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INTRODUCTION

Hypoxia is one of the major abiotic stresses, primarily caused by numerous flooding events such
as waterlogging and submergence (Zhou et al., 2020a; Xie et al., 2021), with deleterious effects
on plant growth and development (Bailey-Serres et al., 2012; Voesenek and Bailey-Serres, 2015;
Xie et al., 2021; Zhou et al., 2021). Due to the excessive water absorption, hypoxia mechanically
damages seed germination, seedling establishment, and finally crop yield (Nakayama et al., 2004;
Arguello et al., 2016; Yanjun et al., 2016; Striker and Colmer, 2017; Wang et al., 2017; Shen et al.,
2020; Lee et al., 2021; Tian et al., 2021). Further, flooding decreases the seed quality of cotton and
soybean by altering the accumulation and distribution of carbohydrates, oil, and protein (Wang
et al., 2018; Xu et al., 2021). Collectively, hypoxia stress negatively regulates numerous aspects of
plant development.

Abscisic acid (ABA) is an essential phytohormone that regulates plant growth and development,
such as seed germination, seed dormancy, seed longevity, and seedling establishment (Zhu, 2016;
Khan et al., 2020; Umashankar et al., 2020; Zhou et al., 2020b). It is worth noting that ABA also
responds to abiotic stresses such as drought, salt, and water stresses (Zhu, 2016; Shu et al., 2018).
ABA induces stomata formation on underwater leaves (Iida et al., 2016) and controls stomatal
movement by regulating the size of guard cells, thus mediating water potential in plants (Zhu,
2016; He et al., 2018). During hypoxia stress, ABA biosynthesis is inhibited, while the catabolism
cascade is enhanced, and thus, exogenous ABA can increase the tolerance of plants to hypoxia stress
(Dawood et al., 2016; De Ollas et al., 2021). Under flooding conditions, pretreatment with ABA
increases the abundance of protein through glycolysis, fermentation, and tricarboxylic acid cycle
(TCA), thereby enhancing hypoxic properties and improving survival rate in soybean (Komatsu
et al., 2013; Yin et al., 2016; Wang et al., 2018). Moreover, the application of ABA positively
regulates the net assimilation rate (NAR), relative growth rate (RGR), and chlorophyll content of
rice under flooding (Saha et al., 2021). However, these reports did not provide a detailed molecular
mechanism of hormone regulation under hypoxia. Therefore, considering the response of ABA to
hypoxia stress, we need to understand the detailedmolecularmechanisms, especially the underlying
mechanisms of ABA biosynthesis, catabolism, and signal transduction under hypoxia stress. Here,
this opinion intends to highlight some critical unanswered questions, which need to be addressed
in future exploration.

ABSCISIC ACID, ETHYLENE, AND GIBBERELLIN (GA) CROSS
TALK IN RESPONSE OF PLANTS TO HYPOXIA STRESS

Because of its gaseous nature, it is difficult for ethylene to leave the plant under flooding
conditions, so it rapidly accumulates inside the plant and reflects the predicament of plants
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(Hattori et al., 2009; Alpuerto et al., 2016). Ethylene is the
primary signal for adaptation of a plant to flooding (Loreti
et al., 2016), which regulates ABA, GA, and auxin, affecting
plant growth and development under hypoxia stress (Steffens
et al., 2006; Vidoz et al., 2010; Dawood et al., 2016; Yang
et al., 2018). Ethylene involves in stimulating bud elongation,
aerenchyma development, and adventitious root (AR) formation
under flooding conditions (Voesenek et al., 2003; Rajhi et al.,
2010; Dawood et al., 2016; Nguyen et al., 2018). As such, ethylene
has become a hot topic in hypoxia research like flooding.

Ethylene accumulated under flooding stress induces
elongation by inhibiting the biosynthesis of ABA in Rumex
palustris (Benschop et al., 2005). Thus, with the increased
ethylene level under waterlogging conditions, the ABA
concentration decreases (Figure 1) and endogenous GA
increases. The reduction in ABA is necessary for the
submergence-induced GA response, which promotes internode
or petiole elongation (Kende et al., 1998; Benschop et al.,
2006). Mechanistically, the accumulated ethylene inhibits the
expression of 9-cis-epoxycarotenoid dioxygenase encoding genes
(NCEDs), which also leads to the breakdown of ABA into phaseic
acid (PA), thereby reducing ABA content (Benschop et al.,
2005; Saika et al., 2007). A reduction in ABA content interferes
with the GA pathway, leading to rapid shoot elongation under
submergence, as seen in marsh docks (Benschop et al., 2006)
and rice (Kende et al., 1998). Similarly, flooding increases stem
elongation in deepwater rice varieties, partially by reducing
endogenous ABA content and increasing GA concentration
(Yang and Choi, 2006).

