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The effect of biochar application on photosynthetic traits and yield in peanut (Arachis
hypogaea L.) is not well understood. A 2-year field experiment was conducted in
Northwest Liaoning, China to evaluate the effect of biochar application [0, 10, 20, and
40 t ha−1 (B0, B10, B20, and B40)] on leaf gas exchange parameters, chlorophyll
fluorescence parameters, and yield of peanut. B10 improved photochemical quenching
at flowering and pod set and reduced non-photochemical quenching at pod set,
relative to B0. B10 and B20 increased actual photochemical efficiency and decreased
regulated energy dissipated at pod set, relative to B0. B10 significantly increased net
photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency
at flowering and pod set, relative to B0. Compared with B0, B10 significantly improved
peanut yield (14.6 and 13.7%) and kernel yield (20.2 and 14.4%). Biochar application
increased leaf nitrogen content. B10 and B20 significantly increased plant nitrogen
accumulation, as compared to B0. The net photosynthetic rate of peanut leaves had
a linear correlation with plant nitrogen accumulation and peanut yield. The application of
10 t ha−1 biochar produced the highest peanut yield by enhancing leaf photosynthetic
capacity, and is thus a promising strategy for peanut production in Northwest Liaoning,
China.

Keywords: biochar, chlorophyll fluorescence, plant nitrogen accumulation, photosynthetic traits, peanut yield

INTRODUCTION

Peanut (Arachis hypogaea L.) is an annual legume crop. Global peanut consumption is increasing
at a rate of around 3% per annum. China produces 40% of the world’s peanuts (FAOSTAT, 2018).
Liaoning Province, is one of the main areas for peanut production in China and the primary
export base of high-quality peanut. The Northwest Liaoning is a competitive producing area for
peanut with a typical characteristic of sand and wind in semi-arid regions of Northeast China.
However, peanut production in this area is limited by poor soil water and nutrient holding
capacities, and water deficiency (Bai et al., 2014). Hence, the incorporation of plastic film mulching
and supplemental irrigation have been studied as an extremely effective strategy with potential
for decreasing soil evaporation, and enhancing crop growth, yield, and water use efficiency
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(Li and Gong, 2002; Ali et al., 2018; Xia et al., 2021a).
However, the enhanced productivity under plastic mulches has
been reported to result in lower soil fertility, which limit the
subsequent crop productivity (Li et al., 2007; Steinmetz et al.,
2016).

Biochar is produced through pyrolysis of biomass under
limited oxygen environment (Lehmann et al., 2011). Generally,
biochar with larger specific surface area, pore structure, abundant
surface functional groups, and nutrient characteristics (e.g., C, N,
P, K, S, Ca, and Mg) could improve soil sustainability (Ippolito
et al., 2020; Leng et al., 2020; Ye et al., 2020). Most studies
have shown that biochar is an effective agricultural practice for
improving water and soil conditions in farmland and increasing
crop yield and fertilizer use efficiency due to its unique structure
(Clough et al., 2013; Laghari et al., 2015; Haider et al., 2017; Lin
et al., 2017). The porous physical structure of biochar induces
a sorption capacity to inorganic nitrogen and can potentially
allow the slow release of nutrients to improve plant growth
(Novak et al., 2012; El-Naggar et al., 2019). Biochar impacts
the soil nitrogen, and is expected to enhance leaf nitrogen
and photosynthesis (Kammann et al., 2011; Ali et al., 2020).
Biochar addition to soil has positive effect on photosynthesis,
being an important process that affects crop yield. When
biochar application improves nitrogen accumulation, it also
helps to increase leaf nitrogen content and therefore increases
photosynthesis (Nguyen et al., 2017; Ali et al., 2020). The
photosynthetic rate was increased at 40 t ha−1 biochar addition,
and this enhancement in the leaf photosynthetic rate was due to
the increased nitrogen accumulation (Ali et al., 2020). Biochar
amendment increased the effective photochemical quantum yield
of PSII and decreased the fluorescence yield for heat dissipation,
therefore improved Pn (Abideen et al., 2020).

