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KARRIKINS INSENSITIVE2 (KAI2) is the receptor gene for karrikins, recently found to be
involved in seed germination, hypocotyl development, and the alleviation of salinity and
osmotic stresses. Nevertheless, whether KAI2 could regulate cold tolerance remains
elusive. In the present study, we identified that Arabidopsis mutants of KAI2 had a
high mortality rate, while overexpression of, a bioenergy plant, Sapium sebiferum KAI2
(SsKAI2) significantly recovered the plants after cold stress. The results showed that
the SsKAI2 overexpression lines (OEs) had significantly increased levels of proline,
total soluble sugars, and total soluble protein. Meanwhile, SsKAI2 OEs had a much
higher expression of cold-stress-acclimation-relate genes, such as Cold Shock Proteins
and C-REPEAT BINDING FACTORS under cold stress. Moreover, the results showed
that SsKAI2 OEs were hypersensitive to abscisic acid (ABA), and ABA signaling
genes were w significantly affected in SsKAI2 OEs under cold stress, suggesting
a potential interaction between SsKAI2 and ABA downstream signaling. In SsKAI2
OEs, the electrolyte leakage, hydrogen peroxide, and malondialdehyde contents were
reduced under cold stress in Arabidopsis. SsKAI2 OEs enhanced the anti-oxidants
like ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and total
glutathione level under cold stress. Conclusively, these results provide novel insights
into the understanding of karrikins role in the regulation of cold stress adaptation.

Keywords: karrikins, KAI2, cold stress, redox homeostasis, abscisic acid

Abbreviations: ABA, abscisic acid; APX, ascorbate peroxidase; CAT, catalase; CBFs, C-REPEAT BINDING FACTORS; CSPs,
cold shock proteins; H2O2, hydrogen peroxide; KAI2, KARRIKINS INSENSITIVE2; KAR1, karrikin 1; KAR2, karrikin 2; KCl,
potassium chloride; MDA, malondialdehyde; MES, 2-(N-morpholino) ethanesulfonic acid; POD, peroxidase; ROS, reactive
oxygen species; SOD, superoxide dismutase; TB, toluidine blue; T-GSH, total glutathione; TSP, total soluble protein; TSS,
total soluble sugars.
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INTRODUCTION

Plants are the sessile organisms which often exposed to a
broad range of adverse environmental conditions. Among
a large number of adverse conditions, cold (chilling and
freezing) stress significantly limit crop growth and agricultural
productivity. Under cold conditions, plants activate their cold
resistance mechanism called cold acclimation (Thomashow,
1999; Stockinger et al., 2001; Shi et al., 2014b). Cold acclimation
enhances the endogenous as well as inducible components
accumulation. The endogenous components, which promote
cold tolerance, have extensively been studied and mainly refer
to metabolites with anti-oxidant activity (Winkel-Shirley,
2002), with hormonal responses (Eremina et al., 2016) or
osmoprotective functions to limit ice nucleation and to
overcome the freeze-induced dehydration inside the plant cells
(Janská et al., 2010). Furthermore, other regulatory molecules
such as polyamines, reactive oxygen species, nitric oxide have
also been described to be involved in cold tolerance (Cuevas
et al., 2008; Zhao et al., 2009; Puyaubert and Baudouin, 2014;
van Buer et al., 2016).

Karrikins, a group of chemical compounds, are present in
burnt or charred plant material and its smoke. Karrikins are also
produced by the pyrolysis of cellulose and simple sugars (Flematti
et al., 2011). To date, natural origin within the plant has not
discovered. Karrikins are potent promoters of seed germination
of various plants (Flematti et al., 2004). Karrikins promote
photomorphogenesis in seedling and negatively regulate the
hypocotyl elongation (Nelson et al., 2010). Karrikins inhibited the
hypocotyl length under red light, and the length of Arabidopsis
thaliana seedlings hypocotyl treated with one micromolar KAR2
was almost half of the hypocotyl of untreatedArabidopsis thaliana
seedlings (Nelson et al., 2010; Waters and Smith, 2013). It
has also been reported that karrikins might regulate cotyledon
expansion and chlorophyll accumulation in the seedlings of
Brassica tournefourtii and Lactuca sativa (Nelson et al., 2010).

Recently, karrikins role against abiotic stresses has also been
discovered. For example, it has been found that karrikins might
play an essential role in the chilling response of tea plants
(Zhao et al., 2012). In tomato, seed primed in butenolide (a
karrikin) produced significantly more vigorous seedlings than
the water-primed seeds. Vigor indices of seedlings produced
by butenolide-primed seeds were significantly higher under
different abiotic stresses conditions (salinity, temperature, or
osmoticum) compared to control or water-primed seeds (Neeru
and Van, 2007). In a bioenergy plant, Sapium sebiferum, KAR1
has been reported to alleviate osmotic and salinity stresses by
regulating redox homeostasis (Shah et al., 2020). KARRIKINS
INSENSITIVE2 (KAI2), which encodes an α/β-fold hydrolase,
is a receptor gene for karrikins (Scaffidi et al., 2012; Li et al.,
2013). Hydrophobic pocket in KAI2 has a conserved catalytic
triad (Ser–His–Asp) (Kagiyama et al., 2013) and, KAI2 also has
a hydrolyzes pocket (Hamiaux et al., 2012), which may bind to
the karrikins (Boyer et al., 2012; Hamiaux et al., 2012). KAI2
was reported to be involved in the stomatal closure, regulation
of cuticle formation, membrane integrity, and anthocyanin
biosynthesis, which contributes to plant alleviation to the osmotic

stress (Li et al., 2017). Recently, it has been reported that
the karrikins-KAI2 signaling system provided stress tolerance
by inhibiting germination in Arabidopsis under unfavorable
conditions (Wang et al., 2018).

