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Chloroplast NAD(P)H dehydrogenase (NDH) complex, a multiple-subunit complex in the
thylakoid membranes mediating cyclic electron transport, is one of the most important
alternative electron transport pathways. It was identified to be essential for plant growth
and development during stress periods in recent years. The NDH-mediated cyclic
electron transport can restore the over-reduction in stroma, maintaining the balance
of the redox system in the electron transfer chain and providing the extra ATP needed
for the other biochemical reactions. In this review, we discuss the research history and
the subunit composition of NDH. Specifically, the formation and significance of NDH-
mediated cyclic electron transport are discussed from the perspective of plant evolution
and physiological functionality of NDH facilitating plants’ adaptation to environmental
stress. A better understanding of the NDH-mediated cyclic electron transport during
photosynthesis may offer new approaches to improving crop yield.
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INTRODUCTION

Regulation of photosynthetic electron transport in the thylakoid membrane of chloroplasts is
fundamental for the maximum photosynthetic yield and plant growth. The light reactions in
photosynthesis convert light energy into chemical energy in the forms of ATP and NADPH. The
reactions involve two types of electron transport in the thylakoid membrane. While linear electron
transport generates both ATP and NADPH, cyclic electron transport around photosystem I (PSI)
is exclusively involved in ATP synthesis without the accumulation of NADPH (Johnson, 2011;
Yamori et al., 2015). The cyclic electron transport (CET) around PSI includes two distinct and
partially redundant pathways in plant chloroplasts. One, i.e., antimycin A-insensitive pathway, is
mediated by chloroplast NADH dehydrogenase (NDH) complex (Peltier et al., 2016; Shikanai and
Yamamoto, 2017). The other is mediated by PROTON GRADIENT REGULATION5 (PGR5) and
PGR5-like Photosynthetic Phenotype1 (PGRL1) protein complex which is sensitive to antimycin A
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(Munekage et al., 2002, 2004; Dalcorso et al., 2008). Some results
have shown that NDH-dependent CET is also involved in plant
response to various environmental stresses, such as drought
(Munné-Bosch et al., 2005), high temperature (Wang et al., 2006),
low temperature (Li et al., 2004; Leonid et al., 2011; Yamori et al.,
2011; Wang et al., 2020), low light (Ishikawa et al., 2016a), and
phosphorus deficiency (Carstensen et al., 2018; Shi et al., 2019).
This review examines the background underlying the research
of NDH. The significance of the NDH-mediated cyclic electron
transport is discussed from the perspective of plant evolution
and physiological functionality of NDH to understand how plants
adapt to environmental stress by fine tuning their NDH-mediated
cyclic electron transport.

DISCOVERY OF THE NDH COMPLEX

Arnon et al. (1954) discovered CET in spinach chloroplasts
in vitro, but this did not accelerate the understanding of the
NDH complex. It was not until 1986 that scientists discovered the
NDH complex in the chloroplast genome sequencing of tobacco
and liverwort (Marchantia polymorpha) (Ohyama et al., 1986;
Shinozaki et al., 1986). There were 11 genes (NdhA∼NdhK)
in their chloroplast genome that were highly homologous to
the genes encoding the human mitochondrial respiratory chain
NADH dehydrogenase complex (Matsubayashi et al., 1987). With
these genomic similarities, the NADH dehydrogenase complex in
chloroplasts was aptly named as the NAD(P)H dehydrogenase-
like complex or commonly referred to as the NDH complex
(Yamamoto et al., 2011).

