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Wheat (Triticum aestivum L.) is one of the most important crops in the world. Here, four 
yield-related traits, namely, spike length, spikelets number, tillers number, and thousand-
kernel weight, were evaluated in 272 Chinese wheat landraces in multiple environments. 
Five multi-locus genome-wide association studies (FASTmrEMMA, ISIS EN-BLASSO, 
mrMLM, pKWmEB, and pLARmEB) were performed using 172,711 single-nucleotide 
polymorphisms (SNPs) to identify yield-related quantitative trait loci (QTL). A total of 27 
robust QTL were identified by more than three models. Nine of these QTL were consistent 
with those in previous studies. The remaining 18 QTL may be novel. We identified a major 
QTL, QTkw.sicau-4B, with up to 18.78% of phenotypic variation explained. The developed 
kompetitive allele-specific polymerase chain reaction marker for QTkw.sicau-4B was 
validated in two recombinant inbred line populations with an average phenotypic difference 
of 16.07%. After combined homologous function annotation and expression analysis, 
TraesCS4B01G272300 was the most likely candidate gene for QTkw.sicau-4B. Our 
findings provide new insights into the genetic basis of yield-related traits and offer valuable 
QTL to breed wheat cultivars via marker-assisted selection.

Keywords: validation, wheat landraces, candidate genes, quantitative trait loci, association study, yield-related 
traits

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important crops in the world. A 100% 
increase in crop production by 2050 will be  needed to keep pace with projected human 
population growth (Ray et  al., 2013). Thus, it is imperative to increase crop yield. Wheat yield 
consists of three main components, including spike number per plant, grain number per spike, 
and thousand-kernel weight (TKW). Spike number per plant is determined by tillers number 
(TN) per plant. Spikelets number (SN) per spike and spike length (SL) significantly affect 
grain number per spike. Understanding the genetic basis of these yield-related traits can 
contribute to improving wheat yield.
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Chinese wheat landraces have been widely used for breeding 
cultivated varieties of wheat (Dai et al., 2009). Wheat landraces 
show high genetic diversity and extensive phenotypic variation, 
such as early maturity, high numbers of kernel per spikelet, 
and good adaption to local environmental conditions (He 
and Huang, 2001; Hao et  al., 2008). Genetic analyses of 
Chinese wheat landraces have revealed the basis of agronomic 
traits, such as yield-related traits (spikelets number per spike, 
tillers number, and thousand-kernel weight), plant 
morphological traits (flag leaf length, flag leaf width, and 
plant height; Liu et al., 2017; Ma et al., 2020), stress resistance 
(pre-harvest sprouting, drought-related traits, and phosphorus-
deficiency tolerance; Zhou et al., 2017; Lin et al., 2019, 2020a), 
and disease resistance (powdery mildew and stripe rust; Xiao 
et  al., 2013; Long et  al., 2019). Analysis of gene diversity 
and polymorphism information content revealed the high 
diversity of Chinese wheat landraces (Liu et  al., 2017; Long 
et al., 2019). Thus, genetic analysis of yield traits using Chinese 
wheat landraces can provide important insights into 
wheat breeding.

With the development of next-generation sequencing (NGS), 
genome-wide association study (GWAS) has become an effective 
way of detecting complex quantitative characteristics and is 
also widely applied in Arabidopsis (Atwell et  al., 2010; 
Bac-Molenaar et  al., 2016), rice (Huang et  al., 2010; Zhu et  al., 
2016), maize (Lu et  al., 2010, 2012; Yang et  al., 2014), Aegilops 
tauschii (Liu et  al., 2015a,b; Qin et  al., 2015, 2016), and wheat 
(Liu et  al., 2014, 2017; Maccaferri et  al., 2015; Sukumaran 
et  al., 2015; Lin et  al., 2017). Moreover, the previous studies 
have discovered genes via GWAS directly. In rice, Yano identified 
a gene comprehensively controlling rice architecture using 
GWAS (Yano et  al., 2019). Kim reported a novel resistance 
gene, Xa43(t), for bacterial blight (Kim and Reinke, 2019). In 
particular, GWAS has gradually been applied to wheat landraces. 
Using GWAS, a total of 149 significant markers for 21 agronomic 
traits were detected in 723 wheat landraces (Liu et  al., 2017). 
A total of 51 loci significantly associated with adult-plant 
resistance to stripe rust were discovered in wheat landrace 
through GWAS (Long et  al., 2019). Recently, a major locus 
of coleoptile length on chromosome 6B was revealed by GWAS 
in 707 Chinese wheat landraces (Ma et  al., 2020).

Because of the mass of data involved in the process of 
GWAS, several multi-locus models have been designed to 
increase efficiency (Wang et  al., 2016). Compared with the 
single-locus model, the multi-locus models can help improve 
the detection power of GWAS (Xu et  al., 2018). Therefore, 
multi-locus models have recently been popularized in plant 
GWAS, such as in the photosynthetic response to low phosphorus 
stress in soybean (Lü et al., 2018), fatty acid content in rapeseed 
(Guan et  al., 2019), forage quality-related traits in sorghum 
(Li et  al., 2018), salt tolerance of direct seeding in rice (Cui 
et al., 2018), callus regenerative traits, starch pasting properties, 
and stalk lodging resistance-related traits in maize (Ma et  al., 
2018; Xu et  al., 2018; Zhang et  al., 2018), agronomic traits in 
barley (Hu et  al., 2018), and free amino acid levels in wheat 
(Peng et al., 2018). All these studies have successfully discovered 
novel quantitative trait loci (QTL).

In the present study, a total of 272 Chinese wheat landraces 
were evaluated in multiple environments to improve our 
understanding of the genetic basis of four yield-related traits. 
Five multi-locus GWAS models were performed to identify 
robust QTL using 172,711 SNPs. Major QTL were validated 
in two recombinant inbred line (RIL) populations. Furthermore, 
we  presumed candidate genes for the major QTL. This study 
provides new QTL of yield-related traits that may help wheat 
breading in the near future.

MATERIALS AND METHODS

Plant Material, Phenotype Evaluation, and 
Data Analysis
A total of 272 wheat landraces, obtained from 10 major wheat-
growing zones in China, were utilized in this study 
(Supplementary Table S1). All landraces were planted in six 
environments: Ya’an (103°370 E, 22°420  N) in 2012 (E1), 
Wenjiang (103°410 E, 30°360  N) in 2013, 2014, and 2015 (E2, 
E3, and E4), and Chongzhou (103°390 E, 30°330  N) in 2014 
and 2015 (E5 and E6). Each row of material was 30  cm apart 
and 1.5  m long, and contained 15 seeds. Field management 
referred to criteria commonly practiced in wheat production. 
Four yield-related traits were evaluated in at least four 
environments: SL – the average length of the main spikes 
from five plants; SN – the average total number of spikelets 
from five main spikes of the plant; TN – the average number 
of tillers in five plants; TKW – the average weight of five 
samples of 1,000 kernels randomly selected from a given 
genotype. Two bi-parental populations [Huimai × 
Datianquxiaomai (HD) and Huimai × Heshangmai (HH)] were 
used to validate the results. The parents of bi-parental populations 
were selected from 272 wheat landraces. The TKW of these 
two RIL populations was evaluated in Chongzhou in 2019, 
and Huimai resulted significantly more productive than 
Datianquxiaomai and Heshangmai (higher TKW).

To eliminate environmental effects, the best linear unbiased 
prediction (BLUP) value for each trait was calculated across 
environments and used for statistical analysis. The BLUP was 
calculated using the methodology of Piepho et  al. (2008) as 
previously described (Liu et al., 2017). The broad-sense heritability 
(H2) value was calculated using SAS v8.1 (SAS Institute Inc., 
Cary, NC, United  States) and is defined as:

 H2 = + +( )Vg Vg Vge Ve/ ,  (1)

where Vg, Vge, and Ve are the estimates of genetic variance, 
the genotype × environment interaction, and environmental 
variance, respectively (Smith et  al., 1998). Correlation analyses 
were performed using SPSS 20 (IBM SPSS Statistics; IBM Corp., 
Armonk, NY, United  States).