In this study, the homologous gene of SsKAI2 was identified in
an ornamental and bio-energetic woody perennial plant Sapium
sebiferum and characterized in Arabidopsis thaliana under cold
stress. After finding the SsKAI2 alleviation of the cold stress
tolerance in Arabidopsis, we conducted several experiments
to find out the possible mechanism in the SsKAI2 improved
Arabidopsis under cold stress.

MATERIALS AND METHODS

SsKAI2 Gene Cloning, Bioinformatics
Analysis, Vector Construction, and
Obtaining Atkai2 Mutants
Full sequance of SsKAI2 was found by local blasting amino acids
sequance of Arabidopsis KAI2 in Blast-2.2.31. S. sebiferum flower-
bud transcriptome (Yang et al., 2015) (Accession: SRX656554)1

was used to built a local blast library. Bio-informatics analysis
of SsKAI2 is given in Supplementary Figure 1. The full cDNA
sequence of all genes with the translated amino acid sequence
is given in Supplementary Data Sheet 1. The full-length open
reading frame (ORF) of the SsKAI2 gene was found by the
NCBI ORF finding tool. Neighbor-Joining method was used
to built the evolutionary history (Saitou and Nei, 1987). The
bootstrap consensus tree built from 500 replicates (Felsenstein,
1985) is representing the taxa evolutionary history. Branches
matching to partitions reproduced in <50% bootstrap replicates
were distorted. The evolutionary distances were calculated by
using the p-distance method (Nei and Kumar, 2000) and were
represented in the number of amino acid differences per site.
The analysis involved 30 amino acid sequences. All positions
containing missing data or gaps were excluded. In the final
dataset, there were 249 positions. Evolutionary analyses were
conducted in MEGA7 (Kumar et al., 2016).

Gene-specific primers were designed by Primer Premier 5 to
amplify the full-length ORF of SsKAI2 (Supplementary Table 1).
The ORF of the SsKAI2 gene was sequenced from Sangon
Biotech (Shanghai) Co., Ltd. Cloned gene sequence double
digested at Sal1 from start and Sma1 from stop codon site.
Full-length ORF of SsKAI2 was inserted into the expression
vector pOCA30 under the control of the CaMV35S promoter,
and the resulting 35S:SsKAI2 plasmid was transformed into
the Agrobacteria EHA105 strain. The floral dip method was
performed for the transformation of the recombinant expression
vector in Arabidopsis. Atkai2 mutants, previously described in
Waters et al. (2012), were gifted by Dr. Jiayang Li from the
Chinese Academy of Sciences.

Plant Materials and Growth Conditions
Sapium sebiferum seedlings were established by our previously
developed method (Shah et al., 2018). The seed of the Arabidopsis

1https://www.ncbi.nlm.nih.gov/sra/SRX656554

Frontiers in Plant Science | www.frontiersin.org 2 July 2021 | Volume 12 | Article 657960

https://www.ncbi.nlm.nih.gov/sra/SRX656554
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-657960 July 13, 2021 Time: 13:3 # 3

Shah et al. KAI2 Promotes the Cold Stress Tolerance

Columbia-0 (Col-0) genotype was obtained from the Arabidopsis
Biological Resources Center (Columbus, OH, United States).
SsKAI2 was identified, cloned, transformed to Arabidopsis,
and homozygous SsKAI2 OEs lines were selected for further
experiments. Seeds of wild-type and SsKAI2 OEs were surfaces
sterilized with 70% (v/v) ethanol for 2 min, then incubated in
10% (v/v) sodium hypochlorite (NaClO) for 10 min at room
temperature, and washed thrice with double distilled water. The
sterilized seeds were plated on 1/2 Murashige and Skoog (MS)
medium supplemented with 1% (w/v) sucrose and 0.8% (w/v)
agar and placed at 4 degrees Celsius (◦C) for 2 days. Seeds were
germinated in a growth room 16/8 h (day/night) photoperiod at
22◦C. Seven-day-old Arabidopsis seedlings were transferred from
1/2 MS medium to the soil and grown in a chamber at 22◦C,
with 16/8 h (long-day conditions) photoperiods, approximately
120 µmol/m2/s radiation strength, and 75% humidity.

Cold Treatment
Cold resistant plants have developed a coping mechanism
called cold acclimation (Thomashow, 1999). Cold acclimation
mechanism includes the accumulation of soluble sugars (Guy
and Huber, 1992), and proline (Verbruggen and Hermans,
2008), stimulation of antioxidants activity, and changes in the
plant transcriptome and proteome (Thomashow, 1999; Zuther
et al., 2019). Cold acclimation makes the plants ready in low
temperatures to face the upcoming freezing temperatures. So,
for phenotypical analysis under cold stress, 5-day-old Arabidopsis
seedlings were cold acclimatized to 4◦C for 12 h and then
subjected to cold treatment at −20◦C for an hour. The plants
were again kept at 4◦C for 12 h, the plants were then shifted
to a plant growth room with a 16/8 h photoperiod at 22◦C,
approximately 120 µmol photons/m2/s, and 75% humidity.
The recovery rate was measured 10 days after the cold-
shock treatment. Photographs were taken by a Nikon D90
having Nikon DX AF-S NIKKOR 18-105 mm lens (Nikon
Corporation, Tokyo, Japan).