Ethylene and its precursor 1-aminocyclopropane-1-carboxylic
acid (ACC) induce rapidly the expression of ABA 8′-hydroxylase
1 (OsABA8ox1), and pretreatment with the ethylene receptor
inhibitor 1-methylcyclopropene (1-MCP) inhibits its expression
(Saika et al., 2007). These results suggest that under flooding
conditions, the rapid decline of ABA in deepwater rice varieties
is partly controlled by the ethylene-induced expression of
OsABA8ox1 (Saika et al., 2007; Pan et al., 2021). Degradation of
ABA is enhanced by submergence in submergence1 A (Sub1A)-
independent manner (Figure 1) (Fukao and Bailey-Serres, 2008).
At the same time, the exogenous ABA decreases the abundance
of the Sub1 gene, suggesting that during submergence, reduction
in ABA content may be a prerequisite for the increased
accumulation of Sub1 transcript (Fukao and Bailey-Serres, 2008).
Thus, to determine the cross talk between ethylene and ABA
under hypoxia stress, it is necessary to clarify the molecular
mechanisms by which ethylene regulates ABA biosynthesis
and/or signaling.

ABSCISIC ACID BIOSYNTHESIS UNDER
HYPOXIA STRESS

The abscisic acid level in internode meristem and cell elongation
zone of submerged plants decreased by 75% in deepwater rice
after flooding (Kende, 1992). Similarly, endogenous ABA content
in Rumex palustris decreases in petioles after submergence (Cox
et al., 2004). In addition, a recent study also showed that

flooding leads to the decline in ABA level in tomato roots
(De Ollas et al., 2021). What is the reason for the decrease
in ABA content under hypoxia stress? In rice, the expressions
of OsNCED1, OsNCED2, and OsNCED3 decrease rapidly after
submergence (Saika et al., 2007). AtNCED3 expression is also
downregulated in roots under submergence, and endogenous
ABA level of root decreases significantly (Hsu et al., 2011).
Meanwhile, the upregulation of AtNCED4 expression in shoots
under submergence is also documented (Hsu et al., 2011).
These results suggest that regulation of ABA biosynthesis in
the aboveground and underground parts is distinct and needs
further exploration.

In Solanum dulcamara, transcription of two NCED genes is
significantly downregulated under flooding; thus, ABA content
in ARs and stems reduces substantially (Dawood et al., 2016).
Further studies found that the partial submersion and complete
submersion both have no difference in AR growth, and both of
them attenuate the expression of NCEDs, thereby reducing ABA
content (Yang et al., 2018). With the decrease in expressions
of TaNCEDs (TaNCED1 and TaNCED2) and ABA content in
stem nodes, ARs appeared on stem nodes after waterlogging
in Triticum aestivum L. (Nguyen et al., 2018). All the available
evidence supports the fact that ABA is a negative regulator of AR
formation and shoot elongation under hypoxia stress (Figure 1).

ABSCISIC ACID CATABOLISM UNDER
HYPOXIA STRESS

In plants, the catabolism of ABA has two pathways: One is the
direct inactivation to form PA, which is the oxidative inactivation
pathway. The other is combined with glucose to produce ABA-
glucose ester (ABA-GE) and is named as binding inactivation
pathway. In Rumex species and rice, the high expression of
OsABA8ox1 after submergence accelerates the ABA degradation
and forms a large amount of PA (Benschop et al., 2005; Saika
et al., 2007). Studies have found that ABA-GE is involved in
regulating the response of plants to drought, salt, and saline–
alkali stresses (Dietz et al., 2000; Xu et al., 2012; Gong et al.,
2014; Dong et al., 2015; Wang et al., 2020). However, existing
reports have found that ABA-GE level under submergence has
not changed in rice (Saika et al., 2007; Fukao and Bailey-
Serres, 2008). These analyses confirmed that during submersion,
the hydroxylation of ABA to PA is the primary pathway of
ABA catabolism.

