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Protein modification by the small ubiquitin-like modifier (SUMO) plays an important role 
in multiple plant processes, including growth, development, and the response to abiotic 
stresses. Mechanistically, SUMOylation is a sequential multi-enzymatic process where 
SUMO E3 ligases accelerate SUMO conjugation while also influencing target identity and 
interactions. This review explores the biological functions of plant SUMO E3 ligases [SAP 
AND MIZ1 DOMAIN-CONTAINING LIGASE (SIZs), METHYL METHANESULFONATE-
SENSITIVITY PROTEIN 21 (MMS21s), and PROTEIN INHIBITOR OF ACTIVATED STAT-
LIKE (PIALs)] in relation to their molecular activities and domains. We also explore the 
sub-cellular localization of SUMO E3 ligases and review evidence suggesting a connec-
tion between certain SUMO E3 ligases and DNA that contributes to gene expres-
sion regulation.

Keywords: SUMOylation, SUMO E3 ligases, abiotic stress, structure-function analysis, DNA-binding proteins

INTRODUCTION

SUMOylation is a reversible post-translational modification found in all eukaryotes that 
regulates protein activity, stability, localization as well as protein-protein interactions through 
their conjugation with small ubiquitin-like modifier (SUMO; Celen and Sahin, 2020). SUMOs 
are small proteins (10–15  kDa) that possess a conserved 𝛽-grasp structure composed of a 
five-stranded 𝛽-sheet that wraps around a central 𝛼 helix (Figure  1A). They structurally 
resemble to Ubiquitin although their sequence similarity with Ubiquitin is limited (Cappa-
docia and Lima, 2018). SUMOylation contributes to numerous biological functions and it 
has been associated to stress responses in multiple organisms (Kurepa et  al., 2003; Enserink, 
2015; Seifert et  al., 2015). In plants, SUMOylation is rapidly triggered by multiple stresses 
such as heat, drought, and salt stress (Kurepa et  al., 2003; Augustine and Vierstra, 2018; 
Benlloch and Lois, 2018). In molecular terms, SUMOylation consists in the formation of 
a covalent isopeptide bond between the C-terminal end of SUMO and the lysine residue 
of a protein target. This conjugation is mechanistically similar to Ubiquitin conjugation 
and it requires the sequential activity of an E1-activating enzyme, an E2-conjugating enzyme, 
and E3-ligases that bring the activated E2 (E2~SUMO) in close proximity to substrates 
(Figure  1B; Cappadocia and Lima, 2018).

Throughout the years, two main models have emerged for protein SUMOylation. On the 
one hand, there is the star effect model, where the SUMOylation of a single protein results 
in tractable biological effects (Sarangi and Zhao, 2015). On the other hand, there is the protein 
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group SUMOylation model, where multiple subunits of a 
complex are targeted to increase the cohesiveness of the complex 
(Psakhye and Jentsch, 2012; Jentsch and Psakhye, 2013; Augustine 
and Vierstra, 2018; Rytz et  al., 2018). SUMOylation’s  
ability to regulate protein-protein interactions is linked to its 
capacity either to mask protein-protein interaction surfaces  
or to complement existing interactions with noncovalent  
interactions between SUMO and SUMO interacting motifs (SIM).  

SIMs are found in multiple SUMOylation substrates as well 
as in SUMO E3 ligases. They are typically composed of four 
hydrophobic residues forming a 𝛽-strand that complements 
the SUMO 𝛽-sheet in parallel or antiparallel configuration 
(Cappadocia and Lima, 2018; Figure  1A).

The ubiquitin pathway involves more than 1,415 E3 ligases 
with high-level target specificity for signaling or degradation 
(Craig et  al., 2009). In sharp contrast, only four SUMO E3 