Electrolyte Leakage Measurement
Electrolyte leakage was determined by the previously reported
method in the study of Nishiyama et al. (2011). In detail, after
placing 15-day-old plants at 0–, – 4−, – 8−, – 12−, – 16−,
and −20◦C for an hour, five leaves of different plants of each
genotype were collected, then plant samples were shifted to the
50 mL tubes containing 40 mL of double distilled water for 24
h. The electric conductivity (EC) of water was determined by the
electric conductivity meter. The tubes having 40 ml of water were
autoclaved for 20 min at 121◦C, and the EC was measured again.
The following equation calculated the percentage of electrolyte
leakage.

Electrolyte
leakage (%)

=
Electric conductivity before autoclave
Electric conductivity after autoclave

× 100

Biochemical Analysis
For biochemical analysis, each line of every genotype was
subjected to cold acclimation temperature (4◦C). The samples

were randomly taken from the leaves of five plants of each
treatment after 0 (control at 22◦C), 3−, 6−, and 12 h of cold
treatment (4◦C). Samples were immediately frozen in liquid
nitrogen, the stored in to −80◦C. The total proline, total soluble
sugar (TSS), total soluble protein (TSP), hydrogen peroxide
(H2O2), malondialdehyde (MDA), total glutathione (GSH),
peroxidase (POD), superoxide dismutase (SOD), ascorbate
peroxidase (APX), and catalase (CAT) contents were determined
by using a Proline assay kit, a plant soluble sugar content
test kit, a total protein quantitative assay kit, an H2O2 assay
kit, an MDA assay kit, a T-GSH assay kit, a POD assay kit,
a SOD assay kit, an APX assay kit, and a CAT assay kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China),
respectively, as previously described by Ni et al. (2018).

Stomata Analyses
Epidermal peels from mature leaves removed with forceps and
were incubated in MES/KCl (2-(N-morpholino) ethanesulfonic
acid/potassium chloride) buffer supplemented with 0, 10, 30,
and 50 µM ABA for 2 h. Stomata were visualized under
an epifluorescent microscope using 100× lenses (Eisele et al.,
2016). Stomatal aperture was measured by analyzing pictures
in ImageJ 1.52a.

RNA Extraction and Quantitative
Real-Time PCR (qPCR)
Fifteen-day-old Sapium sebiferum seedlings were subjected to
cold stress (4◦C), salt stress (200mM NaCl), and osmotic stress
(300mM mannitol). The samples were randomly taken from
the leaves of five plants of each treatment after 0 h (control at
22◦C), 3−, 6−, and 12 h of. Samples were immediately frozen
in liquid nitrogen, and stored in to −80◦C. S. sebiferum flower-
bud transcriptome (Accession: SRX656554, see text footnote 2)
(Yang et al., 2015) was used to build the local blast library in
blast-2.2.31. The full sequences of all genes were searched by local
blasting Arabidopsis amino-acids sequence. Full-length mRNA
sequences of SsKAI2 is available in Supplementary Data Sheet 1.
Primers for quantitative real-time PCR were designed in primer
premier 6, and a list of all primers is available in Supplementary
Table 1. Expression of cold-acclimation-related genes, ABA-
responsive genes under cold stress were investigated in each line
after 0 h (control at 22◦C), 3−, 6−, and 12 h of cold treatment
(4◦C). The samples were randomly taken from the leaves of
five plants of each treatment. Samples were immediately frozen
in liquid nitrogen, the stored in to −80◦C. RNA from already
frozen and stored samples at −80◦C was extracted by E.Z.N.A R©

plant RNA extraction kit (Omega Bio-tek, Inc., Norcross, GA,
United States) using the standard protocol. 500 nanograms of
RNA of each sample was reverse transcribed by cDNA Synthesis
SuperMix (TransGen Biotech., Shanghai, China) according to
the standard protocol. Each cDNA sample was diluted 25 times
with double distilled water. The reaction for RT–qPCR was
prepared according to the standard protocol of QuantiNova
SYBR Green PCR Master Mix (QIAGEN, Pudong, Shanghai,
China) then run in the Light Cycler R©96 (Roche Diagnostics,
Indiana, United States). Following the program was set in qPCR:
preheating, 95◦C for 10 min; amplification (45 cycles) at 95◦C for
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10 s, at 60◦C for 20 s, and 72◦C for 20 s; melting curve at 95◦C
for 2 min, and at 60◦C for 30 s, then continuously increased to
95◦C. The 2−11Ct method was used to calculate the relative gene
expression, as described by Livak and Schmittgen (2001).

Statistical Analysis
The statistical analyses were done in R Studio 1.1.442. All data
were presented in the form of mean ± standard deviation. One-
way analysis of variance (ANOVA) was used to test the significant
difference between the treatments. The significant difference
between the means of different treatments was determined by
using the Tukey test at P < 0.05.

RESULTS

Abiotic Stresses Significantly Induced
KAI2 Expression in the Sapium
sebiferum Seedlings
The SsKAI2 homolog with 77.8% sequence similarity with Atkai2
was identified from the S. sebiferum transcriptome database
(Supplementary Figure 1A). Then, the phylogenetic analysis of
the KAI2 protein sequences was carried out from more than 30
plant species (Supplementary Data Sheet 1). The results showed
that SsKAI2 had the highest sequence identity with perennial
woody plants, such as Jatropha caucus and Populus euphratica,
which also belong to the Euphorbiaceae family (Figure 1A).
We investigated the time-course expression pattern of SsKAI2
in response to the abiotic stresses (osmotic, salt, and cold)
in the 25-day-old S. sebiferum seedlings. The results showed
that the expression of KAI2 in Sapium sebiferum was increased
under cold stress (4◦C), salinity (200 mM NaCl), and osmotic
stress (300mM mannitol) as compared to control condition
(Figures 1B–D). These results suggested that KAI2 is a stress-
responsive gene, which might have a role in the acclimation of
abiotic stresses.