Most studies on peanut photosynthesis have focused on
photosynthetic rate changes at different growth stages (Xu et al.,
2015; Sun et al., 2018; Liu et al., 2019). However, limited
information is available on the biochar effect on chlorophyll
fluorescence and gas exchange parameters of peanut, especially
in situ in the field. Aims of our study were to evaluate
the effects of biochar application on photosynthesis from the
perspective of chlorophyll fluorescence parameters, leaf nitrogen
content, and plant nitrogen accumulation. We hypothesized
that: (1) biochar application would improve peanut yield via
enhancing leaf photosynthetic traits; (2) biochar improves the
photosynthetic rate due to increasing the proportion of open
photosystem II reaction centers, and nitrogen accumulation at
low application rates.

MATERIALS AND METHODS

Experimental Sites and Materials
The field experiment was carried out at the Scientific Observation
Experimental Station in Fuxin (42.11◦ N, 121.65◦ E), Liaoning
Province, China, during the 2018 and 2019 growing seasons (May
to October). This area with typical sand and wind conditions
of semi-arid regions in Northeast China, has cold, dry winters
and hot summers according to the Köppen-Geiger climate

classification (Peel et al., 2007). Average annual rainfall is about
400 mm (60% from June to August), with average annual
evaporation greater than 1,800 mm. Droughts are frequent. The
daily weather data during the 2018 and 2019 peanut growing
seasons are shown in Figure 1. The soil texture was sandy loam
with pH 5.96, 1.44 g cm−3 bulk density, 19.5% (w/w) field
capacity (FC), 0.62 g kg−1 total nitrogen, 142 mg kg−1 available
potassium, and 18.1 mg kg−1 available phosphorus. The biochar
was derived from maize straw pyrolyzed at 600◦C with pH 8.14,
18.9%, carbon content, 0.58% nitrogen content, 4.76 g kg−1

available potassium, and 0.33 g kg−1 available phosphorus.

Experimental Design, Establishment and
Maintenance
The experiment was a randomized complete block design
comprising four biochar application rates (0, 10, 20, and 40 t
ha−1; B0, B10, B20, and B40) and three replicates (plots).
Supplemental irrigation via a plastic mulched drip system was
applied during the flowering and pod setting stages when peanut
growth is more sensitive to water deficit than other stages. The
field was irrigated up to 90% FC when the soil moisture content
dropped to≤55% FC. The biochar was fully mixed with the upper
0–20 cm soil layer by rotary before sowing in 2018. No additional
biochar was applied in the second year. Basal fertilizers were
applied at the rate of 50 kg ha−1 N, 170 kg ha−1 P2O5, and 156 kg
ha−1 K2O.

Peanut cultivar Baisha 1016 origing in Guangdong Province
was sown on 16 May 2018 and 19 May 2019 and harvested on 21
September 2018 and 23 September 2019. A trapezoidal ridge with
a width of 0.7 m was formed by plough. Two rows were sown
on the ridge of each hill (167,000 hills ha−1). The ridges were
covered with white plastic film (0.008 mm thick) immediately
after sowing. Each plot was 1 × 7.5 m2. Groundwater was
used, with the irrigation amount determined by monitoring
the volumetric water meter equipped in each plot. Other field
management, including weeds, insects, and diseases control, were
in line with local farmer practices.

Sampling and Measurements
Chlorophyll Fluorescence Parameters
Chlorophyll fluorescence parameters of peanut were measured
using the LI-6800 (LI-COR, Lincoln, NE, United States)
photosynthesis measurement system with multiphase flash
fluorescence (6800–01) at flowering (19 July 2018 and 16 July
2019) and pod set (8 August 2018 and 9 August 2019) on
clear and cloudless days. To avoid influence of the changes in
CO2 concentration in the air, the CO2 inlet of the instrument
was connected to a CO2 cartridge (400 µmol mol−1). The
third fully expanded leaf on the main stem were wrapped in
aluminum foil. After remaining in complete darkness overnight,
we measured minimal fluorescence yield (Fo) using a measuring
light (0.005 µmol m−2 s−1). Maximal fluorescence yield (Fm) was
measured using a 1 s saturating pulse at 8,000 µmol m−2 s−1

in dark-adapted leaves. The leaves were continuously illuminated
for 20 min with an actinic light (1,400 µmol m−2 s−1) to record
the steady-state yield of fluorescence (Fs). Maximal light-adapted

Frontiers in Plant Science | www.frontiersin.org 2 May 2021 | Volume 12 | Article 650432

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-650432 May 25, 2021 Time: 14:57 # 3