A

C

D E

F

B

FIGURE 1 | Plant SUMO E3 ligases, organizations, and structures. (A) Structure of a complex between SUMO and a SUMO interacting motif (SIM). In this 
structure, the β-sheet of SUMO (orange) from Saccharomyces cerevisiae is complemented by a β strand (gray) of RANBP2 (PDB 1Z5S) in an antiparallel orientation. 
(B) SUMOylation conjugation cascade where E1, E2, and E3, respectively, designate an E1-conjugating enzyme (pale yellow), an E2-conjugation enzyme (purple), 
and an E3-ligase (green). GG represents the di-glycine motif located at the C-terminal end of SUMO. (C) Schematic representation of the three types of SUMO E3 
ligases found in plants. As representative members of each class, we chose Arabidopsis thaliana SIZ1 (top), PIAL2 (middle), and MMS21 (bottom). Domains are 
illustrated by boxes, whereas motifs are depicted by vertical lines. Domains present in plant SUMO E3 ligases include the SAF-A/B, Acinus, and PIAS (SAP) domain, 
the plant homeodomain (PHD), the PINIT domain, and the SP-RING domain. Historically, the SIM of SIZ1 has been referred to as the SXS motif (Minty et al., 2000). 
Although a SXS motif is well conserved in plants, this motif is actually part of a C-terminal extension of the SIM (Park et al., 2011). Studies in other systems have 
indeed shown that the serine residues can be targeted by phosphorylation and that this phosphorylation increases the strength of SUMO-SIM interaction by promoting 
interactions with a basic patch on SUMO (Chang et al., 2011; Anamika and Spyracopoulos, 2015; Cappadocia et al., 2015a). (D) Crystal structure of a SUMO~E2/
SIZ1 complex from S. cerevisiae in a configuration prompt for catalysis (PDB 5JNE). The different domains of SIZ1 are in cartoon and surface representation and are 
colored as in (C). E2 and SUMO are in cartoon representation in blue and orange, respectively. A gray sphere represents a zinc ion that stabilizes the SP-RING 
domain, whereas a yellow sphere represents the position of the catalytic cystine within the E2 active site. (E) Solution structure of the SAP domain of Oryza sativa 
(PDB 2RNO). The domain is in cartoon representation and is colored as in (C). Domain termini are indicated as « N » and « C ». (F) Solution structure of the PHD 
domain of O. sativa (PDB 2RSD). The domain is in cartoon representation and is colored as in (C). Domain termini are indicated as « N » and « C ».

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jmii and Cappadocia Plant SUMO E3 Ligases

Frontiers in Plant Science | www.frontiersin.org 3 April 2021 | Volume 12 | Article 652170

ligases have been identified in Arabidopsis: SAP AND MIZ1 
DOMAIN-CONTAINING LIGASE 1 (SIZ1; Miura et  al., 2005), 
METHYL METHANESULFONATE-SENSITIVITY PROTEIN 21 
(MMS21; Ishida et  al., 2009), and PROTEIN INHIBITOR OF 
ACTIVATED STAT-LIKE 1/2 (PIAL1/2; Tomanov et  al., 2014). 
These regulate the conjugation of at least 100 proteins (Rytz 
et  al., 2018) and they can be  divided into three general classes: 
SIZs, MMS21s, and PIALs (Figure  1C).

Biological Functions of Plant  
SUMO E3 Ligases
Physiological Functions
The three types of plant SUMO E3 ligases are involved in 
multiple physiological processes ranging from growth regula-
tion to stress responses (Table  1). Contrary to SUMO E1 

and E2 whose deletion result in embryonic lethality (Saracco 
et  al., 2007), the single SUMO E3 ligase knockout mutants 
are viable (Miura et  al., 2005; Ishida et  al., 2009; Tomanov 
et  al., 2014), although they display different phenotypes. For 
example, siz1 knockout plants present strong growth defects 
at the vegetative and reproductive stages (Ishida et  al., 2009) 
that are caused by a strong increase in salicylic acid levels 
that can be  rescued by the expression of NahG, a salicylate 
hydroxylase (Lee et  al., 2007). In contrast, mms21 knockout 
plants display salicylic acid-independent growth defects imme-
diately after germination due to a decrease in cell cycle activity 
(Huang et  al., 2009; Ishida et  al., 2009). The double siz1 
mms21 mutant is embryonic lethal, thereby highlighting the 
important role of these two proteins in plant development 
(Ishida et  al., 2012).

TABLE 1 | Small ubiquitin-like modifier (SUMO) E3 ligase mutants in plants and their phenotype.