SsKAI2 Overexpression Lines (OEs) Had
a Much Higher Survival Rate and Lower
Electrolyte Leakage Under Cold Stress
Cold stress is one of the unfavorable environmental factors
that restrict plant growth and development and might cause
mortality in the plant. Cold stress alters the structure of the cell
membrane, which makes it leaky and results in the loss of ions
that are essential for proper functioning in the cell (Uemura
et al., 1995). The membrane injury in the plant exposed to cold
temperatures is measured by the rises in electrical conductivity
resulting from the leakage of the electrolyte from the plant tissues.
Exogenous application of KAR1 showed 96 ± 3.3% survival rate
in Arabidopsis under cold stress (Supplementary Figure 2). The
results showed that SsKAI2 OEs, kai2 mutant, and wild-type
Arabidopsis started wilting 2 h later cold-shock treatment. On
the third day of post-cold-shock treatment, the plants started to
regenerate new apical leaves. The recovery rate was recorded on
the 10th day after treatment (Figure 2A). The results showed that
two overexpression lines SsKAI2 OE1 and OE2 showed 90 ± 3%

and 95 ± 2% recovery rate, respectively, while wild-type was
45 ± 10%, and kai2 was 30 ± 10% recovered after cold stress
(Figure 2B). Further, we determined the electrolyte leakage of
SsKAI2 OEs, kai2, and wild-type Arabidopsis after subjecting
plants in 0−, – 4−, – 8−, – 12−, – 16−, and −20◦C for an
hour. The results showed that cold stress increased electrolyte
leakage in SsKAI2 OEs, wild-type, and kai2 plants. Overall, the
electrolyte leakage of SsKAI2 OEs was significantly lower than
wild-type plants and kai2 plants (Figure 2C). These results
are suggesting that KAI2 is involved in the regulation of cold
stress alleviation.

SsKAI2 OEs Had Increased Proline, Total
Soluble Sugars, and Proteins Contents
Under Cold Stress
Under abiotic stresses, the accumulation of the total soluble
sugars is one of the primary acclimation symptoms. Then
sugars modulate the expression of both abiotic and biotic
stress-related genes in plants (Barau et al., 2015; Tarkowski
and van den Ende, 2015). In this study, total soluble proteins
(TSP), the total soluble sugars (TSS), and proline content
in the leaves of different Arabidopsis lines were determined
under cold stress. The results showed that the levels of TSS,
TSP, and proline were all significantly increased in both
SsKAI2 OEs in comparison with wild-type and kai2 mutant
(Figures 3A,B). The results suggested that KAI2-regulated
immediate induction of endogenous metabolites might play
an important role in conferring the cold stress acclimation in
Arabidopsis.

SsKAI2 OEs Had Lower Hydrogen
Peroxide (H2O2) and Malondialdehyde
(MDA) Level Under Cold Stress
Like other abiotic stresses, cold stress can also increase the
production of ROS in plants that can cause cellular oxidative
damage when over-accumulated in cells (Karuppanapandian and
Manoharan, 2008; Mafakheri et al., 2010). H2O2 is considered as
a relatively long-lived molecule and moderately reactive, which
can disseminate short distances away from its production site.
H2O2 causes inactivation of enzymes by oxidizing their thiol
groups. H2O2 enables it to diffuse the damage and also act as
a messenger in the stress signaling response and thus can travel
freely across membranes (Møller et al., 2007). ROS can cause
oxidation of membrane lipids and degrade the cell membrane
while MDA has been reported as an end product of lipid
peroxidation, which is why MDA and H2O2 levels are markers
of determining necrosis and cell damage in living organisms
(MaBgorzata and Andrzej, 2016). In order to know whether the
involvement of H2O2 in cold accumulation, we measured H2O2
content in SsKAI2 OEs, Atkai2, and WT under cold stress. The
results showed that cold stress induced a significant increase
of H2O2 content in the WT, while in the SsKAI2 OEs, the
H2O2 content was not significantly increased in response to the
cold stress (Figure 4A). Meanwhile, the results also revealed
that the kai2 mutant had a higher increase of H2O2 level in
comparison with WT after 6 h by cold treatment. An end product
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FIGURE 1 | Phylogenetic analysis and relative expression of KAI2 in Sapium sebiferum under cold, salinity, and osmotic stresses. (A) Phylogenic analysis of SsKAI2
protein with its homologs from other species. (B) SsKAI2 relative expression under cold (4◦C), salinity (200 mM NaCl) (C), and osmotic stress (300 mM mannitol) (D).
Twenty-five-day-old seedlings were used to determine the SsKAI2 expression level under abiotic stresses. Leaf samples were collected after 3−, 6−, 12−, and 24 h
of each treatment. Sapium sebiferum UBQ10 was used as a reference gene; control treatment at 0 h was considered as 1. qPCR was used to determine gene
expression, one-way ANOVA was used to analyze all data, and HSD Tukey’s test was used to perform multiple comparisons at P < 0.05 significant level (n = 3).
Bars with uncommon letters show significant difference at P < 0.05.

of lipid peroxidation, MDA, is a biochemical marker for the
measurement of cell epidermal layer degradation. MDA level was
increased in kai2 and wild-type Arabidopsis under cold stress, but
on the other hand, SsKAI2 OEs had a decreased level of MDA
contents with time under cold stress (Figure 4B). These results
demonstrated that the stress-induced accumulation of H2O2 is
strictly regulated by KAI2, which further led to enhanced stress
tolerance in Arabidopsis.

