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Genomic analysis can be a valuable tool to assist management of non-native invasive
species, through determining source and number of introductions as well as clarifying
phylogenetic relationships. Here, we used whole chloroplast sequencing to investigate
the introduction history of Passiflora foetida sensu lato in Australia and clarify its
relationship with other Passiflora species present. Phylogenetic analysis of chloroplast
genome data identified three separate genetic lineages of P. foetida s. l. present in
Australia, indicating multiple introductions. These lineages had affinities to samples
from three separate areas within the native range in Central and South America that
represented phylogenetically distinct lineages. These results provide a basis for a
targeted search of the native range of P. foetida s. l. for candidate biological control
agents that have co-evolved with this species and are thus better adapted to the
lineages that are present in Australia. Results also indicated that the Passiflora species
native to Australia are in a separate clade to that of P. foetida s. l. and other introduced
Passiflora species cultivated in Australia. This knowledge is important to assess the
likelihood of finding biological control agents for P. foetida s. l. that will be sufficiently
host-specific for introduction in Australia. As P. foetida s. l. is a widespread non-native
invasive species across many regions of the world, outcomes from this work highlight
the importance of first evaluating the specific entities present in a country before the
initiation of a biological control program.

Keywords: biocontrol, biogeography, classical biological control, invasion history, phylogeny, species
introduction

INTRODUCTION

Non-native invasive species can have significant negative impacts across their introduced range
(Pyšek et al., 2012), transforming social, economic, and environmental values in managed and
unmanaged landscapes (Pimentel, 2001; Pyšek et al., 2012; Simberloff et al., 2013; Marbuah et al.,
2014). In many countries, such non-native species are second only to climate change as the biggest
threat to native biological diversity (Vilà et al., 2011) and their impacts on agriculture amount
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to many billions of dollars annually (Oerke, 2006). Plant
introductions may be unintended or deliberate, such as via
horticultural trade or for pastoral improvement, and in many
instances single taxa have been introduced on more than one
occasion (Mack and Lonsdale, 2001; Cook and Dias, 2006). This
variation in introduction history can influence the success or
otherwise of introduced species (Kolar and Lodge, 2001) and
impact the likelihood of progression along the invasion curve
(Blackburn et al., 2011).

Recent advances in genomic analysis is enabling more
sophisticated investigations of the invasion history and
colonization dynamics of introduced species (Richards et al.,
2006; Estoup and Guillemaud, 2010; Cristescu, 2015). New
technology provides the level of molecular resolution necessary
to resolve complex demographic events associated with non-
native invasions (Barrett et al., 2008; Cristescu, 2015). Such
molecular data can provide answers to specific questions such
as: how often and how many lineages of a non-native invasive
species have been introduced to the new range (Nissen et al.,
1995); what are the source(s) of these introductions (Hanlon
et al., 2000; Burrell et al., 2015; Chown et al., 2015); what is the
phylogenetic relationship between the introduced lineages and
any other co-occurring related species (Hanlon et al., 2000); and
is there any evolutionary divergence between populations of the
focal species in the native and introduced ranges (Nissen et al.,
1995; Vandepitte et al., 2014; Burrell et al., 2015; Chown et al.,
2015; Ferrero et al., 2015).

There is an overall trend of reduction in genetic diversity for
most invasive plant species during introduction (Dlugosch and
Parker, 2008), although there have been rare cases of successful
invaders that have shown higher levels of within population
genetic diversity in the introduced range than in the native range
(Novak and Mack, 1993; Genton et al., 2005). Theory would
suggest that a small number of individuals introduced to a new
area would lead to founder effects and a low level of genetic
diversity (Nei et al., 1975). Selection for preadapted genotypes
after introduction may also lead to a reduction in diversity (Mack
et al., 2000). In contrast, the introduction of a large number of
individuals to a new region and/or multiple introductions from
different sources have been shown to lead to higher levels of
genetic diversity in the introduced range (Dlugosch and Parker,
2008; Pairon et al., 2010).