Type of SUMO 
E3 ligase

Organisms Mutant type1 Plant phenotype References

SIZs Oryza sativa (OsSIZ1) Knockout Dwarf phenotype, reduced tiller and seed number

Anther dehiscence defect and no pollen viability

Thangasamy et al., 2011

Arabidopsis thaliana 
(AtSIZ1)

Knockout2 Dwarf phenotype Lee et al., 2007; Zhang et al., 2020a
Early flowering Jin et al., 2008
Secondary cell wall defect Liu et al., 2019
Cell expansion and proliferation defect Catala et al., 2007
Reduced anthocyanin accumulation Zheng et al., 2020
Reduced germination Miura et al., 2009; Kim et al., 2016
Hypersensitivity to Excess copper Chen et al., 2011

Heat and drought Miura et al., 2013; Kim et al., 2016
Cold and freeze Miura et al., 2007; Coleman et al., 2020
Abscisic acid Miura et al., 2005; Coleman et al., 2020

Accumulation of salicylic acid Lee et al., 2007; Miura et al., 2013
CpSIZ13 Heterologous 
overexpression

Delayed flowering, increased leave senescence, cold 
tolerance

Li et al., 2013

OsSIZ1 Heterologous 
overexpression

Thermotolerance and salt tolerance Mishra et al., 2017

Solanum lycopersicum 
(SlSIZ1)

Overexpression Thermotolerance Zhang et al., 2018

Nicotiana tabacum SlSIZ1 Heterologous 
overexpression

Thermotolerance Zhang et al., 2017b

Malus domestica 
(MdSIZ1)

Overexpression Increased rhizosphere acidification Zhou et al., 2018
Knockout Downregulation of lateral root formation Zhang et al., 2021

MMS21s Arabidopsis thaliana Knockout Increased DNA double strand breaks

Hypersensitivity to DNA damaging agents

Xu et al., 2013; Yuan et al., 2014

Gametophyte development defect

Meiosis abort and pollen tube malformation

Liu et al., 2014

Dwarf roots phenotype, cell proliferation in the apical 
root meristem defect (low expression of cytokinin 
induced genes)

Huang et al., 2009

Increased endoreplication Liu et al., 2016
Degradation of the chromatin remodeler BRAHMA in 
roots

Zhang et al., 2017a

Decreased activity of the 26S Proteasome Yu et al., 2019
PIALs Arabidopsis thaliana PIAL1 and PIAL2 

double knockout
Minor disruption of carbohydrate and nitrate 
metabolites and downregulation of sulfur metabolism 
genes

Salt tolerance (better PSII activity, green phenotype, 
and higher biomass)

Tomanov et al., 2014

1Knockouts correspond to T-DNA insertion whereas overexpression is done using a 35S promoter.
2Although described as a Knockout, SIZ1 mutants appear to be strong knockdowns as part of the protein is still detectable by mass spectrometry (Rytz et al., 2018).
3CpSIZ1: Chimonanthus praecox SIZ1.
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Concerning their biological functions, SIZ1 has been 
abundantly implicated in hormone signaling and the response 
to abiotic stress (Kim et  al., 2015; Zhang et  al., 2018; Coleman 
et  al., 2020) including thermotolerance (Mishra et  al., 2017; 
Zhang et  al., 2017b, 2018). Indeed, while siz1 knockout plants 
are sensitive to different stress conditions (Table  1), plants 
overexpressing SIZ1 are more resistant to stress (Li et al., 2013; 
Zhang et  al., 2017b, 2018, 2020a; Mishra et  al., 2017). As 
such, SIZ1 is now regarded as a promising candidate for crop 
improvement (Mishra et  al., 2017). Proteomics experiments 
have further revealed that SIZ1 directly affects the SUMOylation 
of more than 100 proteins (Rytz et al., 2018) including chromatin 
remodeling enzymes, transcription factors, and heat-shock 
proteins. Whereas proteins such as HEAT SHOCK 
TRANSCRIPTION FACTOR A2 (HsfA2), ABSCISIC ACID 
INSENSITIVE 5 (ABI5) and INDUCER OF CBP EXPRESSION 
1 (ICE1), three substrates of SIZ1 exhibit clear star effects 
(Miura et al., 2007, 2009; Cohen-Peer et al., 2010; Zhang et al., 
2018), protein group modification has only been postulated 
for certain SIZ1 substrates. For example, multiple subunits of 
the SWITCH/SUCROSE NON-FERMENTABLE (SWI/SNF) 
complex involved in chromatin remodeling were shown to 
be less SUMOylated in the siz1 mutant than in wild-type plants 
(Augustine and Vierstra, 2018; Rytz et  al., 2018).