SsKAI2 OEs Had Enhanced the Level of
Enzymatic Anti-oxidants and Glutathione
Under Cold Stress
Ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD),
and superoxide dismutase (SOD) are the key enzymatic anti-
oxidants which prevent the cell necrosis by scavenging ROS
and alleviate oxidative stress. We further investigated the
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FIGURE 2 | SsKAI2 alleviated cold stress in Arabidopsis. (A) Phenotypes of wild-type (WT), Atkai2, and SsKAI2 (OE1 and OE2) Arabidopsis at room temperature
and under cold stress (−20◦C). Pictures were taken after ten days after cold stress, white bar = 2cm. (B) Statistical presentation of survival rate after cold stress.
(C) Electrolyte leakage was measured by subjecting 15-day-old plants at 0−, – 4−, – 8−, – 12−, – 16−, and −20◦C for an hour. One-way ANOVA was used to
analyzed all data, and HSD Tukey’s test was used to perform multiple comparisons at P < 0.05 significant level (n = 5 in survival rate measurement and n = 3 in
electrolyte leakage test). Bars or points with uncommon letters showing significant difference at P < 0.05.

enzymatic anti-oxidants level of different Arabidopsis lines
under cold stress. In this study, we demonstrated that the
SOD activity was significantly higher in SsKAI2 OEs after
six and 12 h of cold stress, but it was much lower in kai2
mutant in comparison with wild-type and SsKAI2 OEs during
each time point of cold stress (Figure 5A). Nevertheless,
under different time points of cold stress, the activity of

other anti-oxidant enzymes, such as POD, CAT, and APX,
was increased dramatically in SsKAI2 OEs (Figures 5B–D).
Glutathione is a non-enzymatic anti-oxidant in the plant, which
protects cellular damage from ROS under environmental stresses
(Edwards et al., 2000). The results showed that SsKAI2 OEs
could produce higher concentrations of T-GSH as compared to
kai2 mutant and wild-type plants under cold stress (Figure 5E).
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FIGURE 3 | Overexpression of SsKAI2 promoted TSS and TSP under cold stress. (A) Total soluble sugars. (B) Total soluble protein contents. (C) Proline contents.
Twenty-five-day-old plants were subjected to cold treatment. The samples were taken randomly from the leaves of three plants of each independent [(wild-type (WT),
Atkai2, KAI2 over-expressed line 1 (OE1) and line 2 (OE2)] line after 3−, 6−, and 12 h under cold treatment (4◦C). One-way ANOVA was used to analyzed all data,
and HSD Tukey’s test was used to perform multiple comparisons at P < 0.05 significant level (n = 3). An “h” at the X-axis of each graph represents time in hours
under cold stress. Bars with uncommon letters showing significant difference at P < 0.05.

FIGURE 4 | Overexpression of KAI2 in Arabidopsis reduced H2O2 and MDA levels under cold stress. (A) H2O2 contents. (B) MDA contents. The samples were
taken randomly from the leaves of three plants of each independent (WT, Atkai2, OE1, and OE2) line after 0−, 3−, 6−, and 12 h under cold treatment (4◦C).
One-way ANOVA was used to analyzed all data, and HSD Tukey’s test was used to perform multiple comparisons at P < 0.05 significant level (n = 3). Bars with
uncommon letters showing significant difference at P < 0.05. An “h” at the X-axis of each graph represents time in hours under cold stress.

These results suggested that KAI2 conferred cold stress via
activating enzymatic and non-enzymatic anti-oxidant systems
in Arabidopsis.

SsKAI2 OEs Had Induced Expression
Levels of CSPs Genes and CBFs Under
Cold Stress
During cold stress acclimation, cold-shock protein (CSP) genes,
and C-repeat binding factors (CBFs) transcription factors are
central regulators (Yamaguchishinozaki and Shinozaki, 1994;
Chinnusamy et al., 2010). We found that the expression of all
CSP genes was more significantly induced by cold treatment
in the SsKAI2 OEs as compared to kai2 mutant and wild-
type Arabidopsis (Figure 6A). Although the cold stress could
significantly induce the expression of all CBF transcription
factors in all the SsKAI2 OEs, the SsKAI2 OEs exhibited a
much higher expression level than kai2 mutant and wild-type
plants (Figure 6B). These results suggested that the KAI2 could
potentially target the CSPs and CBFs in the regulation of cold
acclimation in Arabidopsis.

SsKAI2 OEs Exhibited Hypersensitivity to
ABA During Seed Germination and
Stomatal Aperture
Abscisic acid is the fundamental phytohormone that positively
regulates the abiotic stress adaptation in various plants. To
clarify whether karrikins could potentially interact with ABA
in the regulation of cold acclimation, firstly we investigated the
senstivity of SsKAI2 to ABA. Then we checked the expression
level of ABA biosynthesis, ABA catabolism, and ABA signaling
genes. The results showed that the seed germination in the
SsKAI2 OEs was more likely to be inhibited in MS medium
supplemented with ABA in comparison with wild-type, while
Atkai2 seeds were less senstive to ABA as compare to wild-
type (Figure 7A). The stomata started to close when SsKAI2
OEs leaves were incubated in ABA supplemented MES (2-(N-
morpholino) ethane sulfonic acid) buffer (Figure 7B). Stomatal
aperture decreased significantly in SsKAI2 OEs than wild-type
and kai2 mutant when leaves were dipped in the medium
containing 10 or 20 µM ABA. Stomata were completely closed
when leaves were dipped in the solution containing 50 µM ABA
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FIGURE 5 | Anti-oxidants contents raised in SsKAI2 OEs under cold stress. (A) SOD. (B) POD. (C) CAT. (D) APX. (E) T-GSH. Twenty-five-day-old plants were
subjected to cold treatment. The samples were randomly taken from the leaves of three plants of each genotype after 0−, 3−, 6−, and 12 h under cold treatment
(4◦C). One-way ANOVA was used to analyzed all data, and HSD Tukey’s test was used to perform multiple comparisons at P < 0.05 significant level (n = 3). Bars
with uncommon letters showing significant difference at P < 0.05.