Identifying the source(s) of invasive plants is particularly
useful for refining biosecurity protocols and to inform classical
biological control (hereafter biocontrol) programs. Knowing
the origin of introductions can be used to mitigate risk
and refine border biosecurity arrangements (Maebara et al.,
2020; Ricciardi et al., 2020). The same knowledge can also
be used as a primary step to prioritize where to search for
potential suitable, co-evolved biocontrol agents in the native
range (Goolsby et al., 2006b; Gaskin et al., 2013; Kwong et al.,
2017; McCulloch et al., 2020). Narrowing this search area is
particularly relevant for target species with a broad geographic
range or climatic niche.

Biocontrol programs also benefit from clarifying the
taxonomy of the target invasive plant and determining its
phylogenetic relationships with closely related species and

the presence of any hybridization (Gaskin, 2003; Gaskin
et al., 2013; McCulloch et al., 2020). Plant species that are
phylogenetically more distant to the target plant are less likely
to be suitable hosts for the same specialized natural enemies
(Gilbert et al., 2012). Therefore, a detailed understanding of the
phylogeny of the target and its congeners that are present in the
introduced range, whether they are native or cultivated, enables
predictions on the likelihood of finding biocontrol agents that
will be sufficiently specific for introduction. This information
is also used to guide development of the list of non-target
plant species, following the centrifugal phylogenetic method
(Wapshere, 1974; Briese, 2003), to use in host-specificity tests
with the candidate biocontrol agents in order to assess the risks
they could pose.

Knowledge of the different genetic lineages of the invasive
plant present in the introduced range can improve management
outcomes. Such variation can be due to the type of introduction,
either as a result of a mixed introduction or multiple
introductions. Variability can also be due to post-introduction
selection or adaptive change. Rapid evolution due to strong
selection pressures has been shown in some introduced plant
populations (Oduor et al., 2011; Turner et al., 2014). Many
successful invasive species also have traits such as a fast
reproductive cycle or rapid maturity, that promote or enhance
the opportunities for adaptation (Baker, 1974; Sakai et al., 2001).
Comparing genetic variation of the plant between populations
in the native and introduced ranges and identifying genetic
lineages can assist with the selection of better adapted candidate
biocontrol agents that are more likely to be effective (Moody
et al., 2016; Kwong et al., 2017; Gaskin et al., 2019; Morin, 2020).
Understanding the spatial distribution of distinct genetic entities
can also inform management design for improved control, such
as where buffer zones are positioned to avoid different variants
moving to new areas (Moore et al., 2008).

Despite the clear advantages that molecular insights provide
for management of invasive plants, a robust understanding
of introduction history, genetic diversity and taxonomic
identity remains poorly known for many of the world’s most
widespread and threatening species. Passiflora foetida L. sensu
lato (Passifloraceae) is an example of a threatening invader
that has been widely introduced across many regions of the
world, including South-East Asia, South Pacific Islands, China,
Hawaii, India, Madagascar, and Australia (Yockteng et al., 2011).
It is a fast-growing vine native to Central and South America
that climbs over vegetation, including trees, and smothers plant
communities (Lohr et al., 2016; Jucker et al., 2020). Traditional
methods of control, including manual removal and herbicides,
are not practical or cost-effective, particularly in situations
where P. foetida s. l. infestations are in remote regions that are
challenging to access (Jucker et al., 2020). Because of the extent
of its distribution and severity of negative impacts it causes to
environmental and socioeconomic values, P. foetida s. l. is being
considered as a target for biocontrol in Australia (Webber et al.,
2014; Scott et al., 2018).

The Passiflora genus is extensive, with more than 560 species
recognized (Krosnick et al., 2013). Many species of Passiflora are
also used around the world commercially as either horticultural

Frontiers in Plant Science | www.frontiersin.org 2 July 2021 | Volume 12 | Article 651805

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-651805 July 23, 2021 Time: 17:40 # 3

Hopley et al. Passiflora foetida Phylogeny in Australia

crops (passionfruit) or as ornamental plants, including hybrids
and varieties, and a number of countries where P. foetida s. l. has
been introduced also have native Passiflora species (Vanderplank,
2000). Whilst consistently placed in subgenus Passiflora section
Dysosmia DC, the species level taxonomy of P. foetida specifically,
and multiple other taxa within section Dysosmia more generally,
appears to be uncertain and problematic, with no molecular
analyses available to confirm recent species circumscriptions
based on morphology alone (Vanderplank, 2013; Svoboda, 2018;
Svoboda and Ballard, 2018).