Wang et al. Biochar Improves Photosynthesis and Yield

FIGURE 1 | Daily precipitation and maximum (Max) and minimum (Min) temperatures during the 2018 and 2019 peanut growing seasons.

fluorescence yield (Fm’) was determined by 8,000 µmol m−2

s−1. The actinic light was turned off, and minimal fluorescence
yield (Fo’) in light-adapted state was determined after 5 s of far-
red illumination. The difference between the measured values
of Fm and Fo is the variable fluorescence (Fv). The chlorophyll
fluorescence parameters were calculated using the following
formulas (Kooten and Snel, 1990; Maxwell and Johnson, 2000;
Kramer et al., 2004):

Fv/Fm = (Fm− Fo)/Fm

8PSII = (Fm′ − Fs)/Fm′

8NPQ = Fs/Fm′ − Fs/Fm

8NO = Fs/Fm

qP = (Fm′ − Fs)/(Fm′ − Fo′)

NPQ = Fm/Fm′ − 1

where Fv/Fm is maximal photochemical efficiency of photosystem
II (PSII), 8PSII is actual photochemical efficiency of PSII, 8NPQ is
quantum yield for energy dissipated via 1 pH and xanthophyll-
regulated processes, 8NO is quantum yield of non-regulated
energy dissipated in PSII, and qP and NPQ are photochemical
and non-photochemical quenching, respectively.

Gas Exchange Parameters, Leaf Nitrogen Content
and Plant Nitrogen Accumulation
Gas exchange parameters were measured on the same dates and
same leaves as those for chlorophyll fluorescence parameters
measurements. Net photosynthesis rate (Pn), transpiration rate
(Tr), stomatal conductance (Gs), intercellular CO2 concentration
(Ci), and ambient CO2 concentration (Ca) were measured with
LI-6800 (LI-COR, Lincoln, NE, United States) photosynthesis
measurement system. The stomatal limitation value (Ls) was
calculated as 1–Ci/Ca, and WUE was calculated as Pn/Tr
(Fang et al., 2018).

After the determination of gas exchange parameters, the third
fully expanded leaf on the main stem of 20 plants in each
pot was collected. Plant samples were collected at flowering
and pod set, and were separated into various parts: roots,
stems, leaves, and pods. All the samples were oven-dried at
105◦C for 30 min and then at 80◦C to constant weight. After
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weighing, these samples were ground into powder for measuring
nitrogen content. The full-automatic KjelFlex K-360 analyzer
(BUCHIK, Switzerland) was used to determine nitrogen content.
Plant nitrogen accumulation was calculated by multiplying total
nitrogen concentration in roots, stems, leaves, and pods with
respective dry matter at flowering and pod set stages.

Yield and Yield Components
Peanuts were harvested from 1 m2 in the center of each plot.
The pods were air-dried for about 1 week before being measured
for peanut yield, kernel yield, 100-pod weight, and 100-kernel
weight (Tan et al., 2018). The shelling percentage was calculated
as (kernel weight/pod weight)× 100% (Luo et al., 2017).

Statistical Analysis
SPSS 19.0 statistic software (SPSS Inc., Chicago, IL, United States)
was used to perform the statistical analysis. Year and biochar
application were assumed to be fixed factor and the replicates
were assumed to be random factors. Error bars in the
figures represent standard errors of the mean. Least significant
differences were used to separate treatment means at the
5% probability level. Regression analysis was used to evaluate
the relationships between leaf nitrogen content and net
photosynthetic rate, net photosynthetic rate and peanut yield.
The responses of chlorophyll fluorescence parameters, gas
exchange parameters, leaf nitrogen content, yield, and yield
components to biochar application were further analyzed with
the principal component analysis in R studio version 1.1.442
using the Factoextra package (Kassambara, 2015).

RESULTS

Chlorophyll Fluorescence Parameters
Year, biochar application, and Y × B interaction had no
significant effects on Fv/Fm at flowering or pod set (Table 1 and
Figures 2A,G). Biochar application had a significant effect on
8PSII at flowering and pod set, but there were no significant

differences for year or Y× B interaction (Table 1). B10 increased
8PSII at flowering by 7.1 in 2018 and 8.8% in 2019, relative to
B0 (Figure 2B). At pod set, B10 increased 8PSII by 13.0 in 2018
and 14.9% in 2019, and B20 increased 8PSII by 13.0 in 2018
and 12.8% in 2019, relative to B0 (Figure 2H). Among the four
biochar treatments, B10 had the highest 8PSII values at flowering
and pod set each year.

