M. J. L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y., Negrão, S., et al. (2019). Salt stress under the scalpel-dissecting the genetics of salt tolerance. *Plant J.* 97, 148–163. doi: 10.1111/tpj.14189
- Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911
- Ni, Z., Hu, Z., Jiang, Q., and Zhang, H. (2013). *GmNFYA3*, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. *Plant Mol. Biol.* 82, 113–129. doi: 10.1007/s11103-013-0040-5
- Osman, M. S., Badawy, A. A., Osman, A. I., and Abdel Latef, A. A. (2020). Ameliorative impact of an extract of the halophyte Arthrocnemum macrostachyum on growth and biochemical parameters of soybean under salinity stress. J. Plant Growth Regul. 1–12. doi: 10.1007/s00344-020-10185-2
- Park, W., Li, J. J., Song, R. T., Messing, J., and Chen, X. M. (2002). Carpel factory, a Dicer homolog, and *HEN1*, a novel protein, act in microRNA metabolism in *Arabidopsis thaliana*. *Curr. Biol.* 12, 1484–1495. doi: 10.1016/s0960-9822(02) 01017-5
- Parmar, S., Gharat, S. A., Tagirasa, R., Chandra, T., Behera, L., Dash, S. K., et al. (2020). Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. *PLoS One* 15:e0230958. doi: 10.1371/journal.pone.0230958
- Pegler, J. L., Oultram, J. M. J., Grof, C. P. L., and Eamens, A. L. (2019). Profiling the abiotic stress responsive microRNA landscape of *Arabidopsis thaliana*. *Plants* 8:58. doi: 10.3390/plants8030058
- Qadir, M., Quillerou, E., Nanjia, V., Murtaza, G., Singh, M., Thomas, R.J. et al. (2014). Economics of salt-induced land degradation and restoration. *Nat. Resour. Forum.* 38:282–295. doi: 10.1111/1477-8947.12054
- Qin, Z., Chen, J., Jin, L., Duns, G. J., and Ouyang, P. (2015). Differential expression of miRNAs under salt stress in *spartina alterniflora* leaf tissues. *J. Nanosci. Nanotechnol.* 15, 1554–1561. doi: 10.1166/jnn.2015.9004
- Rao, S., Balyan, S., Jha, S., and Mathur, S. (2020). Novel insights into expansion and functional diversification of MIR169 family in tomato. *Planta* 251:55. doi: 10.1007/s00425-020-03346-w
- Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002). MicroRNAs in plants. *Genes Dev.* 16, 1616–1626. doi: 10.1101/gad.10 04402
- Ren, Y., Chen, L., Zhang, Y., Kang, X., Zhang, Z., and Wang, Y. (2013). Identification and characterization of salt-responsive microRNAs in *Populus tomentosa* by high-throughput sequencing. *Biochimie* 95, 743–750. doi: 10. 1016/j.biochi.2012.10.025
- Sahito, Z. A., Wang, L., Sun, Z., Yan, Q., Zhang, X., Jiang, Q., et al. (2017). The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. *BMC Plant Biol*. 17:229. doi: 10.1186/s12870-017-1161-9
- Shan, T., Fu, R., Xie, Y., Chen, Q., Wang, Y., Li, P., et al. (2020). Regulatory mechanism of maize (*Zea mays* L.) miR164 in salt stress response. *Russ. J. Genet.* 56, 835–842.