In Australia, where P. foetida s. l. has invaded across the
northern extent of the continent, the earliest known record of
introduction dates to 1854 (Anon, 1854), with concern already
being raised about its invasive nature by 1892 (Holtze, 1892).
However, little is known about the introduction history before
or after those events. In recent decades the vine has become
a major invader that can transform ecosystems (Beard et al.,
1984; Kirkpatrick et al., 1988; Russell-Smith and Lee, 1992; Cowie
and Werner, 1993; Preece et al., 2010; Lohr et al., 2016), and
has been recognized as one of the weed species that poses
the greatest threat to biodiversity on the islands of the Pilbara
and Kimberley regions of Western Australia (Lohr et al., 2015,
2016). In addition to P. foetida s. l., at least 59 other Passiflora
taxa have been introduced into Australia for horticultural
and ornamental purposes (Randall, 2007). Several of these
species have also become naturalized and invasive after escaping
from cultivation (Randall, 2007). There are also six Passiflora
taxa that are native to Australia (P. aurantia var. aurantia
G.Forst., P. aurantia var. pubescens Bailey, P. aurantioides
(K.Schum.) Krosnick, P. cinnabarina Lindl., P. kuranda Krosnick
& A.J.Ford, P. herbertiana Ker Gawl.). Taken together, this set of
circumstances makes P. foetida s. l. in Australia an ideal target
for incorporating a molecular approach to addressing knowledge
gaps to facilitate development of novel management solutions to
improve control outcomes.

Here we use a whole chloroplast sequencing approach to assess
the phylogenetic relationship between multiples accessions of
P. foetida s. l. in order to identify the lineage(s) present in the
introduced range in Australia and their most likely source area(s)
in the native range in Central and South America. We also use
the same approach to confirm the phylogenetic position of P.
foetida s. l. amongst all taxa of Passiflora - native and non-native
(including both commercial varieties and naturalized species)
- that are present in Australia. Specifically, we sought (1) to
determine whether the presence of P. foetida s. l. in Australia is
the result of a single or multiple introductions; (2) to identify the
source of the introduction(s) and any evolutionary divergence
between the native range and Australian range; and (3) to
determine the phylogenetic relationship between the introduced
lineages and any other co-occurring Passiflora species. Our study
demonstrates how the application of advanced molecular tools
to explore the introduction history of non-native invasive plants
can inform control programs. We discuss the implications of
these results for the biocontrol program targeting P. foetida s. l.
in Australia and frame these findings for the broader application
of biocontrol for this threatening invader in other parts of its
non-native range.

MATERIALS AND METHODS

Focal Taxon
The most recent circumscriptions of section Dysosmia, to
which Passiflora foetida s. l. belongs, recognize approximately
30 taxa (Vanderplank, 2013; Svoboda, 2019), including two
major species complexes: P. foetida L. and P. ciliata Aiton. The
taxonomy of this section has been problematic for over 200
years (Svoboda and Ballard, 2018) due to extreme variation in
morphological characters and no molecular phylogeny to date
(Vanderplank, 2013; Svoboda, 2018, 2019; Svoboda and Ballard,
2018). Moreover, there is evidence of hybridization between
taxa after introduction into areas with co-occurring (native or
introduced) and closely related taxa (Vanderplank, 2013).

Over c. 170 years, a number of names have been applied
to Passiflora section Dysosmia collections from non-native
populations across Australia, including Passiflora foetida L.,
Passiflora foetida L. var. hispida (DC ex Triana & Planchon) Killip
ex Gleason (syn. Passiflora vesicaria L. var. vesicaria), Passiflora
foetida L. var. ellisonii Vanderpl., and Passiflora foetida L. var
foetida (Vanderplank, 2013; Svoboda et al., 2016; Atlas of Living
Australia, 2021). An examination of available material from
the Australian range suggests that there remains considerable
uncertainty as to the validity of many of these determinations
(Webber, unpublished data; Ohlsen, 2020).