Biochar application had a significant effect on 8NPQ at pod set
but not at flowering (Table 1 and Figures 2C,I). Year and Y × B
interaction had no significant effect on 8NPQ at flowering or pod
set. There were no significant effects of biochar application, year,
or Y × B interaction on 8NO at flowering or pod set (Table 1
and Figures 2D,J). At pod set, 8NPQ decreased with increasing
biochar application rate to B10 and then increased. B10 and B20
decreased 8NPQ by 30.0 and 26.7% in 2018, and 27.6 and 24.1%
in 2019, respectively, as compared to B0.

Biochar application had a significant effect on qP at flowering
and pod set, but there were no significant differences for year
or Y × B interaction (Table 1). At flowering, B10 enhanced qP
by 11.7 and 7.6% in 2018 and 2019, respectively, relative to B0
(Figure 2E). At pod set, B10, B20, and B40 enhanced qP by
8.7, 7.2, and 5.8% in 2018, respectively, as compared to B0, but
there were no significant differences between these treatments
(Figure 2K). In 2019, B10 enhanced qP by 10.3%, relative to B0.
Biochar application had a significant effect on NPQ at pod set
but not at flowering. No significant differences were observed for
year or Y× B interaction of NPQ at flowering or pod set (Table 1
and Figure 2F). At pod set, B10 and B20 decreased NPQ by up
to 31.1% in 2018 and B10 decreased NPQ by 27.4% in 2019, as
compared to B0 (Figure 2L).

Gas Exchange Parameters and Leaf
Nitrogen Content
Biochar application had a significant effect on Pn at flowering and
pod set, but there were no significant effects for year or Y × B
interaction (Table 1). B10 increased Pn at flowering by 16.1% in
2018, relative to B0 (Figure 3A). B10 and B20 increased Pn at

TABLE 1 | Leaf chlorophyll fluorescence parameters and gas exchange parameters at the flowering and pod set in peanut with four rates of biochar in the 2018 and
2019 growing seasons.

Flowering Pod set

Fv/Fm 8PSII 8NPQ 8NO qP NPQ Fv/Fm 8PSII 8NPQ 8NO qP NPQ

ANOVA Y ns ns ns ns ns ns ns ns ns ns ns ns

B ns ** ns ns ** ns ns ** ** ns ** **

Y × B ns ns ns ns ns ns ns ns ns ns ns ns

Pn Tr Gs Ls WUE LNC Pn Tr Gs Ls WUE LNC

ANOVA Y ns ns ns ns ns ns ns ns ns ns ns ns

B ** ** ** ** ** ** ns ** ** ** ** **

Y × B ns ns ns ns ns ns ns ns ns ns ns ns

Y and B represent year and biochar application, respectively. Fv/Fm, maximal efficiency of PSII photochemistry after dark adaptation; 8PSII, actual efficiency of PSII
photochemistry after light adaptation; 8NPQ, quantum yield for energy dissipated via 1 pH and xanthophyll-regulated processes; 8NO, quantum yield of non-regulated
energy loss in PSII; qP, photochemical quenching; NPQ, non-photochemical quenching. Pn, net photosynthetic rate; Tr , transpiration rate; Gs, stomatal conductance; Ls,
stomatal limitation; WUE, water-use efficiency; and LNC, leaf nitrogen content. **denote significance at the 0.01 probability level. ns denotes non-significance.
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FIGURE 2 | Chlorophyll fluorescence parameters at the flowering (A–F) and pod set (G–L) in peanut with four rates of biochar in the 2018 and 2019 growing
seasons. Fv/Fm, maximal efficiency of PSII photochemistry after dark adaptation; 8PSII, actual efficiency of PSII photochemistry after light adaptation; 8NPQ,
quantum yield for energy dissipated via 1 pH and xanthophyll-regulated processes; 8NO, quantum yield of non-regulated energy loss in PSII; qP, photochemical
quenching; and NPQ, non-photochemical quenching. B0, B10, B20, and B40 represent biochar application rates at 0, 10, 20, and 40 t ha−1, respectively. For each
parameter in each year, mean data with different letters denote significant difference among treatments at P < 0.05.
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FIGURE 3 | Gas exchange parameters at flowering (A–F) and pod set (G–L) in peanut applied with four biochar rates in 2018 and 2019 growing seasons. Y and B
represent year and biochar application, respectively. Pn, net photosynthetic rate; Tr , transpiration rate; Gs, stomatal conductance; Ls, stomatal limitation; WUE,
water-use efficiency; and LNC, leaf nitrogen content. B0, B10, B20, and B40 represent biochar application rates of 0, 10, 20, and 40 t ha−1, respectively. For each
parameter in each year, mean data with different letters denote significant differences among treatments at P < 0.05.
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flowering by up to 16.7% in 2019, as compared to B0. At pod set,
B10 increased Pn by 19.6% in 2018 and 25.8% in 2019, relative
to B0 (Figure 3G). B10 had the highest Pn at flowering and pod
set in both years.