Structure of the NDH-1 Complex in
Cyanobacteria
The type I NADH dehydrogenase (NDH-1) is a multisubunit
complex located in the thylakoid membrane (Ohkawa et al.,
2000), which is widely found in bacteria, cyanobacteria, higher
plants, and animals (Friedrich et al., 1995; Yagi et al., 1998;
Friedrich and Scheide, 2000; Brandt et al., 2003; Miller et al.,
2021). Previous studies have reported that NDH-2 exists widely
in bacteria, some in fungi, plants, and protozoa (protist), but
it is not involved in respiration and photosynthetic electron
transport (Howitt et al., 1999). There are about 26 NDH subunits
in cyanobacteria (Laughlin et al., 2020). Proteomic methods and
cryoelectron microscopic (cryo-EM) have been used to study the
different types of NDH-1 complexes in cyanobacteria, including
NDH-1L, NDH1L’, NDH-1MS, and NDH-1MS’ (Figure 1; Peltier
et al., 2016; Zhang et al., 2020). The NDH-1L and NDH-1L’ are
involved in respiration and the cyclic electron transfer around
PSI. In addition, the NDH-1MS and NDH-1MS’ are involved in
the absorption of CO2 and the cyclic electron transfer around PSI
(Ogawa, 1991; Ohkawa et al., 2000). In addition to the NDH-
1M component, NDH-1L has two specific subunits NdhD1 and
NdhF1. Nowaczyk et al. (2011) found two new subunits: NdhP
and NdhQ of NDH-1L in thermophilic cyanobacteria by mass
spectrometry, which are located on the membrane arm and play
a major role in the stability of NDH-1L (Wulfhorst et al., 2014;
Zhao et al., 2015), in which NdhP subunits are unique to NDH-1L

(Wulfhorst et al., 2014). The small molecular hydrophilic subunit
NdhS and NdhV subunit which can stabilize the binding of NdhS
to ferredoxin (Fd) were found in Synechocystis sp. (Yamamoto
et al., 2011; Zhao et al., 2014). Recently, some researchers
reported the cryo-EM structure of the entire NDH-1L complex
with all 19 subunits (including NdhV, a transiently associated
subunit of NDH-1) and revealed the structure and arrangement
of the principal oxygenic photosynthesis-specific (OPS) subunits
in the NDH complex (Laughlin et al., 2019; Zhang et al., 2020).
The NDH-1L’ complex contains NdhD2 subunit but not NdhD1.
The expression level of the complex generally increases under the
condition of carbon deficiency (Wang et al., 2004). The subunits
of NDH-1MS are CupA, CupS, NdhF3, and NdhD3 (Ohkawa
et al., 1998), and the complex has a high affinity for CO2, while the
specific subunits of NDH-1MS’ are NdhF4, NdhD4, and CupB
(Wulfhorst et al., 2014).

Structure of the Chloroplast NDH
Complex
The chloroplast NDH complex, located in the thylakoid
membrane, mediates CET and chloroplastic respiration
(Laughlin et al., 2020). A recent work lists 35 subunits as the
presently identified NDH subunits in chloroplasts, of which
many have an unknown function. The chloroplast NDH complex
is a large thylakoid protein complex composed of 11 chloroplast-
encoded subunits (Ndh A∼K) and another 24 nuclear-encoded
subunits (Laughlin et al., 2020). These subunits are distributed
in different subcomplexes (Sirpio et al., 2009). Previous studies
have shown that the NDH complex consists of subcomplex
A (SubA), subcomplex B (SubB), lumen subcomplex (SubL),
membrane subcomplex (SubM), and electron donor-binding
subcomplex (SubE) (Figure 2; Shikanai, 2016). The formation
of this supercomplex helps to maintain the stability of the NDH
complex under strong light conditions (Peng and Shikanai,
2011). Three subunits of NdhS, NdhT, and NdhU in SubE
have been identified through proteomic analysis of NDH-PSI
supercomplex (Yamamoto et al., 2011). Fan et al. (2015) identified
NdhV as a new subunit of SubE, which is a thylakoid membrane
peripheral protein located on the side of the stroma. SubE binds
to SubA to form a ferredoxin-binding site; the key function is to
bind ferredoxin and facilitating catalysis (Yamamoto et al., 2011).

NDH-CET IN PLANT EVOLUTION

Phycophyta
While examining the NDH-CET from the perspective of plant
evolution, we uncovered some salient observations in some
phylogenetically primitive organisms. Mi et al. (1992) found
inactivated NDH in which the electron transport chain (ETC)
from the reduction product produced by the respiratory stroma
and the reduction side of PSI to P700+ were completely lost
in the cyanobacteria mutants. Conversely, in cyanobacterial
mutants with partial inactivation of NDH, this ETC was partially
inhibited. The CET in cyanobacteria (and not PGR5-CET) occurs
mainly via the NDH-1 complex (Mi et al., 1995; Yeremenko
et al., 2005). Meanwhile, it was found that plant PGR5 suffices
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FIGURE 1 | The functional and structural multiplicity of the Cyanobacteria NDH-1 complexes. NDH-1L and NDH-1L′ are involved in respiration and cyclic electron
transport around PSI, while NDH-1MS and NDH-1MS′ are involved in the absorption of CO2 and cyclic electron transport around PSI, in which NDH-1MS is a low
CO2-induced CO2 absorption complex and NDH-1MS’ is a constitutive CO2 absorption complex (adapted from Battchikova et al., 2011; Laughlin et al., 2020;
Zhang et al., 2020).