(Figures 7C,D). These results demonstrated that overexpression
of KAI2 could lead to hypersensitivity to ABA, suggesting a
potential interaction between karrikins and ABA.

Furthermore, to clarify the association of karrikins regulated
cold acclimation to ABA, we determined the expression level
of cold-responsive ABA biosynthesis genes such as NINE-
CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and
ABSCISIC ALDEHYDE OXIDASE 3 (AAO3)(Qin and Zeevaart,
1999; Seo et al., 2004; Urano et al., 2009), ABA catabolic genes
CYP707A family (Okamoto et al., 2006; Umezawa et al., 2010),
and ABA signaling genes such as ABI3,ABI5, ABF1, MYB96,
MYB3R2, and SIZ1 (Choi et al., 2000; Lee et al., 2005; Seo
et al., 2009; Yuan et al., 2012; Guo et al., 2013; Liu et al., 2013;
Dekkers et al., 2016; Skubacz et al., 2016). The results showed
that the expression of NCED3 and AAO3 was not likely to be
induced by cold treatments in the SsKAI2 OEs (Figures 8A,B).
Under cold stress, the expression of CYP707A1, CYP707A2,
CYP707A3, MYB96, and SnRK2.3 had no significant differences

in all genotypes (Figures 8C,D,E,J,L). Under cold stress, the
expression level of cold responsive ABA signaling genes such
as SIZ1, and SnRK2.3 was significantly increased in SsKAI2
OEs. Meanwhile the expression of the key ABA signaling genes
ABI3, ABI5, MYB3R2, ABF1 was also significantly increased in
SsKAI2 OEs as compared to WT (Figures 8F–I,K). These results
suggested that KAI2 potentially affected the ABA downstream
signaling, which could contribute to the enhanced cold tolerance
in the SsKAI2 OEs.

DISCUSSION

KARRIKINS INSENSITIVE2 (KAI2) is a receptor gene for
karrikins, which encodes α/β-fold hydrolase, a hydrophobic
pocket which may bind to the karrikins (Boyer et al., 2012;
Hamiaux et al., 2012; Scaffidi et al., 2012; Li et al., 2013). KAI2
has been reported to be involved in the regulation of seed
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FIGURE 6 | SsKAI2 OEs have enhanced cold-acclimation-related genes. (A) CSP1. (B) CSP2. (C) CSP3. (D) CSP4. (E) CBF1. (F) CBF2. (G) CBF3. (H) CBF4.
Expression of cold-acclimation-related genes was investigated in three plants of each line after 0- (control at 22◦C), 3−, 6−, and 12 h of cold treatment (4◦C). The
samples were randomly taken from the leaves of five plants of each treatment. Arabidopsis thaliana ACTIN 2 was taken as a reference gene, and control treatment at
0 h was considered as 1. One-way ANOVA was used to analyzed all data, and HSD Tukey’s test was used to perform multiple comparisons at P < 0.05 significant
level (n = 3). Bars with uncommon letters showing significant difference at P < 0.05. An “h” at the X-axis of each graph represents time in hours under cold stress.

germination, hypocotyl development, and photomorphogenesis.
Previously, KAI2 was reported to be involved in the stomatal
closure, regulation of cuticle formation, membrane integrity, and
anthocyanin biosynthesis, which contributes to plant alleviation
of drought stress (Li et al., 2017). It has been reported that
the karrikins-KAI2 signaling system provided stress tolerance
by inhibiting germination in Arabidopsis under unfavorable
conditions (Wang et al., 2018). A few studies have reported the
involvement of KAI2 in the mitigation of environmental stresses

such as osmotic and salinity in Arabidopsis, but there was not
report regarding the role of karrikins-KAI2 in the regulation
of cold stress. Cold resistant plants have induced level of TSS,
TSP, and Proline contents (Hellmann, 2012; Keunen et al., 2013;
Tarkowski and van den Ende, 2015), which are interlinked with
the ROS homeostasis. Higher level of CSPs and CBFs gene
expression is one of the fundamental characters of cold resistant
plants (Fowler and Thomashow, 2002; Sasaki et al., 2007). Cold
tolerance plants have induced expression level of ABA-responsive
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FIGURE 7 | SsKAI2 OEs were hypersensitive to exogenous ABA. (A) An effect of ABA on seed germination in KAI2 overexpression line1 (OE1), line2 (OE2), WT
(Col-0), and Atkai2 Arabidopsis. (B) KAI2 plants stomata showed hypersensitivity to ABA. 25-day-old plant leaves were selected for this treatment; white
bar = 50 µM. (C) Stomatal aperture under different concentrations of ABA. (D) Stomatal aperture percentage closed after ABA treatment. Data shown are the
mean ± SD of 15 replicates. One-way ANOVA was used to analyzed all data, and HSD Tukey’s test was used to perform multiple comparisons at P < 0.05
significant level (n = 15). Bars or points with uncommon letters showing significant difference at P < 0.05.

genes, which lead to stomata closure, and maintain the ROS
balance (Thomashow, 1999; Wasilewska et al., 2008; Chinnusamy
et al., 2010; Usadel et al., 2010; Hong et al., 2012; Shi et al.,
2012; Jurczyk et al., 2019). In this study, we revealed that SsKAI2
OEs have higher levels of TSS, TSPs and Proline contents, and
induced the expression level of CSPs and CBFs. SsKAI2 OEs were
hypersensitive to ABA, and have induced the expression level of
ABA-responsive genes, which are important characteristics of a
cold resistant plant, and necessary for ROS homeostasis. In this
study, we firstly reported that role ofKAI2 in cold stress resistance
in Arabidopsis, and revealed the biochemical and physiological
mechanisms of KAI2 in the regulation of cold acclimation.