MMS21 has been shown to regulate DNA damage response 
and cell cycle regulation. Indeed, inactivation of MMS21  in 
Arabidopsis increases endoreplication by stimulating the G1/S 
transition while blocking G2/M (Liu et  al., 2016). MMS21 
facilitates the repair of genomic lesions and prevents apoptosis 
induced by DNA damage (Huang et  al., 2009). In contrast to 
SIZ1, no substrates could be  identified for MMS21 through 
proteomics approaches (Rytz et  al., 2018). However, there is 
evidence that lack of MMS21-dependent SUMOylation on 
BRAHMA (BRM), an ATPase belonging to the SWI/SNF 
chromatin remodeling complex, leads to its degradation by 
the 26S proteasome (Zhang et  al., 2017a). The mms21 mutant 
also displays a decrease in 26S proteasome activity, which could 
be due to a decreased SUMOylation of REGULATORY PARTICLE 
TRIPLE-A ATPase subunit 2a (RPT2a), a subunit of the complex 
(Yu et  al., 2019).

In contrast to SIZ1 and MMS21, much less is known 
concerning the biological roles of PIALs. These have been 
implicated in a salt stress response and in transcriptional 
silencing (Han et al., 2016) and the pial1 pial2 knockout mutant 
displays improved fitness and improved photosystem II activity 
under stress conditions (Tomanov et  al., 2014).

Molecular Functions
Contrary to Ubiquitin E2s that are dependent on E3s to achieve 
exquisite substrate specificity, SUMO E2s can directly engage 
substrates harboring canonical 𝜓KxE/D SUMOylation motifs 
(Rodriguez et  al., 2001; Sampson et  al., 2001; Bernier-Villamor 
et al., 2002). In Arabidopsis, about 80% of SUMOylated proteins 
possess a canonical SUMOylation motif (Miller et  al., 2010; 
Rytz et al., 2018). SUMO E3 ligases contribute to SUMOylation 
at both canonical and non-canonical sites by performing  
two key roles: bringing substrates and E2~SUMO into close  

proximity, and stimulating SUMO discharge by the E2. Indeed, 
in the absence of an E3, the E2~SUMO complex is very 
dynamic and exhibits multiple open conformations that prevent 
the efficient discharge of SUMO to substrates (Pruneda et  al., 
2011; Page et  al., 2012). By maintaining SUMO in a closed 
conformation with the help of SIM or SIM-like sequences 
(Figure  1D), SUMO E3 ligases position the thioester bond 
in a conformation prompt for discharge (Reverter and Lima, 2005; 
Cappadocia et  al., 2015b; Streich and Lima, 2016).

SUMO E3 ligases can directly engage substrates through 
one of their protein-protein interaction domains (see below) 
and this results in the SUMOylation of specific proteins such 
as PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA) 
in yeast (Reindle et  al., 2006) and MORPHEUS MOLECULE 
1 (Mom1) in plants (Han et  al., 2016). SUMO can also act 
as a substrate for SUMO E3 ligases to promote SUMO chain 
formation. For example, PIAL1/2 were shown to extend SUMO 
chains (Tomanov et  al., 2014) and are thus described either 
as E3 ligases (Han et  al., 2016; Benlloch and Lois, 2018) or 
E4 ligases (Tomanov et  al., 2014; Morrell and Sadanandom, 
2019; Ghimire et  al., 2020). Mechanistically, chain formation 
could be  due to the presence of SIMs that contact SUMO as 
a substrate.

Contacting substrates through the use of protein-protein 
interaction domains, however, does not explain how a few 
SUMO E3 ligases apparently selectively modify a very large 
pool of substrates that share little sequence similarity between 
them (Rytz et  al., 2018). Experiments performed in yeast 
suggest that the mere targeting of SUMO E3 ligases to DNA 
is sufficient to SUMOylate a large group of proteins in a 
rather promiscuous manner (Psakhye and Jentsch, 2012; Jentsch 
and Psakhye, 2013). Further, a proteomic study has suggested 
that consensus sites are not critically required for protein 
SUMOylation under stress conditions (Hendriks et  al., 2017). 
It serves as an indication that the interaction of SUMO E3 
ligases with their substrates might complement imperfect 
substrate-E2 interactions. Altogether, increasing protein 
SUMOylation under stress is predicted to mitigate the proteotoxic 
effect of stress on proteins by increasing the structural stability 
of proteins (Varejão et  al., 2019).