FIGURE 2 | The structure of the chloroplast NDH complex. SubA, subcomplex A; SubB, subcomplex B; SubM, membrane subcomplex; SubL, lumen subcomplex;
SubE, electron donor-binding subcomplex; Stroma, thylakoid matrix; Lumen, thylakoid cavity; Lhca5/6, light harvesting pigment protein (adapted from Ifuku et al.,
2011; Shikanai, 2016).

to reestablish cyanobacterial cyclic electron transport, albeit less
efficiently than the cyanobacterial PGR5 or the plant PGR5 and
PGRL1 proteins together (Dann and Leister, 2019; Margulis
et al., 2020). Despite the lack of ndhA∼K gene (encoded by
chloroplasts) in Chlamydomonas reinhardtii, it still has the ability
for CET (Martin et al., 2004). It is plausible that there might
be another CET pathways operating in these primitive protists.
However, recent data suggest that Chlamydomonas reinhardtii
performs CET also through the PGR5-PGL1 pathway (Jokel et al.,
2018; Yadav et al., 2020). It was proposed that in the process
of CET transmission within Chlamydomonas reinhardtii, the
reduction of plastoquinone (PQ) was facilitated by the NADH:

PQ oxidoreductase (a type II NADH: PQ oxidoreductase, Nda2)
(Desplats et al., 2009). The structure of Nda2 was considered
to be simple, and the catalytic reaction was faster than that of
NDH-CET (Kramer and Evans, 2011).

Plants With C3 Mode of Photosynthesis
In Arabidopsis, NDH-1 forms a supercomplex with photosystem
I and light-harvesting complex I proteins Lhca5 and Lhca6 (Peng
et al., 2009; Yadav et al., 2017). Furthermore, the NDH-1-PSI
supercomplex has also been identified in barley (Kouřil et al.,
2014). Under normal growth conditions, the content of NDH
complex in C3 plants was lower than that of the thylakoid
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membrane protein complexes such as PSI, PSII, cytochrome
b6f (Cytb6f), and ATP synthase (Pribil et al., 2014), accounting
for only 1.5% of the PSII content (Burrows et al., 1998).
The involvement of NDH complex in the CET process was
demonstrated using chlorophyll fluorescence parameter kinetics
and inhibitor blocking analysis in tobacco ndh mutants (Joët
et al., 2001). Interestingly, it has been shown that damage of
NDH-CET in rice causes a reduction in the electron transport
rate through PSI at the low light intensity with a concomitant
reduction in CO2 assimilation rate (Yamori et al., 2015).
Therefore, NDH-CET plays an essential role in normal growth
and yield under low light (Rantala et al., 2020).

Plants With C4 Mode of Photosynthesis
During the evolution of plants from C3 to C4, the expression
of NDH increased significantly (Nakamura et al., 2013). The
content of NDH in C4 plants was higher than that in C3 plants,
indicating that NDH-CET have a vital role in C4 plants (Berger
et al., 1993; Ishikawa et al., 2016b). Takabayashi et al. (2005)
found that the content of NDH in vascular bundle sheath is 1.6
times higher than that in mesophyll cells of Scutellaria barbata.
In Flaveria bidentis, the content of NDH protein in vascular
bundle sheath was three times higher than that in mesophyll cells
(Nakamura et al., 2013). In the NADP-ME-type of C4 plants, their
vascular bundle sheath cells contained more NDH indicating a
requirement for more ATP (Friso et al., 2010; Ishikawa et al.,
2016b). Darie et al. (2010) not only detected the expression of
a new gene (ndhE) in maize mesophyll (MS), bundle sheath
(BS), and ethioplast (ET) plastids but also found that the NDH
complex was divided into 300 kDa subcomplex (corresponding
to membrane subcomplex, detected by the NDHE antibody)
and 250 kDa subcomplex (detected by the NDHH, -J, and -K
antibodies) (Darie et al., 2010). Interestingly, in NAD-ME-type
C4 plants, the mesophyll cells contained an abundance of NDH
protein (Kanai and Edwards, 1999). Besides, chloroplast NDH-
1 contains at least 13 additional OPS subunits compared with
cyanobacteria, although the current structure of the NDH-1
complex reveals the role of conserved OPS subunits (Laughlin
et al., 2019, 2020; Zhang et al., 2020).