Genotyping
Genomic DNA was extracted from a single plant for each of 
the accessions using the cetyltrimethylammonium bromide 
method (Murray and Thompson, 1980). DNA samples with 
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an A260/280 ratio of 1.8–2.0 and a concentration of >80 ng μl−1 
were used for genotyping. The 272 accessions had been already 
genotyped by wheat 660  K array, including 630,517 probes 
(Axiom® Wheat660 SNP array; Affymetrix, Santa Clara, CA, 
United  States) by Zhou et  al. (2017). The software, bowtie2, 
was employed in this study to obtain physical locations of 
172,711 SNPs based on IWGSC RefSeq v1.0.1

GWAS for Yield Traits
The population structure was performed by Structure2.3.4 based 
on the Bayesian clustering algorithm (Pritchard et  al., 2000). 
Ten runs of STRUCTURE were performed with a K between 
1 and 10 using the admixture model with 100,000 replicates 
for burn-in and 100,000 replicates for MCMC. The R package 
“mrMLM” in R Project for Statistical Computing was used to 
examine the association between markers and yield-related 
traits. Marker-trait associations were performed using five multi-
locus models, including FASTmrEMMA (Wen et  al., 2017), 
ISIS EM-BLASSO (Tamba et  al., 2017), mrMLM (Wang et  al., 
2016), pKWmEB (Ren et  al., 2018), and pLARmEB (Zhang 
et  al., 2017). All five models were adjusted by both population 
structure and family relationship. A logarithm of odds (LOD) 
value ≥3 was used as the screening criterion (Guan et  al., 
2019). According to previous studies, the linkage disequilibrium 
decay of wheat ranges from 3.5 to 23  Mb (Kidane et  al., 2019; 
Li et  al., 2019; Luján Basile et  al., 2019). Significant SNPs 
were therefore selected with a physical distance ≤10  Mb and 
referred to as a conservative QTL.

Validation of QTL Using Two RIL 
Populations
To further validate the significant QTL identified for TKW, 
the peak SNP with this locus was converted into a kompetitive 
allele-specific polymerase chain reaction (KASP) marker based 
on the probe sequence. KASP primers were designed and 
analyzed as described in previous studies (Lin et  al., 2020b, 
2021) and produced by Sangon Biotech (Shanghai, China; 
Supplementary Table S2). The KASP marker detected different 
alleles at this locus in the two bi-parental populations. Eighty-two 
lines were selected for each of the alleles from both populations. 
These lines were used to evaluate differences in TKW between 
the two allele groups using a Student’s t-test in SPSS 20 (IBM 
SPSS Statistics; IBM Corp., Armonk, NY, United  States).

Candidate Gene Prediction
Based on IWGSC RefSeq v1.0, predicted genes within ~10  Mb 
of the physical location of the QTL were selected. We undertook 
two different methods to predict the possible existence of 
candidate genes. The first method was expression analysis. 
Based on data from WheatExp,2 genes expressed highly at 
stages Z71 and Z75 were the most important, due to the key 
stages in kernel development (Zadoks et  al., 1974). Fragments 
per kilobase of exon model (FPKM) represented gene 

1 http://www.wheatgenome.org/
2 https://wheat.pw.usda.gov/WheatExp/

expression level. As in Lin et  al. (2020b), genes expressing 
less than two per million mapped reads at any stage were 
removed. FPKM is fragments read per thousand bases per 
million mappings and represented gene expression level.

The second method to predict the possible existence of 
candidate genes was annotation. All genes were also used to 
perform homologous annotations in rice and Arabidopsis using 
the KEGG Orthology Based Annotation System 3.0 (KOBAS 
3.0; Xie et  al., 2011).3 Functional annotations were performed 
via UniProt4 and EnsemblPlants.5

RESULTS

Phenotypic Variation in Chinese Wheat 
Landraces
The four traits among the 272 wheat landraces varied considerably 
(Table  1). Based on the BLUP values, the SL ranged from 
6.33 to 14.63 (cm). SN ranged from 19.43 to 27.36 (count). 
TN ranged from 8.11 to 18.10 (count), and TKW ranged from 
17.90 to 40.47 (g). The heritability of these four traits ranged 
from 0.64 to 0.93 (Table  1). TN and TKW showed medium 
heritability, whereas SL and SN showed high heritability. 
Correlation analysis showed that all correlations were significant 
(p < 0.05), except the correlation between SL and SN (Table 2), 
indicating that the changes in these two traits are independent.

Five Multi-Locus Models of Yield-Related 
Traits
A total of 172,711 polymorphic SNPs were obtained [after 
filtering for missing values ≤10% and minor allele frequency 
(MAF) ≥0.05] from the Wheat 660  K SNP arrays. This subset 
was used to perform GWAS. Based on LOD values ≥3, a 
total of 308 significant SNP markers were identified using the 
five multi-locus models. Detailed significant SNP markers 
information and the number of significant SNP markers detected 
by different models are shown in Supplementary Table S3 
and Figure 1, respectively. In FASTmrEMMA, the least number 
of significant SNP markers was detected, with only 35. A total 
of 10, 8, 6, and 11 significant SNP markers were detected for 
SL, SN, TN, and TKW, respectively, with phenotypic variation 
explained (PVE) up to 6.55%. In the model of ISIS EM-BLASSO, 
73 significant SNP markers were revealed. A total of 20, 23, 
15, and 15 were detected for SL, SN, TN, and TKW, respectively, 
with PVE up to 9.27%. The mrMLM model could detect 67 
significant markers. A total of 18, 20, 14, and 15 were detected 
for SL, SN, TN, and TKW, respectively, with PVE up to 13.09%. 
In the model of pKWmEB, the most number of significant 
SNP markers was detected (81), and a total of 23, 25, 19, 
and 14 were detected for SL, SN, TN, and TKW, respectively, 
with PVE up to 18.78%. The pLARmEB model detected 52 
significant SNP markers, and 12, 15, 11, and 14 were detected 

3 http://kobas.cbi.pku.edu.cn/kobas3
4 https://www.uniprot.org
5 http://plants.ensembl.org/index.html
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for SL, SN, TN, and TKW, respectively, with PVE up to 11.09%. 
Significant markers existed in the above three models, and no 
more than 10  Mb was considered as a robust QTL.

Robust QTL Selected by Five Multi-Locus 
Models
Twenty-seven robust QTL were identified by more than three 
different multi-locus models and were considered as robust 
QTL (Table  3).

Seven QTL associated with SL were identified on chromosomes 
1A, 1D, 2A, 2B, 3A, 4A, and 7B, with the PVE up to 11.44%, 
and the LOD values ranging from 3.45 to 14.68. QSl.sicau-3A, 
located at 650.86–651.84  Mb, was identified in four models, with 
LOD values up to 14.68. Nine QTL associated with SN were 
identified on chromosomes 1B, 2A, 2B, 3B, 5A, and 7A, with 
PVE up to 7.61%, and LOD values up to 15.85. QSn.sicau-7A, 
located at 671.48  Mb, was detected by four models. The highest 
LOD (15.85) and PVE (7.61%) values on this QTL were detected 
by the pKWmEB model. Four QTL for TN were identified on 
chromosomes 1B, 2B, 5B, and 6D, with a PVE up to 9.58%, and 
the LOD values up to 8.42. QTn.sicau-6D, located at 469.60–
472.74  Mb, had the highest PVE value which was 9.58%. Seven 
QTL associated with TKW were identified on chromosomes 2B, 
3A, 4B, 6B, 7A, and 7B, with PVE values up  18.78%, and the 
LOD values up to 12.04. QTkw.sicau-4B, identified by the pKWmEB 
model, explained the highest PVE (18.78%). Interestingly, among 
all robust QTL detected in the present study, QTkw.sicua-4B 
resulted that with the highest PVE value. It can be  regarded as 
a major QTL, contributing to breed more productive wheat 
cultivars, so it was validated in the first instance.