For the focal taxon in this study (both existing herbarium
samples as well as new material), characters used to select
material included pubescent shallow tri-lobed leaves, glandular
hairs on all vegetative parts, and ornate pinnatisect floral bracts
with glandular tips. Flowers and ripe fruits were rarely available
to confirm other useful diagnostic characters. It is recognized
that many of these vegetative characters also fit other taxa within
section Dysosmia (Vanderplank, 2013), but are, in turn, unique
to Dysosmia within the broader Passifloraceae (Svoboda, 2019).
Resolution of this taxonomic uncertainty is well beyond the scope
of this study. For the purposes of this work we refer to the
entity(ies) present in Australia as P. foetida s. l. following the
recommended national convention established by Ohlsen (2020).

It remains unclear whether the placement of section Dysosmia
within subgenus Passiflora is appropriate. Recent evidence
suggests that subgenus Passiflora is paraphyletic (Ramaiya
et al., 2014; Silva and Souza, 2020; but see Muschner et al.,
2012; Krosnick et al., 2013), aligning with the earlier work of
Yockteng and Nadot (2004) that suggested Dysosmia should
be recognized at the subgenus level separate from subgenus
Passiflora. Other Passiflora taxa known to occur in Australia and
prioritized for inclusion in this study include those introduced
for commercial and horticultural reasons (largely restricted to
section Granadilla, subgenus Passiflora; Muschner et al., 2012),
as well as six species native to Australia (subgenus Decaloba;
Krosnick et al., 2009, 2013).

Sample sourcing A wide geographic range of samples of P.
foetida s. l., other Passiflora species known to occur in Australia
and one species in a different genus in Passifloraceae were used
for this study (Figures 1, 3). These samples included 13 of the 59
species that have been introduced into Australia and represent
those that are most invasive or often used in cultivation. Leaf
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FIGURE 1 | Geographic location (when known) of non-cultivated collections of Passiflora species and Passiflora foetida sensu lato samples in the “Passifloraceae”
dataset in (a) Central America, (b) Madagascar, (c) South America, and (d) Australia.

samples were obtained either from herbarium specimens or
from fresh material from both natural and managed populations.
A total of 192 samples were sent for sequencing, however, due
to low quality DNA and low quantities of DNA, particularly from
the herbarium material, there were a number of failures and these
were removed before analysis.

Herbarium specimens contributed 89 samples to the
final analysis (Supplementary Table 1). These included 72
representative specimens held at the Missouri Botanic Gardens
(MOBOT) determined as P. foetida s. l. from the native range, as
well as two other species in Passifloraceae for use as outgroups,
and thirteen specimens from the Australian National Herbarium
(CANB) and four specimens from the Queensland Herbarium
(QLD) representing native and non-native Passiflora species
in Australia (Supplementary Table 1). Small amounts of leaf
material were taken from each of the herbarium specimens and
stored on silica gel until DNA was extracted. Genomic DNA
was extracted using the protocol outlined in Lade et al. (2014)
with minor modifications; samples were ground using a Qiagen
TissueLyser, DNA was left to precipitate in ethanol for 48 h, and a
wash step with 70% ethanol was added to the end of the protocol.

Samples taken from live plants in the field from a variety of
sources and subsequently dried (silica gel) contributed a further
54 samples to the final analysis (Supplementary Table 1). Fresh
leaf samples were collected from plants determined as P. foetida

s. l. at 36 locations across Australia, a single plant sampled at
each location for this work. A total of 8 samples of Passiflora
species currently in cultivation in Australia were obtained from
either nursery stock or plant breeders (Supplementary Table 1).
A number of DNA samples were also provided by collaborators,
including a single sample from a cultivated P. subpeltata Ortega
plant in Australia, a single sample of P. foetida s. l. collected in
Malaysia and four samples of P. foetida s. l. collected in each
of Colombia and Brazil (Supplementary Table 1). All collected
fresh samples were stored on silica gel before DNA extraction
using a modified CTAB method (Doyle and Doyle, 1987), with
the addition of sodium sulfite (Byrne et al., 2001) and 1% w/v
polyvinylpyrrolidone to the extraction buffer.