In deepwater rice, the rapid decrease in ABA content
is a prerequisite for the increase in bud elongation (Kende
et al., 1998; Steffens et al., 2006). Further research found
that transcription of cytochrome P450 A5 (CYP707A5) gene
is significantly upregulated under submergence in deepwater
rice, thus promoting ABA catabolism (Yang and Choi, 2006).
SdABA8ox is upregulated in the AR primordia of Solanum
dulcamara after flooding, and the ABA level gets significantly
reduced (Dawood et al., 2016). In Nasturtium officinale,
CYP707A1, and CYP707A2 are induced under submergence,
showing a decline in ABA level (Müller et al., 2019). Similarly,
CYP707A1-1 expression is induced and the mRNA level of
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FIGURE 1 | A model showing that abscisic acid (ABA) regulates hypoxia stress response. Submergence, waterlogging, and flooding cause hypoxia, which leads to

ethylene accumulation. Ethylene positively regulates ABA catabolism and negatively regulates ABA biosynthesis, thereby affecting ABA content. ABA affects tolerance

of plant hypoxia through the following pathways: (1) ABA negatively regulates submergence1 A (Sub1A) expression. Sub1A promotes the accumulation of two

gibberellin (GA)-negative regulators [SLENDER RICE 1 (SLR1) and SLENDER RICE-LIKE 1 (SLRL1)] and then directly promotes shoot elongation; (2) ABA signal

induces stomata to close; (3) ABA positively regulates the formation of aerenchyma cell by negatively regulating root cell suberization; (4) ABA induces the expression

of the basic region-leucine zipper (bZIP/MADS) to promote the formation of special-shaped leaves of submerged plants and semiaquatic plants; (5) ABA positively

regulates miR393a, then negatively regulates auxin signaling cascade, and finally positively regulates stomatal development. The arrows indicate the promotion effect,

and the flat lines indicate the inhibition effect. Dotted lines indicate indirect interactions.

CYP707A1-2 is downregulated in both partial submersion and
complete submersion in Solanum dulcamara (Yang et al., 2018).
In a nutshell, hypoxia promotes ABA catabolism (Figure 1).
However, the specific molecular mechanism of enhanced ABA
catabolism under hypoxia needs to be elucidated.

ABSCISIC ACID SIGNALING UNDER
HYPOXIA STRESS

It has been reported that the expressions of ABA receptor genes
pyrabactin resistance (PYR) and pyrabactin resistance-like (PYL)
increase after flooding (Arbona et al., 2017; De Ollas et al., 2021).

This may be feedback for maintaining a certain
level of ABA signal under flooded soil. Further, the
expressions of late embryogenesis abundant proteins
5 (LEA5), LEA14-1, LEA14-2, and ABA-insensitive 5
(ABI5) also reduce under submergence (Yang et al.,
2018).

Abscisic acid regulates heterophylly initiation through basic
region-leucine zipper (bZIP) class genes and AGAMOUS-like
11 (AGL11) gene in Marsilea quadrifolia (Hsu et al., 2001; Shan
et al., 2009). OE-SUB1A enhances the sensitivity to ABA, which
is consistent with the inhibition of ABA on seed germination
and bud elongation (Fukao et al., 2011). Under waterlogging
stress, RELATED TO APETALA2.6-LIKE (RAP2.6L) inhibits
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ABI1 transcription, and the abi1-1/OE-RAP2.6L double
mutant showed increased sensitivity to ABA, which suggests
that the overexpression of RAP2.6L modifies the ABA-
insensitive phenotype of abi1-1 mutant (Liu et al., 2012).
In particular, the zinc-containing finger/BTB (bric-a-brac,
tramtrack, and broad complex) domain-containing protein
47, glycine-rich protein, and rRNA-processing protein
Rrp5 associated with ABA response are significantly
phosphorylated under flooding stress (Yin and Komatsu,
2015). Meanwhile, ABA inhibits the elongation of the
coleoptile by upregulating miR393a transcription (Guo
et al., 2016). Although there are some studies on the above
aspects, the specific mechanism still needs further explanation
and clarification.

CONCLUSIONS AND PERSPECTIVES

The regulation of plant growth and development under
waterlogging stress is very complex, and a single hormone might
not fully reflect the adaptation strategy of plants to hypoxia.
ABA, as the downstream of ethylene, regulates plant response to
hypoxia stress (Figure 1).

All the current studies mainly focus on the vegetative
growth stage of plants under flooding stress. The following
aspects need more attention in future studies: (i) The
regulatory mechanism of ABA in seed germination and
early seedling morphogenesis under waterlogging stress is a
worthy subject. (ii) How does ABA regulate plant reproductive
growth under submergence? (iii) Because exogenous ABA
can alleviate flooding stress, thus, the development of an
anti-waterlogging regulator by modifying ABA is a novel
interesting project.

Furthermore, are there unknown genetic factors that control
ABA-mediated cascade under waterlogging conditions? Does the
kinase involved in the ABA signaling pathway to regulate seed
germination, stomatal movement, and reproductive growth in
hypoxia environments? These questions are essential to fully
understand the hypoxia response of plants and are especially
important for crops. Together, a better understanding of ABA
biosynthesis and signaling during flooding can further dissect
the metabolic and genetic pathways that adapt to flooding
pressures and will ultimately help us to develop more resilient
crop varieties.
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