Validation of Genetic Effect and Candidate 
Genes of QTkw.sicau-4B
To validate the genetic effect of the peak SNP for QTkw.
sicau-4B, a KASP marker (KASP-AX-108886949) was developed 

and the differences between TKW of landraces carrying 
alternatively A/G allele were calculated, both in natural 
population and in two RIL populations. Among the 272 
landraces tested, the average TKW of landraces carrying 
genotype allele A was heavier than those carrying allele G 
(p  <  0.01; Table  4; Figure  2A). The difference was 22.87%. 
In the HD population, genotypes were divided into two 
groups: 42 with allele A and 40 with allele G. The TKW of 
genotypes with allele A ranged from 28.75 to 44.04 g, whereas 
those with allele G ranged from 22.28 to 39.27 g. The average 
TKW with allele A was heavier than that with allele G 
(p  <  0.01; Table  4; Figure  2B). In the RIL population HH, 
there were 39 with allele A and 43 with allele G. The TKW 
of genotypes with allele A ranged from 22.52 to 44.56 (g), 
whereas those with allele G ranged from 19.03 to 37.47  g. 
The average TKW with allele A was heavier than with allele 
G (p  <  0.01; Table  4; Figure  2C). The difference in TKW 
between genotypes ranged from 15.33 to 16.81%, with an 
average value of 16.07% among the two RIL populations. 
Thus, the developed KASP marker may be useful for breeding 
cultivars carrying a high-TKW allele.

We observed superior allele A frequency in 10 major wheat-
growing zones (Figure 3). The frequencies show that the superior 
allele A showed an 8% frequency in Chinese wheat landraces, 
and more than half the materials from the Northern Spring 
Wheat Zone and the Northwestern Spring Wheat Zone carried 
allele A. The Northern Winter Wheat Zone, Yellow and Huai 
River Valleys Facultative Wheat Zone, Middle and Low Yangtze 
Valleys Autumn-Sown Spring Wheat Zone, Southwestern 
Autumn-Sown Spring Wheat Zone, and Qinghai-Tibetan Plateau 
Spring–Winter also had some materials with allele A. Materials 
from the Southern Autumn-Sown Spring Wheat Zone, 
Northeastern Spring Wheat Zone, and Xinjiang Winter–Spring 
Wheat Zone did not carry allele A.

A total of 46 high-confidence genes which were identified in 
IWGSC RefSeq v1.0 flanked QTkw.sicau-4B by no more 5  Mb. 
The search for candidate genes was undertaken following two 
pipelines. The expression analysis of the candidates was investigated 
in the two most interesting stages for kernel development: Z71 
and Z75. Nine genes were expressed at both stages, namely, 
TraesCS4B01G272300, TraesCS4B01G272500, TraesCS4B01G273400, 
TraesCS4B01G273500, TraesCS4B01G274200, TraesCS4B01G274500, 
TraesCS4B01G275400, TraesCS4B01G275500, and TraesCS4B01 
G276300. Based on these sequences, we found homologous genes 
using KOBAS 3.0 (see footnote 3). Three genes were identified 
as TKW-regulating candidate genes (Table 5). TraesCS4B01G272300, 

TABLE 1 | Phenotype variation and heritability of spike length (SL), spikelets number per spike (SN), tillers number (TN), and thousand-kernel weight (TKW) based on 
BLUP values for the 272 accessions.

Variables Full trait name Unit Tested 
environment

Range Mean SD CV (%) Heritability

SL Spike length cm 6 6.33–14.63 10.59 1.57 14.83 0.93
SN Spikelets number per spike count 6 19.43–27.36 23.28 1.62 6.96 0.92
TN Tillers number count 4 8.11–18.1 12.03 1.72 14.3 0.64
TKW Thousand-kernel weight g 5 17.9–40.47 29.63 4.12 13.9 0.79

BLUP, best linear unbiased prediction; SD, standard deviation; CV, coefficients of variation.

TABLE 2 | Correlation of spike length (SL), spikelets number per spike (SN), 
tillers number (TN), and TKW based on BLUP values.

SL SN TN TKW

SL 1
SN 0.07 1
TN −0.16** 0.36** 1
TKW 0.14* −0.40** −0.53** 1

Level of significance: *and **significant at p < 0.05 and p < 0.01, respectively.
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TraesCS4B01G275400, and TraesCS4B01G276200 were homologous 
to OsMCA1 (Liu et  al., 2015c), H2B (Ma et  al., 2019a), and 
EDR1 (Prasad et  al., 2009) in rice, respectively.

DISCUSSION

Yield has always been a focus of global wheat research. With 
the development of NGS technology, GWAS has been applied 
extensively to detect complex traits (Liu et  al., 2014; Maccaferri 
et  al., 2015; Sukumaran et  al., 2015). Previous studies found 
that the accuracy and efficiency of models, including generalized 
linear, mixed linear, and multi-locus models, have constantly 
improved (Zhang et  al., 2005; Price et  al., 2006; Li et  al., 2018). 
In the present study, we observed not consistent results between 
different multi-locus models. FASTmrEMMA was more 
conservative, and pKWmEB was the most effective model of 
the five models (Supplementary Table S3; Figure 1); this finding 
is in agreement with the previous studies (Li et  al., 2018; Lü 
et  al., 2018). QTL detected by multiple, multi-locus models are 
considered as robust QTL useful for more precise studies. Among 
the 308 significant SNP markers, 27 reliable and robust QTL 
were identified in four yield-related traits in this study.

Using BLAST against the IWGSC RefSeq v1.0, we  tried 
to determine the physical location of QTL flanking markers. 
Among these 27 robust QTL, nine loci (QSl.sicau-1A, QSl.
sicau-2A, QSl.sicau-2B, QSn.sicua-2A.1, QSn.sicau-2A.3, QSn.
sicua-5A, QSn.sicau-7A, QTn.sicua-6D, and QTkw.sicau-3A) 
were overlapped with, or located close to, previously 
reported QTL.

For the trait of SL, three QTL identified in present study 
were reported previously (QSl.sicau-1A, QSl.sicau-2A, and QSl.
sicau-2B). QTL for SL located at 572.23 to 572.35 Mb, between 
markers Xmwg632 and Xbarc213 (Yu et  al., 2014), were  
close to QSl.sicau-1A (566.11–568.36  Mb). QSl.sicau-2A 

(735.26–742.14  Mb) resulted overlapping with QEl.fcu-2A, 
reported by Faris et  al. (2014) and flanked by Xwmc181 
(728.6 1  Mb) and fcp651 (738.43  Mb) markers. Moreover, 
QSl.sicau-2B (29.19–29.71  Mb) overlapped with the previous 
reported QTL: Qsl2B.2 flanking by Xbarc200 at 26.59  Mb 
(Xu et  al., 2014) and flanking by excalibur_c40567_1893 at 
28.37  Mb (Zhai et  al., 2016).

For SN, four robust QTL identified in the present study 
were reported previously. QSns.sau-2A.1 (Ma et  al., 2019b) 
exists between markers AX-111610554 and AX-110495160, 
located at 35.78 to 36.00  Mb, and is close to our QSn.sicua-
2A.1 (31.70–32.45  Mb). QSn.sicau-2A.3 for SN located on 
chromosome 2A at 741.83–741.98 Mb resulted close to QCmp.
fcu-2A identified between Xwmc181 and Xfcp651 at 728.60–
738.44  Mb (Faris et  al., 2014). Wang et  al. (2011) discovered 
a robust QTL controlling spikelets number per spike in three 
environments; the QTL detected with marker Xgwm126 
(671.4  Mb) and Xgwm291 (698.2  Mb), and overlapped with 
QSn.sicua-5A (678.62–682.92  Mb) in the present study. QSn.
sicau-7A, located on chromosome 7A at 671.48  Mb, is close 
to TaAPO1, located at 674.08  Mb, and confirmed to play an 
important role in regulating SN (Kuzay et  al., 2019; Ma et  al., 
2019b; Muqaddasi et  al., 2019).

For TN, Bilgrami et  al. (2020) reported a QTL MQTL6D-4 
in physical position 456.46–469.25  Mb with a mean R2 of 
14.08%, which is close to QTn.sicau-6D (469.60–472.74  Mb) 
in the present study.