Sequencing and Analysis
Library preparation was undertaken by the Australian Genome
Research Facility (AGRF) using either the Illumina Truseq
Nano gDNA shotgun protocol or the NEBnext Ultra 2 library
preparation. Sequencing was conducted on the HiSeq2500
or NovaSeq 6000 platforms. Raw paired-end sequences were
imported to GENEIOUS 11.1.51 (Kearse et al., 2012), and the
map to reference tool was used to trim and map sequences
using the medium-low sensitivity with five iterations. The P.
foetida s. l. samples were mapped to the P. foetida complete

1https://www.geneious.com
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FIGURE 2 | Phylogenetic tree of samples in the foetida dataset (all samples of Passiflora foetida sensu lato plus Passiflora ambigua as an outgroup) based on the
maximum likelihood analysis, shown with bootstrap confidence values. The samples from Australia are colored in khaki. Each of the clades are assigned a symbol
which matches those used in the map presented in Figure 3.

chloroplast genome (MK694932.1) and all other samples were
mapped to the Passiflora edulis Sims complete chloroplast
genome (MF807938.1), downloaded from Genbank. The mean
coverage across samples was 628, with coverage ranging from 27
to 2386×, samples with mean coverage below 25 were considered
failures, only 7 samples had mean coverages below 50 and these
were visually inspected to make sure that there was coverage
across the gene regions that were subsequently used. A consensus
sequence was generated from the mapped reads with the highest
quality setting and then annotated from the reference sequence
with an 85% similarity for P. foetida s. l. and a 70% similarity for
the other Passiflora species.

The data were split into two groups, one dataset containing
117 individuals, all the samples of P. foetida s. l. plus Passiflora
ambigua Hemsl. as an outgroup (hereafter referred to as the
‘foetida dataset’) and another containing 31 samples, all the other
Passifloraceae species and a few representative P. foetida s. l.
samples (hereafter referred to as the “Passifloraceae dataset”),
with Adenia acuta W.J. de Wilde as an outgroup. Genes
were extracted from the individual consensus sequences for

each dataset; 107 genes for the foetida dataset and 73 genes
for the Passifloraceae dataset (Supplementary Table 2). The
extracted gene sequences were aligned and then concatenated.
The concatenated sequences were partitioned into genes and
run through MODELTEST-NG to determine the optimal model
of molecular evolution and gamma rate heterogeneity for
subsequent use in RAxML-NG and MRBAYES (Supplementary
Table 2). The best-fitting models were determined according to
the Akaike Information Criterion (Akaike, 1974).

Maximum likelihood analysis was performed using RAxML-
NG v.0.6.0 (Kozlov et al., 2019) with partitioned PHYLIP files
using the appropriate model for each gene/partition from
MODELTEST-NG. The maximum likelihood (ML) tree search
used 10 randomized parsimony starting trees and auto MRE
bootstrapping convergence criteria with a maximum of 1500
replicates and a cut-off value of 0.03.

Bayesian inference was performed using MRBAYES v3.2.6
with the partitioned datasets using the appropriate model for
each partition/gene determined in MODELTEST-NG. Posterior
probabilities were generated from 1 × 107 generations, sampling
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at every 1000th iteration, and the analysis was run three times
with one cold and three incrementally heated Metropolis-coupled
Monte Carlo Markov chains, starting from random trees. The
adequacy of run lengths was assessed in TRACER 1.7.1 (Rambaut
et al., 2018) using the effective sample size (ESS) parameter and
convergence based on comparison of the independent MCMC
runs. Trees were visualized using FIGTREE v.1.4.32.

Samples from the foetida dataset were split into two groups,
native range samples and Australian samples, and nucleotide
diversity (π) was estimated using the R packages APE v 5.3
(Paradis and Schliep, 2018) and PEGAS v 0.12 (Paradis, 2010) in
R 3.6.1 (R Core Team, 2019). The average number of nucleotide
differences between groups was estimated using DNASP 5.10.01
(Librado and Rozas, 2009). An assessment of genetic variation
among lineages in the foetida dataset was determined using
Analyses of Molecular Variation (AMOVA), as implemented in
the program ARLEQUIN 3.5.2.2 (Excoffier and Lischer, 2010).