THE PHYSIOLOGICAL FUNCTIONALITY
OF THE NDH COMPLEX

Providing ATP for Efficient Carbon
Assimilation
Theoretically, the NADPH/ATP produced by the linear electron
transport is deficient for the assimilation of CO2 at different
growth stages; the CET pathway, which only produces ATP,
but not NADPH, can effectively compensate for this deficiency
(Shikanai, 2007; Walker et al., 2016; Nakano et al., 2019). With no
NDH activity, the cyanobacteria mutants of ndhB (Ogawa, 1990),
ndhH, ndhJ, ndhN, and ndhM (He et al., 2015), could not survive
in normal air CO2 concentration; other mutants with partial
NDH activity grew slowly in normal air CO2 concentration
(He and Mi, 2016). The non-functional NDH-CET pathway

was attributed to the loss of ndhB in plants (Mi et al., 1995).
Ogawa (1992) proposed that the NDH-CET pathway provided
energy for CO2 assimilation and inorganic carbon transport
in cyanobacteria. Similarly, the NDH-CET pathway is likely
to contribute to the proton motive force (pmf ) and ATP in
chloroplasts of higher plants (Strand et al., 2017). In Arabidopsis
NDH complex defective mutants, the reduction of pmf across the
thylakoid membrane led to low availability of ATP. Moreover, the
pmf produced by NDH-CET was higher than that produced by
PGR5/PGRL1-CET (Wang et al., 2015). It was observed that the
ATP produced by NDH-CET could effectively compensate for
CO2 assimilation in a changing environment (Xu et al., 2014; Pan
et al., 2020). It was found that the carbon assimilation efficiency
of rice mutants (with no NDH activity caused by the lack of
CRR6 assembly factor of subcomplex A) is lower than normal
rice plants when grown under low light, resulting in a significant
decrease in biomass (Yamori et al., 2015). Meanwhile, NDH-CET
is also promoted under corresponding stress conditions to adapt
to the needs of ATP and 1pH during changing environment
to ensure an effective photosynthetic carbon fixation process
(Quiles, 2006).

Mitigating Oxidative Stress and Stroma
Overreduction
It was found that the concentration of NADPH was higher, and
more H2O2 was produced on the acceptor side of PSI, when
measuring the NADPH fluorescence kinetics of cyanobacteria
NDH mutant (Mi et al., 2000). These observations indicated
that NDH-CET plays a key role in the process of antioxidation.
Specifically, the NDH-CET initiates photoprotection via
downregulating electron transport in the Cytb6f complex
to acidify the thylakoid lumen (Munekage et al., 2004) and
induces energy-dependent quenching (qE) component of
non-photochemical quenching (NPQ) in PSII to dissipate
the absorbed excess light energy. Thus, the oxidative stress of
chloroplast can be alleviated and the overreduction of stroma
can be prevented (Li et al., 2002). The role of NDH-CET in
the process of antioxidation in higher plants principally stems
from the study of ndh gene knockout in tobacco plastids. Endo
et al. (1999) repeatedly irradiated tobacco ndhB mutant leaves
with strong light and found that the PSII in mutants produced
serious photoinhibition. When tobacco leaves were subjected
to anaerobic condition, the activity of NDH-CET increased
significantly, indicating that it was regulated by the redox state
of intersystem electron transporters (Joët et al., 2002). Wang
et al. (2006) found that tobacco ndhC-J-K mutants accumulated
reactive oxygen species more easily than wild types when
growing under low- (4◦C) or high-temperature (42◦C) stress.
Chloroplast NDH was able to alleviate oxidative stress in rice
under fluctuating light conditions (Yamori et al., 2016), and
hydrogen peroxide could be used as a signaling compound
to activate NDH-CET (Strand et al., 2015). Moreover, it was
shown that the NDH-1-PSI supercomplex consumed electrons
for CET as quickly as possible, limiting the space required by
Fdred diffusion and stabilizing PSI (Gao et al., 2016; Zhao et al.,
2018). This accelerated electron consumption is thought to be
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an antioxidant mechanism, especially when stresses such as
high light leads to increased Fd reduction (Miller et al., 2021).
These studies suggested that the NDH complex get involved in
alleviating the effects of photooxidative stress. Wu et al. (2011)
found that a low concentration of NaHSO3 promoted NDH-CET
in tobacco under a dark-light transition episode, which slowed
down the damage of photooxidation while improving plant
photosynthesis. These findings revealed that the NDH complex
is involved in alleviating the effects of photooxidative stress.