For TKW, using a doubled haploid population Zhang et  al. 
(2014) identified a QTL for TKW on chromosome 3A (Qtkw3A-
1) at 625.79–690.79  Mb, which is close to QTkw.sicau-3A, and 
mapped at 686.12  Mb in this study. In general, nine QTL 
were identified in the same position as those in previous studies; 
the remaining 18 are potentially novel QTL.

Among robust and novel QTL, we  focused on QTkw.
sicau-4B that showed the highest PVE value. To validate this 

FIGURE 1 | Comparison of the number of detected quantitative trait loci (QTL) from the five methods. The five methods are mrMLM, FASTmrEMMA, ISIS EM-
BLASSO, pLARmEB, and pKWmEB. The traits included spike length (SL), spikelets number per spike (SN), thousand-kernel weight, and tillers number (TN). Total 
denotes the total QTL number for each trait.
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TABLE 3 | Details of robust QTL associated with yield-related traits by multi-locus GWAS.

Variables QTL    Marker Chromosome Marker position (Mb) Method LOD PVE (%)

SL QSl.sicau-1A AX-110620420 1A 566.11 ISIS EM-BLASSO 7.57 3.01
AX-110620420 1A 566.11 mrMLM 7.54 4.38
AX-110375230 1A 568.36 mrMLM 5.63 3.14

SL QSl.sicau-1D AX-109320713 1D 24.06 FASTmrEMMA 3.45 2.34
AX-109320713 1D 24.06 ISIS EM-BLASSO 6.86 3.29
AX-109320713 1D 24.06 pLARmEB 4.65 1.36

SL QSl.sicau-2A AX-108948074 2A 735.26 ISIS EM-BLASSO 10.11 5.89
AX-108948074 2A 735.26 pKWmEB 11.56 7.43
AX-108948074 2A 735.26 pLARmEB 5.23 1.95
AX-110088953 2A 742.14 ISIS EM-BLASSO 4.74 4.15
AX-110088953 2A 742.14 mrMLM 12.51 11.44

SL QSl.sicau-2B AX-111519386 2B 29.19 mrMLM 12.03 7.77
AX-111519386 2B 29.19 pKWmEB 3.47 2.24
AX-94545725 2B 29.71 ISIS EM-BLASSO 8.45 3.97

SL QSl.sicau-3A AX-109461933 3A 650.86 ISIS EM-BLASSO 14.68 4.88
AX-109461933 3A 650.86 mrMLM 7.03 2.72
AX-109461933 3A 650.86 pKWmEB 5.66 2.8
AX-110469735 3A 651.84 pLARmEB 7.36 3.11

SL QSl.sicau-4A AX-111098528 4A 94.83 mrMLM 3.5 2.75
AX-109827217 4A 96.05 ISIS EM-BLASSO 5.64 2.19
AX-109827217 4A 96.05 pKWmEB 6.11 4.03

SL QSl.sicau-7B AX-109306414 7B 742.41 FASTmrEMMA 5.19 2.74
AX-109306414 7B 742.41 ISIS EM-BLASSO 4.1 1.56
AX-109306414 7B 742.41 mrMLM 5.34 3.11
AX-109306414 7B 742.41 pKWmEB 4.04 3.05

SN QSn.sicau-1B AX-109305103 1B 630.28 ISIS EM-BLASSO 8.79 2.97
AX-109305103 1B 630.28 mrMLM 7.21 2.25
AX-109305103 1B 630.28 pKWmEB 9.5 3.04

SN QSn.sicau-2A.1 AX-108924276 2A 31.70 mrMLM 4.3 3.6
AX-108924276 2A 31.70 pKWmEB 9.41 4.33
AX-108831532 2A 32.54 pLARmEB 3.7 1.45

SN QSn.sicau-2A.2 AX-111594388 2A 524.09 mrMLM 8.84 7.02
AX-111594388 2A 524.09 pLARmEB 4.45 5.03
AX-111076227 2A 524.34 ISIS EM-BLASSO 7.14 4.76

SN QSn.sicau-2A.3 AX-111123457 2A 741.83 ISIS EM-BLASSO 5.34 3.09
AX-111123457 2A 741.83 pLARmEB 4.62 4.59
AX-111450513 2A 741.98 pKWmEB 8.84 5.27

SN
QSn.sicau-2B.1 AX-109905931 2B 529.05 ISIS EM-BLASSO 5.3 2.32

AX-109905931 2B 529.05 pKWmEB 6.59 3.45
AX-111054119 2B 529.29 mrMLM 3.65 1.11

SN QSn.sicau-2B.2 AX-110604055 2B 650.16 ISIS EM-BLASSO 3.51 1.66
AX-110604055 2B 650.16 pLARmEB 5.33 2.85
AX-109340301 2B 653.01 pKWmEB 5.14 2.4

SN QSn.sicau-3B AX-108940748 3B 644.91 ISIS EM-BLASSO 10.56 5.17
AX-108940748 3B 644.91 mrMLM 5.6 2.96
AX-108940748 3B 644.91 pKWmEB 6.95 2.9

SN QSn.sicau-5A AX-108842302 5A 678.62 pKWmEB 4.31 1.39
AX-109538487 5A 678.94 ISIS EM-BLASSO 4.55 1.64
AX-110560000 5A 680.92 mrMLM 6.26 4.49
AX-110560000 5A 680.92 pKWmEB 4.36 2.83
AX-109409751 5A 682.90 FASTmrEMMA 3.07 3.43
AX-109816265 5A 682.92 mrMLM 5.63 2.83

SN QSn.sicau-7A AX-110931532 7A 671.48 ISIS EM-BLASSO 7.39 5.13
AX-110931532 7A 671.48 pKWmEB 15.85 7.61
AX-111600553 7A 671.48 ISIS EM-BLASSO 4.07 2.83
AX-111600553 7A 671.48 pLARmEB 4.81 5.44

(Continued)
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major QTL for TKW, we developed a KASP marker according 
to the sequence of peak marker, AX-108886949 (Supplementary 

Table S2). According to high PVE value and low frequency, 
we  believe this QTL could help wheat breeding.

Three genes identified by functional annotation showed 
relationship with TKW. TraesCS4B01G275400 is orthologous to 
H2B (Histone H2B monoubiquitination), which regulates abscisic 
acid signaling, and is a target of UBP26, which acts as a 
transcriptional repressor involved in kernel development (Ma 
et  al., 2019a). TraesCS4B01G276200 is orthologous to OsCDR1. 
Weights between OsCDR1 transgenic lines and wild-type plants 
differed (Prasad et al., 2009). TraesCS4B01G272300 is orthologous 
to rice OsMCA1, which mutants showed obviously affected TKW 
(Liu et  al., 2015c). TraesCS4B01G272300 gene, highly expressed 
in the grain development stage (Supplementary Figure S1), 
appears to be  the most promising candidate gene for QTkw.
sicau-4B. In our further study, expressions of this candidate 

TABLE 3 | Continued

Variables QTL    Marker Chromosome Marker position (Mb) Method LOD PVE (%)

TN QTn.sicau-1B AX-109582231 1B 21.47 FASTmrEMMA 3.28 1.81
AX-109582231 1B 21.47 ISIS EM-BLASSO 3.01 1.4
AX-109582231 1B 21.47 mrMLM 4.47 4.38
AX-109582231 1B 21.47 pKWmEB 5.12 2.93
AX-109582231 1B 21.47 pLARmEB 4.6 2.12

TN QTn.sicau-2B AX-110093452 2B 10.99 ISIS EM-BLASSO 4.27 3.04
AX-110093452 2B 10.99 pLARmEB 6.1 3.87
AX-110407616 2B 10.99 pKWmEB 7.76 3.88

TN QTn.sicau-5B AX-109427123 5B 605.53 ISIS EM-BLASSO 5.3 2.12
AX-109427123 5B 605.53 mrMLM 4.43 3.56
AX-109427123 5B 605.53 pKWmEB 3.14 1.74