RESULTS

The foetida dataset was used to identify the relationship of
P. foetida s. l. samples from the introduced range, primarily
Australia, to samples from the native range in Central and South
America and gave an alignment of 73,066 sites representing
107 genes, with no missing data. Both the maximum likelihood
(Figure 2) and Bayesian analysis (Supplementary Figure 1)
recovered the same tree topology with highly resolved clades and
well supported branches. The topology of the phylogenetic tree
generated using maximum likelihood analysis (Figure 2) showed
two main clades (I and II) with several lineages within each.
The samples of P. foetida s. l. from Australia were positioned
in three places in the tree. The majority of samples collected
from locations in the Australian regions of Western Australia,
Northern Territory and some of the locations in Queensland
clustered with samples from Ecuador and Peru (the Ecuador-
Australia lineage; Figures 2, 3) in Clade II. Two samples from
locations in Queensland clustered with all samples from the
Caribbean and some from Central America and the northern part
of South America (the Caribbean-Australia lineage; Figures 2, 3),
along with samples from South-East Asia and Africa, within
Clade II. Several Australian samples from Queensland and New
South Wales clustered with samples from Brazil and one from
Colombia (the Brazil-Australia lineage; Figures 2, 3) in Clade I
that comprises samples from across South America.

The genetic differences in the tree showed a minimum
percentage sequence identity of 98.308% in the alignments
between the outgroup P. ambigua and a P. foetida s. l. sample
from Mexico (PH73). Amongst all P. foetida s. l. samples the
greatest difference across 73,066 sites was across lineages, with a
percentage sequence identity of 99.341% between samples PH95
(Peru) and PH44 (Colombia). Within samples of P. foetida s. l.
from Australia, the greatest difference was a percentage sequence
identity of 99.465% between individuals in the separate lineages
(i.e., between sample PA9 and samples PA1). Sequence differences

2http://tree.bio.ed.ac.uk/software/figtree/

were lower within lineages; within the Ecuador-Australia lineage
there were between 0 and 26 base pair differences, and there were
a similar number of differences within the Brazil-Australia (1–23)
and Caribbean-Australia (10) lineages.

The average percentage sequence identity between the
Australian samples in the Brazil-Australia lineage and those
samples from Brazil in the sub-clade was 99.897%. Less
differentiation was found in the other lineages, with average
percentage sequence identity between the Australian samples
in the Caribbean-Australia lineage and those samples from
the Caribbean in the sub-clade was 99.967%, and between the
Australian samples in the Ecuador-Australia lineage and those
samples from Ecuador and Peru was 99.991%. These values
are all smaller than the level of differentiation between the
three lineages represented by samples collected in Australia.
Nucleotide diversity (π) was found to be 0.0011 (variance = 2.7
e-07) for the 37 P. foetida s. l. samples from the introduced
range in Australia and 0.0027 (variance = 1.7 e-06) for the 79
samples of P. foetida s. l. from the native range in Central and
South America. Among-group genetic variation estimates from
AMOVA analyses were found to be significant (P = 0.057) with
82% of variation among lineages.

The Passifloraceae dataset was used to confirm the
phylogenetic position of P. foetida s. l. amongst Passiflora
species native to Australia, as well other Passiflora species
introduced to Australia and those used commercially. It gave
an alignment of 68,697 sites representing 73 genes, with 0.03%
missing data. The same tree topology was obtained with both the
maximum likelihood (Supplementary Figure 2) and Bayesian
analysis and trees were highly resolved and well supported.
The topology of the phylogenetic tree generated using Bayesian
analysis (Figure 4) showed two main clades, one containing
the Australian native Passiflora species along with one sample
of the non-native Passiflora suberosa L. from Australia, and
the other containing representative P. foetida s. l. samples, the
cultivated Passiflora species and all other non-native Passiflora
species. The samples of P. foetida s. l. were clustered in a separate
sub-clade from the cultivated and other non-native Passiflora
species samples from Australia. The Australian native species
were clustered into two separate sub-clades.