Structure of Plant SUMO E3 Domains
Domains Required for Activating the E2~SUMO 
Thioester Bond
The Siz/PIAS RING (SP-RING) domain is the most conserved 
domain of SUMO E3 ligases. It is composed of an 𝛼/𝛽 fold 
(Figure  1D) that structurally resembles the RING and U-box 
domains found in the Ubiquitin system (Yunus and Lima, 
2009). It contains structural elements that allow interaction 
with the E2 and that impart specificity toward the SUMO E2 
(Yunus and Lima, 2009; Streich and Lima, 2016). Mutants that 
alter the SP-RING of SIZ1 severely compromise SUMO conju-
gation (Garcia-Dominguez et  al., 2008; Cheong et  al., 2009).

The Siz/PIAS C-terminus domain (SP-CTD) is composed of 
two regions that immediately surround the SP-RING domain. 
In yeast SIZ1, the SP-CTD is composed of a three-stranded 
𝛽-sheet supported by two 𝛼-helices (Yunus and Lima, 2009) 
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whereas, in yeast MMS21, it is composed of 𝛽-hairpin-like motif 
packed against a 𝛼-helical bundle (Duan et al., 2009). Importantly, 
structural analysis of a SIZ1/E2~SUMO structure in yeast has 
revealed that the edge of a 𝛽-sheet of the SP-CTD domain 
interacts with SUMO in a SIM-like manner (Streich and Lima, 
2016; Figure 1D) and maintains SUMO in a closed conformation 
favorable for catalysis. Comparison of the structures of SIZ1 
and MMS21 reveal that the β-hairpin-like motif of MMS21 
occupies the same general localization as the edge of the 𝛽-sheet 
in SIZ1, perhaps suggesting a similar role for these two structural 
elements. Whereas the SP-CTD domain is well-characterized in 
yeast, limited information is available in plants due to the lack 
of experimental investigation (i.e., structure determination or 
mutagenesis). Homology models, however, suggest that plant 
SP-CTDs could contact SUMO as their yeast counterparts.

Domains Required for Interacting With Other 
Proteins or DNA
The SAF-A/B, Acinus, and PIAS (SAP) domain is a mostly 
𝛼-helical domain that is only present at the N-terminus of SIZ 
proteins. The solution structure of the SAP domain of rice SIZ1 
reveals that it folds in a four-helix bundle (Suzuki et  al., 2009; 
Figure  1E). The second and third of these helices are the most 
conserved regions, and they encompass a GxKxxL motif that 
is conserved from plants to yeast to human. This region is also 
the site of the DNA binding activity as assessed by NMR titra-
tion (Suzuki et  al., 2009). In other organisms, the SAP domain 
was shown to interact with protein substrates such as RFA2 
(Chung and Zhao, 2015) or p53 (Okubo et al., 2004), in addition 
to DNA (Psakhye and Jentsch, 2012).

The Plant HomeoDomain (PHD) is the only SUMO E3 
domain that is unique to the plant kingdom. The solution 
structure of the PHD domain of rice SIZ1 reveals that this 
domain binds two zinc ions through CCHC and C4 motifs 
(Shindo et al., 2012; Figure 1F) and recognizes both demethylated 
Arg2 and trimethylated Lys4 of histone H3 (Shindo et al., 2012; 
Miura et  al., 2020). The PHD domain is essential for the 
conjugation of SUMO to global transcription factor group E3 
(GTE3) and it has also been suggested to contribute to the 
SUMOylation activity of SIZ1 (Garcia-Dominguez et  al., 2008).

The PINIT domain is composed of two intertwined 𝛽-sheets 
(Figure  1D). In yeast SIZ1, this domain recognizes substrates 
such as PCNA (Yunus and Lima, 2009; Streich and Lima, 
2016). Similarly, the PINIT domains of PIAL1/2 act as protein-
protein interaction domains for the helicase MOM1 (Han et al., 
2016). Although a hallmark of this domain, the eponymous 
PINIT motif is not perfectly conserved throughout evolution. 
It is PINIT in human PROTEIN INHIBITOR OF ACTIVATED 
STAT 1 (PIAS1), PADLT in yeast SIZ1, PIIT in Arabidopsis 
SIZ1, and PTNVT in Arabidopsis PIAL1/2. Mutating the PIIT 
motif to PAAT in Arabidopsis SIZ1 lowers SUMO conjugation 
(Cheong et  al., 2009).