TN QTn.sicau-6D AX-110969084 6D 469.60 FASTmrEMMA 3.77 3.7
AX-110989608 6D 472.57 ISIS EM-BLASSO 4.26 2.96
AX-110989608 6D 472.57 pKWmEB 8.42 6.73
AX-111919829 6D 472.69 mrMLM 8.2 9.58
AX-109296056 6D 472.74 pLARmEB 6.04 3.53

TKW QTkw.sicau-2B AX-111113548 2B 50.73 ISIS EM-BLASSO 9.88 6.9
AX-111113548 2B 50.73 pKWmEB 5.39 5.97
AX-111213423 2B 50.77 FASTmrEMMA 3.37 1.91

TKW QTkw.sicau-3A AX-95003297 3A 686.12 FASTmrEMMA 4.16 2.13
AX-95003297 3A 686.12 ISIS EM-BLASSO 5.35 2.35
AX-95003297 3A 686.12 mrMLM 5.39 3.02
AX-95003297 3A 686.12 pKWmEB 9.22 4.65
AX-95003297 3A 686.12 pLARmEB 8.72 3.69

TKW QTkw.sicau-4B AX-108886949 4B 553.54 ISIS EM-BLASSO 8.59 9.27
AX-108886949 4B 553.54 pKWmEB 12.04 18.78
AX-108886949 4B 553.54 pLARmEB 10.2 11.09

TKW QTkw.sicau-6B AX-111086205 6B 201.58 FASTmrEMMA 7.51 3.54
AX-111086205 6B 201.58 ISIS EM-BLASSO 3.81 1.39
AX-111086205 6B 201.58 mrMLM 4.21 2.72
AX-111086205 6B 201.58 pKWmEB 8.8 5.12

TKW QTkw.sicau-7A.1 AX-109033661 7A 89.32 ISIS EM-BLASSO 5.19 3.18
AX-109033661 7A 89.32 mrMLM 9.4 6.41
AX-109033661 7A 89.32 pKWmEB 4.58 4.72

TKW QTkw.sicau-7A.2 AX-110378610 7A 696.41 ISIS EM-BLASSO 5.79 5.1
AX-110378610 7A 696.41 pKWmEB 4.72 4.71
AX-110378610 7A 696.41 pLARmEB 8.35 5.63

TKW QTkw.sicau-7B.1 AX-110982569 7B 517.43 FASTmrEMMA 5.3 2.75
AX-110982569 7B 517.43 mrMLM 6.25 3.03
AX-110982569 7B 517.43 pLARmEB 7.16 2.99

SL, spike length; SN, spikelets number per spike; TN, tillers number; TKW, thousand-kernel weight; LOD, logarithm of odds; PVE, phenotypic variation explained.

TABLE 4 | Allele effect of QTkw.sicau-4B in two RILs population.

HD  
(2019CZ)

HH  
(2019CZ)

BLUP of natural 
population

p-value ** ** **

Average TKW of allele A (g) 36.39 33.56 35.49
Average TKW of allele G (g) 31.55 28.73 28.89
Range of TKW in population (g) 22.28–44.04 19.03–44.56 17.90–40.47
Difference (%) 15.33 16.81 22.87

HD, Huimai × Datianquxiaomai; HH, Huimai × Heshangmai; BLUP, best linear unbiased 
prediction; and ** significant at p < 0.01.
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gene will be validated by qRT-PCR in different grain development 
stage. Transgenic tests will also be applied to validate its function.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included 
in the article/Supplementary Material, further inquiries can 
be  directed to the corresponding author.

A B C

FIGURE 2 | Alleles effects of QTkw.sicau-4B in (A) natural (B) HD, and (C) HH populations. HD: Huimai × Datianquxiaomai; HH: Huimai × Heshangmai; BLUP, best 
linear unbiased prediction; and 2019CZ: in Chongzhou in 2019. ** significant at p < 0.01.

FIGURE 3 | Allele frequency of QTkw.sicau-4B in 10 major wheat-growing zones. Blue means allele A proportion in Chinese wheat landrace and red means allele G 
proportion in Chinese wheat landrace. NW (Northern Winter Wheat Zone), Y&H (Yellow and Huai River Valleys Facultative Wheat Zone), YTS (Middle and Low 
Yangtze Valleys Autumn-Sown Spring Wheat Zone), SAS (Southern Autumn-Sown Spring Wheat Zone), SWAS (Southwestern Autumn-Sown Spring Wheat Zone), 
NES (Northeastern Spring Wheat Zone), NS (Northern Spring Wheat Zone), NWS (Northwestern Spring Wheat Zone), Q&T (Qinghai-Tibetan Plateau Spring–Winter 
Wheat Zone), and XJ (Xinjiang Winter–Spring Wheat Zone).

TABLE 5 | List of three candidate genes flanking QTkw.sicau-4B.

Candidate gene Homologous  
gene in rice

Name Reference

TraesCS4B01G272300 osa:4331673 OsMCA1 Liu et al., 2015c

TraesCS4B01G275400 osa:4345904 H2B
Ma et al.,  

2019a

TraesCS4B01G276200 osa:4331696 OsCDR1
Prasad et al., 

2009

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lin et al. Identify QTL in Wheat

Frontiers in Plant Science | www.frontiersin.org 9 August 2021 | Volume 12 | Article 665122

AUTHOR CONTRIBUTIONS

YL and KYZ drafted and revised the manuscript and contributed 
to data analysis. HYH, JXJ, SFY, and QW performed the phenotypic 
evaluation and helped with data analysis. CXL, JM, GDC, and 
ZSY helped to draft the manuscript. YXL designed and coordinated 
the study and revised the manuscript. All authors have read 
and approved the final manuscript for publication.

FUNDING

This study was supported by the National Natural Science Foundation 
of China (31771794), the National Key Research and Development 
Program of China (2016YFD0101004 and 2017YFD0100900), and 
the International Science & Technology Cooperation Program of 

the Bureau of Science and Technology of Chengdu China (No. 
2015DFA306002015-GH03-00008-HZ).

ACKNOWLEDGMENTS

The authors thank Dr. Lihui Li (Chinese Academy of Agricultural 
Sciences, China) for providing plant materials.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be  found online 
at https://www.frontiersin.org/articles/10.3389/fpls.2021.665122/
full#supplementary-material

 

REFERENCES

Atwell, S., Huang, Y. S., Vilhjalmsson, B. J., Willems, G., Horton, M., Li, Y., 
et al. (2010). Genome-wide association study of 107 phenotypes in Arabidopsis 
thaliana inbred lines. Nature 465, 627–631. doi: 10.1038/nature08800

Bac-Molenaar, J. A., Granier, C., Keurentjes, J. J., and Vreugdenhil, D. (2016). 
Genome-wide association mapping of time-dependent growth responses to 
moderate drought stress in Arabidopsis. Plant Cell Environ. 39, 88–102. 
doi: 10.1111/pce.12595

Bilgrami, S. S., Ramandi, H. D., Shariati, V., Razavi, K., Tavakol, E., Fakheri, B. A., 
et al. (2020). Detection of genomic regions associated with tiller number 
in Iranian bread wheat under different water regimes using genome-wide 
association study. Sci. Rep. 10:14034. doi: 10.1038/s41598-020- 
69442-9

Cui, Y., Zhang, F., and Zhou, Y. (2018). The application of multi-locus GWAS 
for the detection of salt-tolerance loci in rice. Front. Plant Sci. 9:1464. doi: 
10.3389/fpls.2018.01464

Dai, S., Yan, Z., Liu, D., Zhang, L., Wei, Y., and Zheng, Y. (2009). Evaluation 
on Chinese bread wheat landraces for low pH and aluminum tolerance 
using hydroponic screening[J]. Agric. Sci. China 8, 285–292. doi: 10.1016/
S1671-2927(08)60211-4

Faris, J. D., Zhang, Z., Garvin, D. F., and Xu, S. S. (2014). Molecular and 
comparative mapping of genes governing spike compactness from wild 
emmer wheat. Mol. Gen. Genomics. 289, 641–651. doi: 10.1007/s00438- 
014-0836-2

Guan, M., Huang, X., Xiao, Z., Jia, L., Wang, S., Zhu, M., et al. (2019). 
Association mapping analysis of fatty acid content in different ecotypic 
rapeseed using mrMLM. Front. Plant Sci. 9:1872. doi: 10.3389/fpls.2018. 
01872

Hao, C., Dong, Y., Wang, L., You, G., Zhang, H., Ge, H., et al. (2008). Genetic 
diversity and construction of core collection in Chinese wheat genetic 
resources. Chin. Sci. Bull. 53, 1518–1526. doi: 10.1007/s11434-008- 
0212-x

He, Z., and Huang, G. (2001). A History of Wheat Breeding in China. Mexico, DF: 
CIMMYT.