DISCUSSION

Our analysis of relationships among introduced and native range
samples of P. foetida s. l. and its relatives demonstrates the value
of genetic analysis of non-native invasive species for determining
geographic origins, including providing evidence for multiple
introductions (Nissen et al., 1995; Hanlon et al., 2000; Chown
et al., 2015). The genomic analysis identified three separate
genetic lineages of P. foetida s. l. in Australia with affinities
to three separate areas within the native range. The dominant
lineage was present in samples from across northern Australia
and was found to be closely related to samples from locations
in Ecuador and Peru. The other two lineages had restricted
distributions in localized areas in Queensland and New South
Wales and were closely related to samples from Brazil and from
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FIGURE 3 | Geographic location of Passiflora foetida sensu lato samples used in this study (foetida dataset), from the native range in Central and South America and
introduced range in Australia, South-East Asia and Africa (Madagascar), grouped according to the five sub-clades (each identified with a different symbol) in the
phylogenetic tree shown in Figure 2.

the Caribbean, respectively. Our analysis also demonstrated that
P. foetida s. l. in Australia is genetically differentiated from related
Passiflora species native to Australia and from cultivated species
used in Australian horticulture. This is essential foundational
information indicating that there are reasonable prospects for
finding biocontrol agents specific to P. foetida s. l. Finding suitable
agents would be more challenging if P. foetida s. l. had been
found to be more closely related to the cultivated and/or native
Passiflora species present in Australia (e.g. Lesieur et al., 2020).

The presence of three separate lineages of P. foetida s. l.
in Australia with likely sources from geographically distinct
regions in the native range is indicative of multiple introductions.
Introductions of species to new areas often involves limited
propagules leading to founder effects that produce bottlenecks
reducing genetic variation (Lawson Handley et al., 2011).
Multiple introductions can alleviate founder effects and increase
genetic variation, which has been reported to facilitate population
growth and invasiveness (Petit et al., 2004; Dlugosch and Hays,
2008). Our study adds to evidence from other studies that
have identified patterns of multiple introductions in invasive
plant species using a genomic approach. For example, genomic
analysis of the highly invasive Imperata cylindrica (L.) P.Beauv.

in south-eastern United States (Burrell et al., 2015) and of
Oxalis pes-caprae (L.) in the Mediterranean (Ferrero et al., 2015)
clearly showed that multiple introductions occurred from their
respective native range in Japan (as well as from a related species
in Brazil) and South Africa.

Anthropogenic movement of plants between regions often
results in low genetic diversity in introduced populations,
especially when the introductions are accidental and where
they occur across continents. For example, the introduced
populations of O. pes-caprae in the Mediterranean were found
to be less genetically diverse than populations in the native
range (Ferrero et al., 2015). Our results are consistent with this
general observation as the samples of P. foetida s. l. from the
introduced range in Australia showed lower nucleotide diversity
than the samples from the native range in Central and South
America. Whilst the reduced diversity in Australia may be due
to fewer samples taken from this region, these samples were
representative of three of the lineages found in the dataset.
This suggests there has been genetic bottlenecks and resulting
reduction in chloroplast diversity through the introduction
process. The plastome of Passiflora generally has uniparental
inheritance, however, in rare cases biparental inheritance has
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FIGURE 4 | Phylogenetic tree of samples in the Passifloraceae dataset based
on the Bayesian analysis, shown with posterior probabilities values. Samples
of the native Passiflora species from Australia are colored in khaki, the
non-native species in Australia (both cultivated and invasive) in purple, and
Passiflora foetida sensu lato in teal. Samples used as outgroups across
analyses are in black.

been observed, generally caused by hybridization between species
with plastome size variation (Shrestha et al., 2021). Uniparental
inheritance is beneficial for tracking source of introductions as it

takes longer to show signs of lineage mixing. An assessment of
the nuclear genome would be more likely to identify increased
genetic diversity that could be expected due to contemporary
mixing between lineages.