Other Motifs Found in SUMO E3 Ligases
SUMO E3 ligases contain several motifs such as SIMs, valine-
proline (VP) CONSTITUTIVE PHOTOMORPHOGENESIS 

PROTEIN 1 (COP1) binding motifs and nuclear localization 
sequences (NLS; Figure  1C). SIMs are present in both SIZs and 
PIALs proteins. The SIM of SIZ1 is located after the SP-CTD 
domain, where it may facilitate interaction with a SUMO molecule 
tethered on the backside of the E2 (Streich and Lima, 2016). 
For PIAL1/2, the SIMs were shown to promote SUMO chain 
formation (Tomanov et  al., 2014). VP motifs have only been 
identified in SIZ1 and they allow interaction with the substrate-
binding pocket of the Ubiquitin E3 ligase COP1 (Mazur et al., 2018).

Localization and Connection With DNA
SUMO E3 Ligases Are Predominantly Found in 
the Nucleus and Some of Them Associate With 
Nuclear Bodies
Cellular localization studies (Lois et al., 2003), cell fractionation 
studies (Saracco et  al., 2007), and proteomics studies (Miller 
et  al., 2010, 2013; Rytz et  al., 2018) suggest that plant 
SUMOylation, similary to yeast and human SUMOylation, 
mostly occurs in the nucleus. The SUMOylation wave that 
occurs in response to stress also mostly occurs in the nucleus 
(Saracco et  al., 2007). Importantly, the same general nuclear 
localization that was observed for SUMOylation is also observed 
for SUMO E3 ligases such as SIZ1 (Miura et al., 2005; Cheong 
et  al., 2009; Mazur et  al., 2018) and MMS21 (Ishida et  al., 
2009). Co-localization of SIZ1 with substrates was also shown 
to occur in the nucleus. Indeed, bimolecular fluorescence 
complementation assays indicate that the interaction between 
eucalyptus SIZ1 and ICE1 (Zhang et  al., 2020b) and between 
Arabidopsis SIZ1 and COP1 (Lin et  al., 2016) both occur in 
the nucleus. The exact sub-cellular localization of PIALs is 
unknown, although their physical and functional interaction 
with the nuclear protein MOM1 is consistent with a nuclear 
localization (Han et  al., 2016; Zhao and He, 2018).

In addition to their nuclear localization, components of the 
SUMOylation machinery were further shown to localize to 
nuclear bodies in plants and in other organisms (Damme, 
2010; Brown et  al., 2016). Early reports demonstrated that 
plant SIZ1 localizes partially to nuclear punctuate structures 
(Miura et  al., 2005; Cheong et  al., 2009). Components of the 
SUMO machinery localize to nuclear bodies in a conjugation-
dependent manner (Mazur et al., 2018), whereas SIZ1 localizes 
to nuclear bodies in a SP-RING-dependent manner (Cheong 
et  al., 2009). Numerous SUMOylation substrates also localize 
to these nuclear bodies, including COP1, a Ubiquitin E3 ligase 
that regulates the stability of SIZ1 (Lin et  al., 2016; Mazur 
et al., 2018). These studies suggest that nuclear bodies contribute 
to regulating the activity of SUMO E3 ligases, while also perhaps 
influencing their choice of substrates.

Co-localization of SUMO E3 Ligases With DNA 
and Chromatin
In mammals, the SUMO landscape on DNA is dynamic and 
SUMO appears to play both activating and repressing roles on 
gene expression (Neyret-Kahn et al., 2013). More precisely, while 
SUMO appears necessary for the negative regulation of many 
genes, it also contributes to the maximal activity of heat-stress 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jmii and Cappadocia Plant SUMO E3 Ligases

Frontiers in Plant Science | www.frontiersin.org 6 April 2021 | Volume 12 | Article 652170

genes (Seifert et  al., 2015). This study also contributed to a 
model where SUMO does not work as a switch to increase or 
decrease transcription, but regulates the stability of protein 
complexes involved in gene transcription, thereby potentiating 
their negative or positive activity in a context-dependent manner. 
Heat-stress was further found to increase the association of the 
human SUMO E3 ligase PIAS1 to multiple genomic locations 
(Niskanen et  al., 2015). Furthermore, the kinetics of SUMO 
recruitment suggests that at least part of this SUMO modifica-
tion occurs directly on DNA (Seifert et  al., 2015).