Regulating the Photosynthetic Apparatus
Generally, PSI is more stable than PSII and less vulnerable to
light damage (Sonoike, 2011). Arabidopsis (Kono and Terashima,
2016) and rice (Yamori et al., 2016) cannot grow well under
fluctuating light due to photoinhibition (Kono et al., 2014); the
pgr5 mutants of Arabidopsis thaliana die at the seedling stage
under fluctuating light, indicating that the CET pathway has a
protective effect on PSI (Suorsa et al., 2016). The relative electron
transport rate (ETR) and CO2 assimilation rate of rice NDH
complex-deleted mutant decreased under long-term low-light
and low-temperature conditions (Peng et al., 2009; Peng and
Shikanai, 2011; Kono and Terashima, 2016). Conversely, the CET
had little regulation on the ratio of ATP/NADPH under high
light (Yamori et al., 2015). However, Walker et al. (2014) held
an opposite view that CET plays a major role during high light,
such as increasing the ATP requirements. In this regard, Huang
et al. (2015) deemed that the effect of CET alters in tandem and
coinciding with any changes in light intensity. When subjected to
subsaturated light intensity, CET is conducive for the formation
of proton dynamic potential across the thylakoid membrane,
activating ATP synthase to synthesize ATP, while maintaining
an optimal ATP/NADPH. Under saturated light, CET provides
an important photoprotective role for the activity of oxygen
evolution complex (OEC) by forming the proton gradient across
the thylakoid membrane (?pH) (Huang et al., 2016b), and pmf
to protect PSI and PSII via the acidification of thylakoid lumen
(Golding et al., 2004; Basso et al., 2020). Chilling leads to
photoinhibition in cold-sensitive plants like tobacco, peanut,
and cucumber which is mainly related to CET activity (Huang
et al., 2016a; Liu, 2020; Song et al., 2020; Wu et al., 2020). At
4◦C, CET plays a photoprotective role in PSI primarily through
the acidification of thylakoid lumen (Huang et al., 2017b). The
protective mechanism of CET would alter in accordance with
the different growth status of the heliophyte leaves. Under strong
light, immature leaves protect the photosystems mainly through
the acidification of thylakoid lumen. For the mature leaves,
they achieve high light protection through the formation of
cross-thylakoid membrane proton gradient, activation of ATP

enzyme, and lumen acidification (Huang et al., 2017a). However,
Rantala et al. (2020) indicated that PGR5 and NDH-1 systems
do not function as protective electron acceptors but mitigate the
consequences of PSI inhibition. There is no consensus that the
PGR5/PGRL1 compose a true cyclic electron pathway (i.e., acting
as electron transporters) mainly due to the lack of solid molecular
evidence, although PGR5/PGRL1 seems to be involved in CET at
least indirectly (Nawrocki et al., 2019; Rantala et al., 2020).

FUTURE OUTLOOK

Although the energy provided by NDH-CET is lower than
that of LET, it still plays a principal role in fine-tuning energy
availability in plants. Besides, it plays a significant role in
maintaining photosynthetic carbon fixation of algae and higher
plants when encountering abiotic stress events. At present, there
are several unanswered questions about NDH-CET: namely, the
regulation of NDH pathway which affects the efficient operation
of photosynthetic apparatus; the activation of its regulatory
mechanism under abiotic stress; the electron transfer processes
of NDH; and how they might influence the CO2 concentrating
mechanism in algae and higher plants. Moving forward, in-depth
studies about the NDH-CET pathway are required to improve
the light energy utilization efficiency of plants and to further
elucidate the mechanism associated with photoprotection. With
the availability of newer technology, harnessing these novel
and sensitive tools would improve our understanding of the
NDH-CET pathway and ultimately help us to improve crop
yield and quality.
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