- Si, J., Zhou, T., Bo, W., Xu, F., and Wu, R. (2014). Genome-wide analysis of saltresponsive and novel microRNAs in *Populus euphratica* by deep sequencing. *BMC Genet.* 15(Suppl. 1):S6. doi: 10.1186/1471-2156-15-S1-S6
- Song, J., Feng, G., and Zhang, F. S. (2006). Salinity and temperature effects on germination for three salt-resistant euhalophytes, *Halostachys caspica, Kalidium*

foliatum and Halocnemum strobilaceum. Plant Soil 279, 201-207. doi: 10.1007/ s11104-005-1012-6

- Song, J. B., Gao, S., Sun, D., Li, H., Shu, X. X., and Yang, Z. M. (2013). MiR394 and LCR are involved in *Arabidopsis* salt and drought stress responses in an abscisic acid-dependent manner. *BMC Plant Biol.* 13:210. doi: 10.1186/1471-2229-13-210
- Sorin, C., Declerck, M., Christ, A., Blein, T., Ma, L., Lelandais-Brière, C., et al. (2014). A miR169 isoform regulates specific NF-YA targets and root architecture in *Arabidopsis. New Phytol.* 202, 1197–1211. doi: 10.1111/nph. 12735
- Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W. R., and Baurle, I. (2014). Arabidopsis mir156 regulates tolerance to recurring environmental stress through SPL transcription factors. *Plant Cell* 26, 1792–1807. doi: 10.1105/ tpc.114.123851
- Sun, X., Xu, L., Wang, Y., Yu, R., Zhu, X., Luo, X., et al. (2015). Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (*Raphanus sativus L.*). *BMC Genomics* 16:197. doi: 10.1186/s12864-015-1416-5
- Tian, Y., Tian, Y., Luo, X., Zhou, T., Huang, Z., Liu, Y., et al. (2014). Identification and characterization of microRNAs related to salt stress in broccoli, using highthroughput sequencing and bioinformatics analysis. *BMC Plant Biol*. 14:226. doi: 10.1186/s12870-014-0226-2
- Tripathi, A., Chacon, O., Singla-Pareek, S. L., Sopory, S. K., and Sanan-Mishra, N. (2018). Mapping the microRNA expression profiles in glyoxalase overexpressing salinity tolerant rice. *Curr. Genomics* 19, 21–35. doi: 10.2174/ 1389202918666170228134530
- Ünlü, E. S., Bataw, S., Aslan, Ş.D., Şahin, Y., and Zencirci, N. (2018). Identification of conserved miRNA molecules in einkorn wheat (*Triticum monococcum subsp. monococcum*) by using small RNA sequencing analysis. *Turk. J. Biol.* 42, 527–536. doi: 10.3906/biy-1802-3
- Wang, B., Sun, Y. F., Song, N., Wei, J. P., Wang, X. J., Feng, H., et al. (2014). MicroRNAs involving in cold, wounding and salt stresses in *Triticum aestivum* L. *Plant Physiol. Biochem.* 80, 90–96. doi: 10.1016/j.plaphy.2014.03.020
- Wang, M., Wang, Q., and Zhang, B. (2013). Response of miRNAs and their targets to salt and drought stresses in cotton (*Gossypium hirsutum* L.). *Gene* 530, 26–32. doi: 10.1016/j.gene.2013.08.009
- Wang, Q., Wei, L., Guan, X., Wu, Y., Zou, Q., and Ji, Z. (2014). Briefing in family characteristics of microRNAs and their applications in cancer research. *Biochim. Biophys. Acta* 1844(1 Pt B), 191–197. doi: 10.1016/j.bbapap.2013.08.002
- Wang, W., Liu, D., Chen, D., Cheng, Y., Zhang, X., Song, L., et al. (2019). MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. *RNA Biol.* 16, 362–375. doi: 10.1080/ 15476286.2019.1574163
- Wang, Y. M., Liu, W. W., Wang, X. W., Yang, R. J., Wu, Z. Y., Wang, H., et al. (2020). MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. *Hortic. Res.* 7:118. doi: 10.1038/s41438-020-00341-w
- Wen, F. L., Yue, Y., He, T. F., Gao, X. M., Zhou, Z. S., and Long, X. H. (2020). Identification of miR390-TAS3-ARF pathway in response to salt stress in *Helianthus tuberosus* L. *Gene* 738:144460. doi: 10.1016/j.gene.2020. 144460