Hu, X., Zuo, J., Wang, J., Liu, L., Sun, G., Li, C., et al. (2018). Multi-locus 
genome-wide association studies for 14 main agronomic traits in barley. 
Front. Plant Sci. 9:1683. doi: 10.3389/fpls.2018.01683

Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., et al. (2010). 
Genome-wide association studies of 14 agronomic traits in rice landraces. 
Nat. Genet. 42, 961–967. doi: 10.1038/ng.695

Kidane, Y. G., Gesesse, C. A., Hailemariam, B. N., Desta, E. A., Mengistu, D. K., 
Fadda, C., et al. (2019). A large nested association mapping population for 
breeding and quantitative trait locus mapping in Ethiopian durum wheat. 
Plant Biotechnol. J. 17, 1380–1393. doi: 10.1111/pbi.13062

Kim, S. M., and Reinke, R. F. (2019). A novel resistance gene for bacterial 
blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping 

using a bi-parental population. PLoS One 14:e211775. doi: 10.1371/journal.
pone.0211775

Kuzay, S., Xu, Y., Zhang, J., Katz, A., Pearce, S., Su, Z., et al. (2019). Identification 
of a candidate gene for a QTL for spikelet number per spike on wheat 
chromosome arm 7AL by high-resolution genetic mapping. Theor. Appl. 
Genet. 132, 2689–2705. doi: 10.1007/s00122-019-03382-5

Li, J., Tang, W., Zhang, Y., Chen, K., Wang, C., Liu, Y., et al. (2018). Genome-
wide association studies for five forage quality-related traits in sorghum 
(Sorghum bicolor L.). Front. Plant Sci. 9:1146. doi: 10.3389/fpls.2018. 
01146

Li, G., Xu, X., Tan, C., Carver, B. F., Bai, G., Wang, X., et al. (2019). Identification 
of powdery mildew resistance loci in wheat by integrating genome-wide 
association study (GWAS) and linkage mapping. Crop J. 7, 294–306. doi: 
10.1016/j.cj.2019.01.005

Lin, Y., Chen, G., Hu, H., Yang, X., Zhang, Z., Jiang, X., et al. (2020a). Phenotypic 
and genetic variation in phosphorus-deficiency-tolerance traits in Chinese 
wheat landraces. BMC Plant Biol. 20:330. doi: 10.1186/s12870-020- 
02492-3

Lin, Y., Jiang, X., Hu, H., Zhou, K., Wang, Q., Yu, S., et al. (2021). QTL 
mapping for grain number per spikelet in wheat using a high-density genetic 
map. Crop J. doi: 10.1016/j.cj.2020.12.006 (in press).

Lin, Y., Jiang, X., Tao, Y., Yang, X., Wang, Z., Wu, F., et al. (2020b). Identification 
and validation of stable quantitative trait loci for grain filling rate in common 
wheat (Triticum aestivum L.). Theor. Appl. Genet. 133, 2377–2385. doi: 
10.1007/s00122-020-03605-0

Lin, Y., Liu, S., Liu, Y., Liu, Y., Chen, G., Xu, J., et al. (2017). Genome-wide 
association study of pre-harvest sprouting resistance in Chinese wheat founder 
parents. Genet. Mol. Biol. 40, 620–629. doi: 10.1590/1678-4685-gmb-2016-0207

Lin, Y., Yi, X., Tang, S., Chen, W., Wu, F., Yang, X., et al. (2019). Dissection 
of phenotypic and genetic variation of drought-related traits in diverse 
Chinese wheat landraces. Pant Genome 12. doi: 10.3835/plantgenome2019. 
03.0025

Liu, Z., Cheng, Q., Sun, Y., Dai, H., Song, G., Guo, Z., et al. (2015c). A SNP 
in OsMCA1 responding for a plant architecture defect by deactivation of 
bioactive GA in rice. Plant Mol. Biol. 87, 17–30. doi: 10.1007/s11103-014-0257-y

Liu, Y., Lin, Y., Gao, S., Li, Z., Ma, J., Deng, M., et al. (2017). A genome-wide 
association study of 23 agronomic traits in Chinese wheat landraces. Plant 
J. 91, 861–873. doi: 10.1111/tpj.13614

Liu, Y., Wang, L., Deng, M. L., Li, Z., Lu, Y., Wang, J., et al. (2015a). Genome-
wide association study of phosphorus-deficiency-tolerance traits in Aegilops 
tauschii. Theor. Appl. Genet. 128, 2203–2212. doi: 10.1007/s00122-015- 
2578-x

Liu, Y., Wang, L., Mao, S., Liu, K., Lu, Y., Wang, J., et al. (2015b). Genome-
wide association study of 29 morphological traits in Aegilops tauschii. Sci. 
Rep. 5:15562. doi: 10.1038/srep15562

Liu, S., Yang, X., Zhang, D., Bai, G., Chao, S., Bockus, W., et al. (2014). 
Genome-wide association analysis identified SNPs closely linked to a gene 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/articles/10.3389/fpls.2021.665122/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.665122/full#supplementary-material
https://doi.org/10.1038/nature08800
https://doi.org/10.1111/pce.12595
https://doi.org/10.1038/s41598-020-69442-9
https://doi.org/10.1038/s41598-020-69442-9
https://doi.org/10.3389/fpls.2018.01464
https://doi.org/10.1016/S1671-2927(08)60211-4
https://doi.org/10.1016/S1671-2927(08)60211-4
https://doi.org/10.1007/s00438-014-0836-2
https://doi.org/10.1007/s00438-014-0836-2
https://doi.org/10.3389/fpls.2018.01872
https://doi.org/10.3389/fpls.2018.01872
https://doi.org/10.1007/s11434-008-0212-x
https://doi.org/10.1007/s11434-008-0212-x
https://doi.org/10.3389/fpls.2018.01683
https://doi.org/10.1038/ng.695
https://doi.org/10.1111/pbi.13062
https://doi.org/10.1371/journal.pone.0211775
https://doi.org/10.1371/journal.pone.0211775
https://doi.org/10.1007/s00122-019-03382-5
https://doi.org/10.3389/fpls.2018.01146
https://doi.org/10.3389/fpls.2018.01146
https://doi.org/10.1016/j.cj.2019.01.005
https://doi.org/10.1186/s12870-020-02492-3
https://doi.org/10.1186/s12870-020-02492-3
https://doi.org/10.1016/j.cj.2020.12.006
https://doi.org/10.1007/s00122-020-03605-0
https://doi.org/10.1590/1678-4685-gmb-2016-0207
https://doi.org/10.3835/plantgenome2019.03.0025
https://doi.org/10.3835/plantgenome2019.03.0025
https://doi.org/10.1007/s11103-014-0257-y
https://doi.org/10.1111/tpj.13614
https://doi.org/10.1007/s00122-015-2578-x
https://doi.org/10.1007/s00122-015-2578-x
https://doi.org/10.1038/srep15562


Lin et al. Identify QTL in Wheat

Frontiers in Plant Science | www.frontiersin.org 10 August 2021 | Volume 12 | Article 665122

resistant to soil-borne wheat mosaic virus. Theor. Appl. Genet. 127, 1039–1047. 
doi: 10.1007/s00122-014-2277-z

Long, L., Yao, F., Yu, C., Ye, X., Cheng, Y., Wang, Y., et al. (2019). Genome-
wide association study for adult-plant resistance to stripe rust in Chinese 
wheat landraces (Triticum aestivum L.) From the Yellow and Huai River 
valleys. Front. Plant Sci. 10:596. doi: 10.3389/fpls.2019.00596