Application of biochar had significant effect on Tr at flowering
and pod set. There were no significant effects of year or Y × B
interaction on Tr during these two stages (Table 1). Compared
with B0, B10 increased Tr at flowering by 6.1% in 2018. B10 and
B20 increased Tr at flowering by up to 6.1% in 2019, relative to
B0 (Figure 3B). B10 increased Pn at pod set by 12.5% in 2018
and 17.5% in 2019, relative to B0 (Figure 3H). Among the four
biochar treatments, B10 had the highest Tr at flowering and pod
set in both years.

The Gs was significantly affected by biochar application at
both flowering and pod set stages. No significant differences in
year or Y × B interaction of Gs were observed at both stages
(Table 1). At flowering, B10 and B20 increased Gs by up to
20.8% in 2018 and 21.6% in 2019, relative to B0 (Figure 3C).
B10 increased Gs at pod set by 19.2% in 2018 and 23.6%
in 2019, as compared to B0 (Figure 3I). Among the four
biochar treatments, B10 had the highest Gs at flowering and pod
set in both years.

Application of biochar had a significant effect on Ls at
flowering and pod set. There were no significant differences in
year or Y× B interaction of Ls during these two stages (Table 1).
Compared with B0, B10 increased Ls at flowering by 17.5% in
2018 and 18.6% in 2019, and at pod set by 23.8% in 2018 and
25.8% in 2019 (Figures 3D,J). The highest value of Ls at flowering
and pod set in both years were appeared in B10.

Biochar application significantly affected WUE at flowering
and pod set, but there were no significant effects for year
or Y × B interaction (Table 1). At flowering, B10 and B20
increased WUE by up to 9.4% in 2018, as compared to
B0 (Figure 3E). B10 increased WUE by 10.0% in 2019, as
compared to B0. At pod set, B10 increased WUE by 6.3%
in 2018 and 7.1% in 2019, relative to B0 (Figure 3K). B10

had the highest mean value of WUE at flowering and pod
set in both years.

The LNC was significantly affected by biochar application
at flowering and pod set. No significant differences in year or
Y × B interaction were observed (Table 1). At flowering and
pod set, with increasing biochar application rates, LNC increased
to B10 and then decreased (Figures 3F,L). Among the four
biochar treatments, B10 had the highest LNC at flowering and
pod set in both years.

Nitrogen Accumulation and Distribution
The effects of biochar application on root, stem, leaf, and
total nitrogen accumulation were significant at flowering, but
there were no significant effects for year or Y × B interaction
(Table 2). B10 and B20 improved total nitrogen accumulation
by 22.5 and 18.6% in 2018, 24.6 and 23.6% in 2019, relative
to B0. Compare with B0, B10 and B20 improved root nitrogen
accumulation by up to 25.6% in 2018 and 30.8% in 2019.
The stem nitrogen accumulation in B10 improved by 21.6%
in 2018, relative to B0. B10 and B20 improved stem nitrogen
accumulation by up to 28.5% in 2019, as compared to B0.
B10 improved leaf nitrogen accumulation by 26.4% in 2018
and 29.0% in 2019.