Knowing the likely source locations of an introduced species is
important for guiding the search for candidate biocontrol agents
that are highly compatible with the target weed, particularly for
a species like P. foetida s. l. with uncertain taxonomy and a
geographic range as circumscribed that encompasses a broad
climatic niche (Goolsby et al., 2006a; Hawkins et al., 2007;
Ndlovu et al., 2013; Bell et al., 2014). Based on our results,
Ecuador and Peru should be regarded a priority area to search
for candidate agents for P. foetida s. l., especially biotrophic
fungal pathogens that are typically highly specialized, since this
is the likely provenance of the dominant, widespread lineage
that exists in Australia. More extensive sampling of P. foetida
s. l. in the native range could reveal other areas where this
dominant lineage occurs. Whether or not efforts should be
made to extend searches for candidate agents in other areas
of the native range where the secondary lineages originate
from remains an open question that would benefit from being
informed by complementary ecological studies. Circumstantial
evidence from field observations suggests that these secondary
lineages of P. foetida s. l. present on the eastern Australian
coast are less prevalent in the landscape than the dominant
lineage found across Western Australia, the Northern Territory
and drier parts of western Queensland. Such differences in
abundance and distribution could be explained by a difference in
relative competitive ability of the lineages present in contrasting
climates (the east coast populations are exposed to less severe
dry seasons and more consistent precipitation), or by the
genetic differences revealed in this study. Whilst uniparental
inheritance of chloroplast data has been useful in elucidating
the source of the introductions, it has limitations for evaluating
contemporary population dynamics of invasive lineages. Further
work elucidating variation of the nuclear genome within each
of the different chloroplast lineages identified in Australia will
be needed to determine if hybridization among P. foetida
s. l. lineages from different geographical source areas has
occurred and to characterize current patterns of gene flow across
Australia. Given the short generation times of P. foetida s. l.
and generalist volant-mediated dispersal (including birds and
flying foxes; Palmer et al., 2000; Whittaker and Jones, 2006;
Preece et al., 2010), the opportunity for long distance gene flow
is considerable.

The Passiflora genus contains a large amount of diversity
with over 560 currently described species (Krosnick et al., 2013).
The phylogeny of Passiflora species obtained in our study is
consistent with previous systematic work on the genus based on
a single gene (Yockteng and Nadot, 2004). Our results showed
that the native Passiflora species in Australia (found in subgenus
Decaloba) are in a separate clade to the non-native P. foetida
s. l. (found in subgenus Passiflora section Dysosmia; but see
Silva and Souza, 2020) and other Passiflora species cultivated
in Australia (found primarily in subgenus Passiflora section
Granadilla). The clear phylogenetic distance between P. foetida
s. l. and the native species in Australia means that it may be
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possible to find natural enemies of P. foetida s. l. in its native
range that are unlikely to impact native Passiflora species in
Australia and thus promising for biocontrol. While the majority
of Passiflora species in cultivation are relatively more related
at the subgenus level to P. foetida s. l., enough phylogenetic
separation was observed to provide reasonable confidence that
biocontrol agent(s) with sufficient specificity and minimal off-
target impacts may be found.

Whilst this work has provided insight into the introduction
history of P. foetida s. l. in Australia, the taxon is also widely
introduced elsewhere in the world, including South-East Asia,
on South Pacific Islands, and in China, Hawaii, India, and
Madagascar (Yockteng et al., 2011). Given this global invasion
footprint, any progress towards a biocontrol solution that is
made in Australia may well have relevance for controlling
invasions elsewhere. However, given our findings identifying
multiple genetic lineages of P. foetida s. l. and overlapping range
between lineages present in Australia, any control efforts looking
to apply this work elsewhere should first evaluate the specific
lineages present before the initiation of biocontrol programs.
Whether or not the genetic variation observed between the three
lineages of P. foetida s. l. in Australia will cause problems for
the development of bio control agents, particularly for some
fungal pathogens that are known to be highly specific, remains
a priority for further research. Moreover, given the variation in
genetic diversity uncovered in samples from eastern Australia as
part of this study, as well as previous observations that species
in section Dysosmia readily hybridize (Vanderplank, 2013), a
more thorough investigation of morphological and molecular
diversity of P. foetida s. l. across native and introduced regions is
recommended to produce a more robust taxonomic delimitation
for the complex (Svoboda, 2015). In providing clarity for the
introduction history of P. foetida s. l. in Australia, our study
adds to the growing body of work demonstrating the benefit of
applying genomic approaches to identify key components of the
introduction history of non-native plant species. For those taxa
that represent key threats to environmental and socioeconomic
values, using this information to make predictions on the
prospects for biocontrol and improve the development of control
programs will help deliver more effective management strategies.
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