Lu, Y., Xu, J., Yuan, Z., Hao, Z., Xie, C., and Li, X. (2012). Comparative LD 
mapping using single SNPs and haplotypes identifies QTL for plant height 
and biomass as secondary traits of drought tolerance in maize. Mol. Breed. 
30, 407–418. doi: 10.1007/s11032-011-9631-5

Lü, H., Yang, Y., Li, H., Liu, Q., Zhang, J., Yin, J., et al. (2018). Genome-wide 
association studies of photosynthetic traits related to phosphorus efficiency 
in soybean. Front. Plant Sci. 9:1226. doi: 10.3389/fpls.2018.01226

Lu, Y., Zhang, S., Shah, T., Xie, C., Hao, Z., and Li, X. (2010). Joint linkage-
linkage disequilibrium mapping is a powerful approach to detecting quantitative 
trait loci underlying drought tolerance in maize. Proc. Natl. Acad. Sci. 
U. S. A. 107, 19585–19590. doi: 10.1073/pnas.1006105107

Luján Basile, S. M., Ramírez, I. A., Crescente, J. M., Conde, M. B., Demichelis, M., 
Abbate, P., et al. (2019). Haplotype block analysis of an Argentinean hexaploid 
wheat collection and GWAS for yield components and adaptation. BMC 
Plant Biol. 19:553. doi: 10.1186/s12870-019-2015-4

Ma, J., Ding, P., Liu, J., Li, T., Zou, Y., Habib, A., et al. (2019b). Identification 
and validation of a major and stably expressed QTL for spikelet number 
per spike in bread wheat. Theor. Appl. Genet. 132, 3155–3167. doi: 10.1007/
s00122-019-03415-z

Ma, J., Lin, Y., Tang, S., Duan, S., Wang, Q., Wu, F., et al. (2020). A genome-
wide association study of coleoptile length in different Chinese wheat 
landraces. Front. Plant Sci. 11:677. doi: 10.3389/fpls.2020.00677

Ma, L., Liu, M., Yan, Y., Qing, C., Zhang, X., Zhang, Y., et al. (2018). Genetic 
dissection of maize embryonic callus regenerative capacity using multi-locus 
genome-wide association studies. Front. Plant Sci. 9:561. doi: 10.3389/
fpls.2018.00561

Ma, S., Tang, N., Li, X., Xie, Y., Xiang, D., Fu, J., et al. (2019a). Reversible 
histone H2B monoubiquitination fine-tunes abscisic acid signaling and 
drought response in rice. Mol. Plant 12, 263–277. doi: 10.1016/j.molp. 
2018.12.005

Maccaferri, M., Zhang, J., Bulli, P., Abate, Z., Chao, S., Cantu, D., et al. (2015). 
A genome-wide association study of resistance to stripe rust (Puccinia 
striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat 
(Triticum aestivum L.). G3 5, 449–465. doi: 10.1534/g3.114.014563

Muqaddasi, Q. H., Brassac, J., Koppolu, R., Plieske, J., Ganal, M. W., Röder, M. S., 
et al. (2019). TaAPO-A1, an ortholog of rice ABERRANT PANICLE 
ORGANIZATION 1, is associated with total spikelet number per spike in 
elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci. 
Rep. 9:13853. doi: 10.1038/s41598-019-50331-9

Murray, M. G., and Thompson, W. F. (1980). Rapid isolation of high molecular 
weight plant. DNA Nucleic Acids Res 8, 4321–4325. doi: 10.1093/nar/8. 
19.4321

Peng, Y., Liu, H., Chen, J., Shi, T., Zhang, C., Sun, D., et al. (2018). Genome-
wide association studies of free amino acid levels by six multi-locus 
models in bread wheat. Front. Plant Sci. 9:1196. doi: 10.3389/fpls.2018. 
01196

Piepho, H. P., Möhring, J., Melchinger, A. E., and Büchse, A. (2008). BLUP 
for phenotypic selection in plant breeding and variety testing. Euphytica 
161, 209–228. doi: 10.1007/s10681-007-9449-8

Prasad, B. D., Creissen, G., Lamb, C., and Chattoo, B. B. (2009). Overexpression 
of rice (Oryza sativa L.) OsCDR1 leads to constitutive activation of defense 
responses in rice and Arabidopsis. Mol. Plant-Microbe Interact. 22:1635. doi: 
10.1094/MPMI-22-12-1635

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., 
Reich, D., et al. (2006). Principal components analysis corrects for stratification 
in genome-wide association studies. Nat. Genet. 38, 904–909. doi: 10.1038/
ng1847

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population 
structure using multilocus genotype data. Genetics 155, 945–959. doi: 10.1093/
genetics/155.2.945

Qin, P., Lin, Y., Hu, Y., Liu, K., Mao, S., Li, Z., et al. (2016). Genome-wide 
association study of drought-related resistance traits in Aegilops tauschii. 

Genet. Mol. Biol. 39, 398–407. doi: 10.1590/1678-4685-GMB-2015- 
0232

Qin, P., Wang, L., Liu, K., Mao, S., Li, Z., Gao, S., et al. (2015). Genome-wide 
association study of Aegilops tauschii traits under seedling-stage cadmium 
stress. Crop J. 3, 405–415. doi: 10.1016/j.cj.2015.04.005

Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield trends 
are insufficient to double global crop production by 2050. PLoS One 8:e66428. 
doi: 10.1371/journal.pone.0066428

Ren, W. L., Wen, Y. J., Dunwell, J. M., and Zhang, Y. M. (2018). pKWmEB: 
integration of Kruskal-Wallis test with empirical Bayes under polygenic 
background control for multi-locus genome-wide association study. Heredity 
120, 208–218. doi: 10.1038/s41437-017-0007-4

Smith, S. E., Kuehl, R. O., Ray, I., Hui, R., and Soleri, D. (1998). Evaluation 
of simple methods for estimating broad-sense heritability in stands of 
randomly planted genotypes. Crop Sci. 38, 1125–1129. doi: 10.2135/crops
ci1998.0011183X003800050003x

Sukumaran, S., Dreisigacker, S., Lopes, M., Chavez, P., and Reynolds, M. P. 
(2015). Genome-wide association study for grain yield and related traits 
in an elite spring wheat population grown in temperate irrigated 
environments. Theor. Appl. Genet. 128, 353–363. doi: 10.1007/s00122- 
014-2435-3

Tamba, C. L., Ni, Y. L., and Zhang, Y. M. (2017). Iterative sure independence 
screening EM-Bayesian LASSO algorithm for multi-locus genome-wide 
association studies. PLoS Comput. Biol. 13:e1005357. doi: 10.1371/journal.
pcbi.1005357

Wang, S. B., Feng, J. Y., Ren, W. L., Huang, B., Zhou, L., Wen, Y. J., et al. 
(2016). Improving power and accuracy of genome-wide association studies 
via a multi-locus mixed linear model methodology. Sci. Rep. 6:19444. doi: 
10.1038/srep19444

Wang, J., Liu, W., Wang, H., Li, L., Wu, J., Yang, X., et al. (2011). QTL 
mapping of yield-related traits in the wheat germplasm 3228. Euphytica 
177, 277–292. doi: 10.1007/s10681-010-0267-z

Wen, Y. J., Zhang, H., Ni, Y. L., Huang, B., Zhang, J., Feng, J. Y., et al. (2017). 
Methodological implementation of mixed linear models in multi-locus 
genome-wide association studies. Brief. Bioinform. 18:906. doi: 10.1093/bib/
bbx028

Xiao, M., Song, F., Jiao, J., Wang, X., Xu, H., and Li, H. (2013). Identification 
of the gene Pm47 on chromosome 7BS conferring resistance to powdery 
mildew in the Chinese wheat landrace Hongyanglazi. Theor. Appl. Genet. 
126, 1397–1403. doi: 10.1007/s00122-013-2060-6

Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., et al. (2011). KOBAS 
2.0: a web server for annotation and identification of enriched pathways 
and diseases. Nucleic Acids Res. 39(suppl.2), W316–W322. doi: 10.1093/nar/
gkr483

Xu, Y., Wang, R., Tong, Y., Zhao, H., Xie, Q., Liu, D., et al. (2014). Mapping 
QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen 
and phosphorus fertilization on QTL expression. Theor. Appl. Genet. 127, 
59–72. doi: 10.1007/s00122-013-2201-y

Xu, Y., Yang, T., Zhou, Y., Yin, S., Li, P., Liu, J., et al. (2018). Genome-wide 
association mapping of starch pasting properties in maize using single-locus 
and multi-locus models. Front. Plant Sci. 9:1311. doi: 10.3389/fpls.2018. 
01311

Yang, N., Lu, Y., Yang, X., Huang, J., Zhou, Y., and Ali, F. (2014). Genome 
wide association studies using a new nonparametric model reveal the genetic 
architecture of 17 agronomic traits in an enlarged maize association panel. 
PLoS Genet. 10:e1004573. doi: 10.1371/journal.pgen.1004573

Yano, K., Morinaka, Y., Wang, F., Huang, P., Takehara, S., Hirai, T., et al. 
(2019). GWAS with principal component analysis identifies a gene 
comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. 116, 
21262–21267. doi: 10.1073/pnas.1904964116

Yu, M., Mao, S., Chen, G., Pu, Z., Wei, Y., Zheng, Y., et al. (2014). QTLs for 
uppermost internode and spike length in two wheat RIL populations and 
their affect upon plant height at an individual QTL level. Euphytica 200, 
95–108. doi: 10.1007/s10681-014-1156-7

Zadoks, J. C., Chang, T. T., and Konzak, C. F. (1974). A decimal code for the 
growth stages of cereals. Weed Res. 14, 415–421. doi: 10.1111/j.1365-3180.1974.
tb01084.x

Zhai, H., Feng, Z., Li, J., Liu, X., Xiao, S., Ni, Z., et al. (2016). QTL analysis 
of spike morphological traits and plant height in winter wheat (Triticum 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1007/s00122-014-2277-z
https://doi.org/10.3389/fpls.2019.00596
https://doi.org/10.1007/s11032-011-9631-5
https://doi.org/10.3389/fpls.2018.01226
https://doi.org/10.1073/pnas.1006105107
https://doi.org/10.1186/s12870-019-2015-4
https://doi.org/10.1007/s00122-019-03415-z
https://doi.org/10.1007/s00122-019-03415-z
https://doi.org/10.3389/fpls.2020.00677
https://doi.org/10.3389/fpls.2018.00561
https://doi.org/10.3389/fpls.2018.00561
https://doi.org/10.1016/j.molp.2018.12.005
https://doi.org/10.1016/j.molp.2018.12.005
https://doi.org/10.1534/g3.114.014563
https://doi.org/10.1038/s41598-019-50331-9
https://doi.org/10.1093/nar/8.19.4321
https://doi.org/10.1093/nar/8.19.4321
https://doi.org/10.3389/fpls.2018.01196
https://doi.org/10.3389/fpls.2018.01196
https://doi.org/10.1007/s10681-007-9449-8
https://doi.org/10.1094/MPMI-22-12-1635
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/ng1847
https://doi.org/10.1093/genetics/155.2.945
https://doi.org/10.1093/genetics/155.2.945
https://doi.org/10.1590/1678-4685-GMB-2015-0232
https://doi.org/10.1590/1678-4685-GMB-2015-0232
https://doi.org/10.1016/j.cj.2015.04.005
https://doi.org/10.1371/journal.pone.0066428
https://doi.org/10.1038/s41437-017-0007-4
https://doi.org/10.2135/cropsci1998.0011183X003800050003x
https://doi.org/10.2135/cropsci1998.0011183X003800050003x
https://doi.org/10.1007/s00122-014-2435-3
https://doi.org/10.1007/s00122-014-2435-3
https://doi.org/10.1371/journal.pcbi.1005357
https://doi.org/10.1371/journal.pcbi.1005357
https://doi.org/10.1038/srep19444
https://doi.org/10.1007/s10681-010-0267-z
https://doi.org/10.1093/bib/bbx028
https://doi.org/10.1093/bib/bbx028
https://doi.org/10.1007/s00122-013-2060-6
https://doi.org/10.1093/nar/gkr483
https://doi.org/10.1093/nar/gkr483
https://doi.org/10.1007/s00122-013-2201-y
https://doi.org/10.3389/fpls.2018.01311
https://doi.org/10.3389/fpls.2018.01311
https://doi.org/10.1371/journal.pgen.1004573
https://doi.org/10.1073/pnas.1904964116
https://doi.org/10.1007/s10681-014-1156-7
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x


Lin et al. Identify QTL in Wheat

Frontiers in Plant Science | www.frontiersin.org 11 August 2021 | Volume 12 | Article 665122

aestivum L.) using a high-density SNP and SSR-based linkage map. Front. 
Plant Sci. 7:01617. doi: 10.3389/fpls.2016.01617

Zhang, X., Deng, Z., Wang, Y., Li, J., and Tian, J. (2014). Unconditional and 
conditional QTL analysis of kernel weight related traits in wheat (Triticum 
aestivum L.) in multiple genetic backgrounds. Genetica 142, 371–379. doi: 
10.1007/s10709-014-9781-6

Zhang, J., Feng, J. Y., Ni, Y. L., Wen, Y. J., Niu, Y., Tamba, C. L., et al. (2017). 
pLARmEB: integration of least angle regression with empirical Bayes for multilocus 
genome-wide association studies. Heredity 118, 517–524. doi: 10.1038/hdy.2017.8

Zhang, Y., Liu, P., Zhang, X., Zheng, Q., Chen, M., Ge, F., et al. (2018). 
Multi-locus genome-wide association study reveals the genetic architecture 
of stalk lodging resistance-related traits in maize. Front. Plant Sci. 9:611. 
doi: 10.3389/fpls.2018.00611

Zhang, Y. M., Mao, Y., Xie, C., Smith, H., Luo, L., et al. (2005). Mapping 
quantitative trait loci using naturally occurring genetic variance among 
commercial inbred lines of maize (Zea mays L.). Genetics 169, 2267–2275. 
doi: 10.1534/genetics.104.033217

Zhou, Y., Tang, H., Cheng, M. P., Dankwa, K. O., Chen, Z. X., Li, Z. Y., et al. 
(2017). Genome-wide association study for pre-harvest sprouting resistance 
in a large germplasm collection of Chinese wheat landraces. Front. Plant 
Sci. 8:401. doi: 10.3389/fpls.2017.00401

Zhu, D., Kang, H., Li, Z., Liu, M., Zhu, X., Wang, Y., et al. (2016). A genome-
wide association study of field resistance to magnaporthe oryzae in rice. 
Rice 9:44. doi: 10.1186/s12284-016-0116-3

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2021 Lin, Zhou, Hu, Jiang, Yu, Wang, Li, Ma, Chen, Yang and Liu. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) and the copyright owner(s) are credited 
and that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.3389/fpls.2016.01617
https://doi.org/10.1007/s10709-014-9781-6
https://doi.org/10.1038/hdy.2017.8
https://doi.org/10.3389/fpls.2018.00611
https://doi.org/10.1534/genetics.104.033217
https://doi.org/10.3389/fpls.2017.00401
https://doi.org/10.1186/s12284-016-0116-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Multi-Locus Genome-Wide Association Study of Four Yield-Related Traits in Chinese Wheat Landraces
	Introduction
	Materials and Methods
	Plant Material, Phenotype Evaluation, and Data Analysis
	Genotyping
	GWAS for Yield Traits
	Validation of QTL Using Two RIL Populations
	Candidate Gene Prediction

	Results
	Phenotypic Variation in Chinese Wheat Landraces
	Five Multi-Locus Models of Yield-Related Traits
	Robust QTL Selected by Five Multi-Locus Models
	Validation of Genetic Effect and Candidate Genes of QTkw.sicau-4B 

	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material

	References