Among a large number of unfavorable conditions, cold
(chilling and freezing) stress significantly limits the plant
growth and development, and causes losses of the agricultural
productivity. Cold resistant plants have developed a defensive
system called cold acclimation (Thomashow, 1999; Stockinger
et al., 2001; Shi et al., 2014b). Cold acclimation is a highly
complicated process that includes an array of physiological,
biochemical, and molecular modifications (Chinnusamy et al.,
2010; Nakashima et al., 2014; van Buer et al., 2016). We found

that overexpression of SsKAI2 in Arabidopsis recovered after
cold stress. SsKAI2 overexpression lines (OEs) had significantly
increased levels of proline, total soluble sugars, and total soluble
protein. Under cold stress, cold-resistant plants produce an
excessive level of soluble sugars, which directly interacted with
the phosphate in the lipid headgroups of the cell membrane
and decreased the membrane permeability (Strauss and Hauser,
1986). Soluble sugars accumulated in the apoplast of cold-stressed
plants also suggested having a role in the protection of the
plasma membrane (Valluru et al., 2008). At the same time, cold-
resistant plant cells produce the proline, which helps the synthesis
of specific proteins necessary for plasma membrane protection
(Song et al., 2011; Tian et al., 2011; Melnikov et al., 2016).
Furthermore, stress-resistant plants accumulate TSS and TSP to
prevent the membrane damage and produce proline, which also
plays a unique role in the synthesis of new proteins and may
have a role in stress alleviation (Tarkowski and van den Ende,
2015; Li et al., 2018; Ni et al., 2018; Sadiq et al., 2018). In non-
resistant plants, cold stress disrupts the cell membrane and cause
leakage of electrolytes from the cytosol. Electrolytes leakage could
cause the death of the plant (Demidchik et al., 2014). Our results
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FIGURE 8 | ABA-related genes expression in SsKAI2 OEs under cold stress. (A) NCED3. (B) AAO3. (C) CYP707A1. (D) CYP707A2. (E) CYP707A3. (F) ABI3.
(G) ABI5. (H) ABF1. (I) MYB3R2. (J) MYB96. (K) SIZ1. (L) SnRK2.3. Twenty-five-day-old plants of SsKAI2 overexpression line1 (OE1), overexpression line1 (OE2),
Atkai2, and WT (Col-0) Arabidopsis were subjected to cold stress (4◦C), and samples were taken on given time points. The samples were randomly taken from the
aerial of five plants of each treatment. Arabidopsis thaliana ACTIN2 was taken as a reference gene, control treatment at 0 h was considered as 1. The data shown in
the figure are the mean ± SD of three replicates. One-way ANOVA was used to analyzed all data, and HSD Tukey’s test was used to perform multiple comparisons
at P < 0.05 significant level (n = 3). Bars with uncommon letters showing significant difference at P < 0.05.

are suggesting that SsKAI2 accumulated a significant amount of
soluble sugars and proteins, which may strengthen the plasma
membrane and protected SsKAI2 OEs from more electrolyte
leakage under cold stresses.

Overproduction of ROS in plants under various abiotic
stresses, including cold stress, causes oxidative cellular damage
(Karuppanapandian and Manoharan, 2008; Mafakheri et al.,
2010; van Buer et al., 2016). Among ROS, H2O2 is a relatively
long-lived molecule and moderately reactive, disseminating short

distances away from its production site. H2O2 enables it to
diffuse the damage, act as a messenger in the stress signaling
response, and travel freely across membranes (Møller et al.,
2007). H2O2 can cause oxidation of membrane lipids and
degrade the cell membrane, while MDA has been reported
as an end product of lipid peroxidation, which is why MDA
and H2O2 levels are markers of determining necrosis and cell
damage in living organisms (MaBgorzata and Andrzej, 2016).
In this study, we found that SsKAI2 OEs produced significantly
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lower amount of H2O2, and MDA level than WT under cold
stress (Figures 3A,B). SsKAI2 had lower percentage of EL than
WT under freezing temperature (Figure 2C), these results are
consistent with previous report, demonstrating that a cold-
sensitive S. lycopersicum genotype under cold stress produced
significantly higher MDA and H2O2 content compared with
controls. Han et al. (2017) found an increased level of MDA
and EL contents in rice seedlings under cold stress. Similarly,
Xue et al. (2019) reported that WT plants accumulate higher
levels of H2O2 compared with transgenic Ammopiptanthus
mongolicus under cold stress. These results are suggesting
that SsKAI2 provided shield to cold stress via reducing H2O2
level, decreasing MDA content, and protecting plant cells from
electrolyte leakage.