The root, stem, leaf, pod and total nitrogen accumulation
were significantly affected by biochar application at pod set.
No significant differences in year or Y × B interaction of root,
stem, leaf, pod, and total nitrogen accumulation were observed
at pod set (Table 3). The total nitrogen accumulation for B10
and B20 were higher than that of B0 by 25.0 and 15.3% in
2018, 23.7 and 20.3% in 2019, respectively, as compared to B0.
B10 improved root nitrogen accumulation by 30.4% in 2018,
relative to B0. Compared with B0, B10, and B20 improved
root nitrogen accumulation by up to 30.0% in 2019. The stem
nitrogen accumulation for B10 was 21.0% in 2018 and 17.8%
in 2019 higher than that of B0. B10 and B20 improved leaf
nitrogen accumulation by up to 24.0% in 2018 and 24.3% in

TABLE 2 | Nitrogen accumulation and distribution at the flowering in peanut with four rates of biochar in the 2018 and 2019 growing seasons.

Year Treatment Total kg ha−1 Root Stem Leaf Pod

kg ha−1 % kg ha−1 % kg ha−1 % kg ha−1 %

2018 B0 64.9 ± 5.12b 2.89 ± 0.27c 4.47 18.5 ± 1.10b 28.5 36.7 ± 3.37b 56.5 6.84 ± 0.74a 10.5

B10 79.5 ± 2.11a 3.63 ± 0.28a 4.57 22.5 ± 0.87a 28.4 46.4 ± 2.36a 58.4 6.86 ± 0.91a 8.65

B20 77.0 ± 1.75a 3.61 ± 0.17a 4.69 21.9 ± 1.81ab 28.4 44.5 ± 1.64ab 57.8 6.99 ± 0.73a 9.09

B40 70.4 ± 2.94ab 2.93 ± 0.20b 4.16 20.7 ± 1.12ab 29.4 39.7 ± 1.16ab 56.5 7.00 ± 0.92a 9.93

2019 B0 61.9 ± 2.54b 2.73 ± 0.26b 4.43 17.2 ± 0.90b 27.8 35.2 ± 1.56c 56.9 6.78 ± 0.31a 11.0

B10 77.1 ± 6.54a 3.51 ± 0.34a 4.56 21.4 ± 1.56a 27.8 45.4 ± 5.39a 58.8 6.81 ± 0.64a 8.90

B20 76.5 ± 3.88a 3.57 ± 0.48a 4.68 22.1 ± 1.64a 28.9 44.0 ± 4.02ab 57.5 6.82 ± 0.70a 8.95

B40 69.4 ± 1.05ab 3.02 ± 0.27b 4.35 19.2 ± 1.80ab 27.6 40.4 ± 1.44abc 58.2 6.81 ± 0.35a 9.82

ANOVA

Y ns ns ns ns ns

B ** ** ** ** ns

Y × B ns ns ns ns ns

Y and B represent year and biochar application, respectively. B0, B10, B20, and B40 represent biochar application rates at 0, 10, 20, and 40 t ha−1, respectively. For
each parameter in each year, mean data with different letters denote significant difference among treatments at P < 0.05. **denote significance at the 0.01 probability
level. ns denotes non-significance.
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TABLE 3 | Nitrogen accumulation and distribution at the pod set in peanut with four rates of biochar in the 2018 and 2019 growing seasons.

Year Treatment Total kg ha−1 Root Stem Leaf Pod

kg ha−1 % kg ha−1 % kg ha−1 % kg ha−1 %

2018 B0 124 ± 2.8b 3.16 ± 0.28b 2.54 27.1 ± 1.53b 21.8 36.6 ± 1.72b 29.4 57.5 ± 0.92b 46.2

B10 155 ± 7.6a 4.12 ± 0.25a 2.66 32.8 ± 1.04a 21.1 45.4 ± 2.40a 29.3 73.0 ± 4.75a 47.0

B20 143 ± 8.3a 3.89 ± 0.18ab 2.73 30.8 ± 1.25ab 21.6 44.0 ± 2.57a 30.8 64.2 ± 5.87ab 44.8

B40 130 ± 2.0b 3.35 ± 0.19b 2.58 28.4 ± 1.18b 21.9 38.4 ± 2.10b 29.6 59.5 ± 3.15b 45.9

2019 B0 118 ± 6.0b 3.00 ± 0.18b 2.55 25.9 ± 0.83b 22.0 35.0 ± 2.96b 29.7 54.0 ± 3.68b 45.8

B10 146 ± 2.2a 3.90 ± 0.26a 2.67 30.5 ± 1.87a 20.9 43.5 ± 1.17a 29.8 68.2 ± 2.65a 46.7

B20 142 ± 8.4a 3.75 ± 0.28a 2.65 30.0 ± 2.07ab 21.1 43.2 ± 2.78a 30.4 65.1 ± 3.79a 45.8