- Wu, J. G., Yang, R. X., Yang, Z. R., Yao, S., Zhao, S. S., Wang, Y., et al. (2017). ROS accumulation and antiviral defence control by microRNA528 in rice. *Nat. Plants* 3:16203. doi: 10.1038/nplants.2016.203
- Wu, Y., Guo, J., Cai, Y., Gong, X., Xiong, X., Qi, W., et al. (2016). Genome-wide identification and characterization of *Eutrema salsugineum* microRNAs for salt tolerance. *Physiol. Plant* 157, 453–468. doi: 10.1111/ppl.12419
- Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., et al. (2012). OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. *PLoS One* 7:e30039. doi: 10.1371/journal.pone.0030039
- Xie, F., Stewart, C. N. Jr., Taki, F. A., He, Q., Liu, H., and Zhang, B. (2014). Highthroughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. *Plant Biotechnol. J.* 12, 354–366. doi: 10.1111/pbi.12142
- Xie, F., Wang, Q., Sun, R., and Zhang, B. (2015). Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J. Exp. Bot. 66, 789–804. doi: 10.1093/jxb/eru437

- Xie, J., Lei, B., Niu, M., Huang, Y., Kong, Q., and Bie, Z. (2015). High throughput sequencing of small RNAs in the two cucurbita germplasm with different sodium accumulation patterns identifies novel microRNAs involved in salt stress response. *PLoS One* 10:e0127412. doi: 10.1371/journal.pone.0127412
- Xu, M. L., Hu, T. Q., Zhao, J. F., Park, M. Y., Earley, K. W., Wu, G., et al. (2016). Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in *Arabidopsis thaliana*. *PLoS Genet*. 12:e1006263. doi: 10.1371/journal.pgen.1006263
- Yaish, M. W., Sunkar, R., Zheng, Y., Ji, B., Al-Yahyai, R., and Farooq, S. A. (2015). A genome-wide identification of the miRNAome in response to salinity stress in date palm (*Phoenix dactylifera* L.). *Front. Plant Sci.* 6:946. doi: 10.3389/fpls. 2015.00946
- Yang, C. H., Li, D. Y., Mao, D. H., Liu, X., Ji, C. J., Li, X. B., et al. (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (*Oryza sativa L.*). *Plant Cell Environ.* 36, 2207–2218. doi: 10.1111/pce.12130
- Yang, R., Zeng, Y., Yi, X., Zhao, L., and Zhang, Y. (2015). Small RNA deep sequencing reveals the important role of microRNAs in the halophyte *Halostachys caspica. Plant Biotechnol. J.* 13, 395–408. doi: 10.1111/pbi.12337
- Yang, Z., Zhu, P., Kang, H., Liu, L., Cao, Q., Sun, J., et al. (2020). High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (*Ipomoea batatas* L.). *BMC Genomics* 21:164. doi: 10.1186/s12864-020-6567-3
- Yin, Z., Han, X., Li, Y., Wang, J., Wang, D., Wang, S., et al. (2017). Comparative analysis of cotton small RNAs and their target genes in response to salt stress. *Genes* 8:369. doi: 10.3390/genes8120369
- Yin, Z., Li, Y., Yu, J., Liu, Y., Li, C., Han, X., et al. (2012). Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. *Mol. Biol. Rep.* 39, 4961–4970. doi: 10.1007/s11033-011-1292-2
- Yu, X. Y., Gong, H. Y., Cao, L. F., Hou, Y. J., and Qu, S. C. (2020). MicroRNA397b negatively regulates resistance of *Malus hupehensis* to *Botryosphaeria dothidea* by modulating MhLAC7 involved in lignin biosynthesis. *Plant Sci.* 292:110390. doi: 10.1016/j.plantsci.2019.110390
- Yu, Y., Wu, G., Yuan, H., Cheng, L., Zhao, D., Huang, W., et al. (2016). Identification and characterization of miRNAs and targets in flax (*Linum usitatissimum*) under saline, alkaline, and saline-alkaline stresses. *BMC Plant Biol.* 16:124. doi: 10.1186/s12870-016-0808-2