In plants, the genome-wide location of SUMO E3 ligases 
is unknown and only one study looked at the global distribution 
of SUMO on DNA (Han et  al., 2020). The presence of SUMO 
on chromatin correlates with active chromatin markers, in 
accordance with fluorescence microscopy experiments showing 
that maize SUMO1 associate more with euchromatin than 
heterochromatin (Chen et al., 2019). Upon heat stress induction, 
SUMO rearranges to upregulate heat stress genes while 
downregulating growth genes (Han et  al., 2020). Importantly, 
little association of SUMO to DNA occurs in the absence of 
SIZ1, thereby highlighting the importance of SIZ1 for targeting 
SUMO to DNA. Consistent with a role of SUMO as an amplifier 
of the stress response, the activation of stress-responsive genes 
and inhibition of growth-related genes were still present in 
plants lacking SIZ1, albeit it occurred at lower intensity than 
in wild-type plants (Han et  al., 2020).

These studies suggest that part of the plant E3-mediated 
SUMOylation could occur on DNA. Indeed, plant SIZ proteins 
possess a SAP domain that has been shown to contact DNA 
(Suzuki et al., 2009). In addition, a proteomic study has shown 
that a good number of SIZ1 targets are transcription factors 
or chromatin remodeling proteins that possess DNA binding 
domains (Rytz et  al., 2018). Using yeast two-hybrid, 76 
transcription factors were also isolated as potential SUMOylation 
targets based on their interaction with SIZ1 or the E2 (Mazur 
et al., 2017). The non-sequence specific nature of SIZ1 binding 
to DNA even suggests that it is capable of binding near 
DNA-bound transcription factors, perhaps influencing lysine 
selection or complementing protein-protein interactions with 
protein-DNA interactions. More than just contacting DNA, 
SIZ1 could interact with open chromatin through its PHD 
domain that was shown to interact with tri-methylated histone 
H3K4 (Shindo et  al., 2012; Miura et  al., 2020). Also, SIZ1 
was recently shown to bind and increase the SUMOylation of 
the DNA demethylase REPRESSOR OF SILENCING 1 (ROS1), 

thereby increasing its stability and activity and altering the 
methylation pattern in thousand genomic locations (Kong et al., 
2020). Whether this interaction occurs directly on DNA is, 
however, still unknown. Finally, there is evidence that DNA 
binding affects the activity of SUMO E3 ligases as, in yeast, 
MMS21 SUMOylation activity is stimulated by the binding of 
the complex MMS21/STRUCTURAL MAINTENANCE OF 
CHROMOSOME 5 (SMC5)/STRUCTURAL MAINTENANCE 
OF CHROMOSOME 6 (SMC6) to DNA (Varejão et  al., 2018).

Conclusion and Perspectives
SUMO E3 ligases facilitate the SUMOylation of multiple proteins, 
particularly under stress conditions. This requires a complex 
interplay between the different domains and motifs of plant 
E3 ligases to achieve optimal subcellular targeting, contact 
relevant substrates, and stimulate catalysis by the E2~SUMO 
complex. Recent evidence now suggests that DNA targeting 
by SUMO E3 has a profound influence on activity and the 
choice of substrates. Outstanding questions for the future 
include: (i) Does DNA- or chromatin-binding by SUMO E3 
ligases modify their SUMO E3 activity? (ii) Does DNA- or 
chromatin-binding of transcription factors or chromatin modu-
lators modify their susceptibility to SUMOylation or the choice 
of target lysine residues? (iii) Does stress promote the asso-
ciation of plant SUMO E3 ligases to DNA? (iv) How are SUMO 
E3 ligases distributed on DNA during normal growing condi-
tions and under stress? Finally, while this review focused on 
the role of SUMO E3 ligases on transcription, we  also expect 
that future studies will highlight the role of plant SUMO E3 
ligases and DNA-targeting on DNA damage response.
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