B40 129 ± 3.5b 3.46 ± 0.10ab 2.69 28.0 ± 1.90ab 21.8 38.8 ± 3.70ab 30.0 58.7 ± 1.28ab 45.6

ANOVA

Y ns ns ns ns ns

B ** ** ** ** **

Y × B ns ns ns ns ns

Y and B represent year and biochar application, respectively. B0, B10, B20, and B40 represent biochar application rates at 0, 10, 20, and 40 t ha−1, respectively. For
each parameter in each year, mean data with different letters denote significant difference among treatments at P < 0.05. ∗∗ and ∗ denote significance at the 0.01 and
0.05 probability levels, respectively. ns denotes non-significance.

TABLE 4 | Yield and yield components of peanut applied with four rates of biochar in the 2018 and 2019 growing seasons.

Year Treatment Yield (t ha−1) Kernel yield (t ha−1) 100-pod weight (g) 100-kernel weight (g) Shelling percentage (%)

2018 B0 5.68 ± 0.17b 3.91 ± 0.14b 198 ± 7.8a 86 ± 3.0a 68.8 ± 0.91b

B10 6.51 ± 0.14a 4.70 ± 0.13a 200 ± 6.4a 87 ± 2.7a 72.3 ± 0.62a

B20 6.29 ± 0.19a 4.30 ± 0.17ab 196 ± 3.7a 86 ± 2.7a 68.4 ± 0.58b

B40 5.69 ± 0.18b 3.95 ± 0.15b 194 ± 8.1a 85 ± 1.5a 69.4 ± 0.72b

2019 B0 5.48 ± 0.22b 3.76 ± 0.15bc 187 ± 5.2a 78 ± 2.4a 68.6 ± 0.35ab

B10 6.23 ± 0.10a 4.30 ± 0.13a 190 ± 10.1a 80 ± 2.8a 69.1 ± 1.00a

B20 6.10 ± 0.10a 4.06 ± 0.11ab 190 ± 10.6a 82 ± 3.7a 66.6 ± 0.92bc

B40 5.49 ± 0.17b 3.60 ± 0.12c 179 ± 7.5a 77 ± 5.6a 65.6 ± 0.65c

ANOVA Y * ** ns ns **

B ** ** ns ns **

Y × B ns ns ns ns *

Y and B represent year and biochar application, respectively. B0, B10, B20, and B40 represent biochar application rates of 0, 10, 20, and 40 t ha−1, respectively. For
each parameter in each year, mean data with different letters denote significant differences among treatments at P < 0.05. ∗∗ and ∗ denote significance at the 0.01 and
0.05 probability levels, respectively. ns denotes non-significance.

2019, relative to B0. Compared with B0, B10 improved pod
nitrogen accumulation 27.0% in 2018. B10 and B20 improved
pod nitrogen accumulation by 26.3% and 20.6% in 2019,
as compared to B0.

Yield and Yield Components
Peanut yield, kernel yield and shelling percentage were
significantly affected by year and biochar application (Table 4).
There was a significant Y× B interaction for shelling percentage,
but not for peanut yield or kernel yield. B10 and B20 increased
peanut yield by 14.6 and 10.7% in 2018, 13.7 and 11.3% in 2019,
respectively, relative to B0. B10 increased kernel yield by 20.2% in
2018 and 14.4% in 2019, relative to B0. B10 and B20 had similar
shelling percentages to B0, while B40 had 4.4% lower shelling
percentage than B0. Among the four biochar treatments, B10 had
the highest peanut yield in both years. No significant differences
occurred between years, biochar application, or Y× B interaction
for 100-pod weight or 100-kernel weight.

Relationship Between Net
Photosynthetic Rate, Leaf Nitrogen
Content, and Peanut Yield
The regression analysis indicated that Pn had a significant
linear correlation with plant nitrogen accumulation at flowering
and pod set in 2018 and 2019 (Figures 4A,B). Plant nitrogen
accumulation explained 57.1 and 59.5% of the variation in Pn
at flowering and pod set in 2018, and 60.2 and 70.3% in 2019,
respectively. Positive correlations occurred between Pn at flower
and pod set and peanut yield in both years (Figures 4C,D),
explaining 74.3 and 86.7% of the variation in peanut yield in 2018,
and 71.5 and 85.3% in 2019, respectively.