- Yuan, S., Li, Z., Li, D., Yuan, N., Hu, Q., and Luo, H. (2015). Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. *Plant Physiol.* 169, 576–593. doi: 10.1104/pp.15.00899
- Yuan, S., Zhao, J., Li, Z., Hu, Q., Yuan, N., Zhou, M., et al. (2019). MicroRNA396mediated alteration in plant development and salinity stress response in creeping bentgrass. *Hortic. Res.* 6:48. doi: 10.1038/s41438-019-0130-x
- Zandkarimi, H., Bedre, R., Solis, J., Mangu, V., and Baisakh, N. (2015). Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (*Spartina alternifolia Loisel*). *Mol. Biol. Rep.* 42, 1341–1350. doi: 10.1007/s11033-015-3880-z
- Zhai, J., Dong, Y., Sun, Y., Wang, Q., Wang, N., Wang, F., et al. (2014). Discovery and analysis of microRNAs in *Leymus chinensis* under saline-alkali and drought stress using high-throughput sequencing. *PLoS One* 9:e105417. doi: 10.1371/ journal.pone.0105417

- Zhang, H., Liu, X., Yang, X., Wu, H., Zhu, J., and Zhang, H. (2020). MiRNAmRNA integrated analysis reveals roles for miRNAs in a typical halophyte, *Reaumuria soongorica*, during seed germination under salt stress. *Plants* 9:351. doi: 10.3390/plants9030351
- Zhang, Q., Zhao, C., Li, M., Sun, W., Liu, Y., Xia, H., et al. (2013). Genomewide identification of *Thellungiella salsuginea* microRNAs with putative roles in the salt stress response. *BMC Plant Biol.* 13:180. doi: 10.1186/1471-2229-13-180
- Zhang, Y., Gong, H., Li, D., Zhou, R., Zhao, F., Zhang, X., et al. (2020). Integrated small RNA and degradome sequencing provide insights into salt tolerance in sesame (*Sesamum indicum* L.). *BMC Genomics* 21:494. doi: 10.1186/s12864-020-06913-3
- Zhang, Y., Yun, Z., Gong, L., Qu, H. X., Duan, X. W., Jiang, Y. M., et al. (2018). Comparison of miRNA evolution and function in plants and animals. *Microrna* 7, 4–10. doi: 10.2174/2211536607666180126163031
- Zhang, Z., Chen, C. Z., Xu, M. Q., Zhang, L. Q., Liu, J. B., Gao, Y., et al. (2019). MiR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. *Theriogenology* 123:45–53. doi: 10. 1016/j.theriogenology.2018.09.020
- Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., et al. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. *BMC Mol. Biol.* 10:29. doi: 10.1186/1471-2199-10-29
- Zhao, J., Yuan, S., Zhou, M., Yuan, N., Li, Z., Hu, Q., et al. (2019). Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. *Plant Biotechnol. J.* 17, 233–251. doi: 10.1111/pbi.12960
- Zhao, Q., Zhang, H., Wang, T., Chen, S. X., and Dai, S. J. (2013). Proteomicsbased investigation of salt-responsive mechanisms in plant roots. J. Proteome 82, 230–253. doi: 10.1016/j.jprot.2013.01.024
- Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., et al. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. *Plant Physiol.* 161, 1375–1391. doi: 10.1104/pp.112.208702
- Zhou, M., and Luo, H. (2014). Role of microRNA319 in creeping bentgrass salinity and drought stress response. *Plant Signal Behav.* 9:e28700. doi: 10.4161/psb. 28700
- Zhu, J. K. (2000). Genetic analysis of plant salt tolerance using *Arabidopsis*. *Plant Physiol*. 124, 941–948. doi: 10.1104/pp.124.3.941
- Zhuang, Y., Zhou, X. H., and Liu, J. (2014). Conserved miRNAs and their response to salt stress in wild eggplant Solanum linnaeanum roots. *Int. J. Mol. Sci.* 15, 839–849. doi: 10.3390/ijms15010839

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xu, Zhang, Yang, Wei and Dong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.