Various anti-oxidative defense systems scavenge ROS under
steady-state conditions (Navrot et al., 2007). In anti-oxidative
defense systems, ascorbate peroxidase (APX), catalase (CAT),
peroxidase (POD), and superoxide dismutase (SOD) are the
key enzymatic anti-oxidants that prevent cell necrosis by
scavenging ROS and alleviate oxidative stress (Sairam et al.,
2005; Fabio et al., 2007; Songbi and Bruria, 2013; Luis
et al., 2018). When we investigated the activity of different
enzymatic anti-oxidants such as APX, SOD, POD, and CAT
in different Arabidopsis lines under cold stress, we found
that the SOD activity was significantly higher in SsKAI2
OEs after six and 12 h of cold stress, but it was much
lower in Atkai2 mutant than wild-type at each time point
after cold stress (Figure 5A). Results here are agreement
with a previous report, describing that cucumber seedling
showed an induction in SOD activity under the cold stress
(Zhao et al., 2016). Under different time points of cold
stress, the activity of other anti-oxidant enzymes, such as
POD, CAT, and APX, was increased dramatically in SsKAI2
OEs as compared to WT (Figures 5B–D). Previous studies
showed an increased CAT activity in Cynodon dactylon,
Capsella bursa pastoris, and Citrus reticulata, under cold stress
(Shi et al., 2014a; Wani et al., 2018; Mohammadrezakhani
et al., 2019). A higher activity of APX was detected in cold
tolerant Jatropha macrocarpa, whereas reduction in APX activity
was observed in cold sensitive Jatropha macrocarpa (Spano
et al., 2017). Glutathione is a non-enzymatic anti-oxidant in
the plant, which protects cellular damage from ROS under
environmental stresses (Edwards et al., 2000). Cheng et al.
(2016) observed the significantly higher GSH level in treated
Citrullus lanatus compared with control samples under cold
stress 24 h after treatment. Similarly, Wang Q. J. et al. (2016)
demonstrated the increased GSH levels in transgenic apple
seedlings as compared with WT under low temperature stress.
We found that SsKAI2 OEs produced higher concentrations
of T-GSH, while Atkai2 produced a significantly lower T-GSH
contents than the WT plant under cold stress (Figure 5E).
These results suggested that KAI2 conferred cold stress via
activating enzymatic and non-enzymatic anti-oxidant systems
in Arabidopsis.

During the process of cold acclimation, COLD SHOCK
PROTEINS (CSPs) and C-REPEAT BINDING FACTORS (CBFs)
were highly expressed in the cold-resistant plants. In the model

plants Arabidopsis and poplar, the expression level of four
CSP genes is differentially regulated in response to cold cues
(Karlson and Imai, 2003; Benedict et al., 2006; Sasaki et al.,
2007; Nakaminami et al., 2009). Overexpression of AtCBFs in
the other plant species, or overexpression of CBFs from other
species in Arabidopsis alleviated the freezing tolerance (Benedict
et al., 2006; Tondelli et al., 2011). Previous studies revealed
that the exogenous application with karrikins in Arabidopsis up-
regulated the expression level of COLD SHOCK PROTEIN 2
(Baldrianová et al., 2015), which might be a reason for induction
in cold resistance in Arabidopsis by the exogenous application
of KAR1 (Supplementary Figure 2). It has also been reported
that cold shock proteins were up-regulated by the transcription
factors C-REPEAT BINDING FACTORS (CBFs) in response to
cold stress (Fowler and Thomashow, 2002; Gilmour et al., 2004).
In this study, SsKAI2 OEs has the highest level of CSPs and
CBFs genes expression, while kai2 mutant exhibited the lowest
expression level when compared to wild-type plants under cold
stress (Figure 6). These results are consist with the previous
studies showing that the cold resistant plants had a higher
expression level of CSPs and CBFs (Fowler and Thomashow,
2002; Sasaki et al., 2007), suggesting that KAI2 might have
a relationship with CSPs and CBFs in the regulation of cold
acclimation in Arabidopsis.

Cold stress, same as other abiotic stresses, also cause water
imbalance in plants and increase the abscisic acid (ABA)
biosynthesis which could trigger the stomatal closure. Hence,
stomatal closure is an adaptive strategy to drought, and cold
(Shi and Yang, 2014; Jurczyk et al., 2019). In this study, SsKAI2
OEs were hypersensitive to ABA, and exogenous application of
ABA, severely repressed seed germination, and caused induction
in stomatal closure whereas Atkai2 mutants were not that
sensitive to ABA as compared to WT (Figure 7), which are in
agreement with the results of Li et al. (2017). However, it has also
been suggested that ABA played a role in cold acclimation via
triggering the expression of a set of stress responsive genes (Shi
and Yang, 2014). ABA causes several changes in plant molecular,
developmental, and physiological progressions resulting in plant
adaptation to environmental stresses (Ton et al., 2009). Our
results are consistent with Lee and Luan (2012), depicted that
abiotic stresses stimulate ABA production which further triggers
the expression of stomatal closure and stress-related genes. We
found that SsKAI2 OEs promoted the expression level of ABA
responsive genes, such as ABI3, ABI5, MYB96, MYB3R2, and
ABF1 under cold stress (Figure 8), which is an agreement
with the results of Li et al. (2017) suggesting that KAI2 might
regulate the abiotic stress tolerance could be ABA-dependent. The
relationship of ABA with redox homeostasis is well documented
in different studies (Wang H. et al., 2016; Postiglione and Muday,
2020; Wenjing et al., 2020). Altogether, our results are suggesting
that SsKAI2 enhanced response to ABA and induced expression
level of ABA-responsive genes might be a pathway leading to
redox homeostasis under cold stress.

Conclusively, in this study, the karrikins receptor gene KAI2
from the perennial woody plant Sapium sebiferum was the first
time isolated and characterized under cold stress. The results of
this report represented a novel function of KAI2 in the regulation

Frontiers in Plant Science | www.frontiersin.org 12 July 2021 | Volume 12 | Article 657960

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-657960 July 13, 2021 Time: 13:3 # 13

Shah et al. KAI2 Promotes the Cold Stress Tolerance

of cold stress resistance in Arabidopsis by maintaining the redox
homeostasis, increasing the ABA sensitivity, and inducing the
expression of CSPs or CBFs genes. This study is providing
foundations for researchers to explore abiotic stresses regulation
functions of KAI2 in different plant species. Our discovery
provides a foundation for the production of cold resistant plants.
This study is beneficial for improving agronomic, horticultural,
and forest plant research.
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