PCA Analysis for Yield and
Photosynthetic Traits of Peanut
The PCA results show that PC1 and PC2 explain 95.9% of the
variation in functional traits (Table 5). PC1 explains 83.6% of

Frontiers in Plant Science | www.frontiersin.org 8 May 2021 | Volume 12 | Article 650432

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-650432 May 25, 2021 Time: 14:57 # 9

Wang et al. Biochar Improves Photosynthesis and Yield

FIGURE 4 | Relationship between plant nitrogen accumulation and photosynthetic rate, and yield and photosynthetic rate at flowering (A,C) and pod set (B,D) in
peanut applied with four rates of biochar in the 2018 and 2019 growing seasons. B0, B10, B20, and B40 represent biochar application rates at 0, 10, 20, and 40 t
ha−1, respectively. Pn, net photosynthetic rate; **represents significant correlations at the P < 0.01 level.

the variability, and accounted mainly for chlorophyll fluorescence
parameters (Fv/Fm, 8PSII , 8NPQ, 8NO, qP, and NPQ), gas
exchange parameters (Pn, Tr , Gs, Ls, and WUE), LNC, plant
nitrogen accumulation and yield and yield components (kernel
yield, 100-pod weight, and 100-kernel weight; Figure 5). PC2
explains 12.3% of the variability and accounts for shelling
percentage. The loadings for qP, 8PSII , gas exchange parameters,
LNC, plant nitrogen accumulation, yield, and yield components
are in quadrant I and IV, and 8NPQ, 8NO, and NPQ are in
quadrants II and III, and 8NPQ, 8NO, and NPQ represent
limitations in photosynthetic capacity. 8PSII , 8NPQ, and 8NO
are distributed in different quadrants, indicating compensation
effects of photochemical efficiency for dissipation by regulated
and non-regulated energy losses. B10 and B20 are located in
quadrants I and IV, which have a significant effect on peanut
productivity, while B40 and B0 are in quadrant II and III, where
absorbed light energy is lost by heat dissipation. The loading
arrow of B10 is longer than that of B20. Thus, B10 in quadrant

IV is an appropriate biochar application rate for relatively high
photosynthetic capacity and peanut productivity.

DISCUSSION

Effect of Biochar on Gas Exchange
Parameters of Peanut
Peanut is a C3 crop with high potential for photosynthetic
capacity. Therefore, exploring the photosynthetic capacity of
peanut is an effective method for improving its productivity
(Zelitch, 1982). Some studies have shown that biochar might
improve the photosynthetic capacity of crop leaves (Rehman
et al., 2016, 2019; Abbas et al., 2017). Biochar application
improved leaf photosynthetic rate, which was due to the
amelioration of soil physicochemical properties that ultimately
increased nitrogen accumulation, and consequently enhanced
photosynthetic rate (Liu et al., 2018; Huang et al., 2019; He
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TABLE 5 | Variable loading scores of 18 parameters for four biochar application
rate and the proportion of variation of each principal component.

Traits PC1 PC2

Chlorophyll fluorescence parameters

Fv/Fm 0.95 −0.26

8PSII 0.99 −0.02

8NPQ −0.97 −0.17

8NO −0.81 0.56

qP 0.82 0.52

NPQ −0.90 −0.38

Gas exchange parameters, leaf nitrogen content and plant
nitrogen accumulation

Pn 0.99 0.06

Tr 0.99 0.03

Gs 0.98 0.15

Ls 0.99 0.04

WUE 0.99 0.13

Leaf nitrogen content 0.82 0.51

Plant nitrogen accumulation 0.97 0.22

Yield and yield components

Yield 0.99 −0.01

Kernel yield 0.97 −0.19

100-pod weight 0.70 −0.64

100-kernel weight 0.86 −0.30

Shelling percentage 0.54 −0.66

Eigenvalue 15.1 2.2

Variance (%) 83.6 12.3

Cumulative variance (%) 83.6 95.9

Fv/Fm, maximal efficiency of PSII photochemistry after dark adaptation; 8PSII,
actual efficiency of PSII photochemistry after light adaptation; 8NPQ, quantum
yield for energy dissipated via 1 pH and xanthophyll-regulated processes; 8NO,
The quantum yield of non-regulated energy loss in PSII; qP, photochemical
quenching; NPQ, non-photochemical quenching; Pn, net photosynthetic rate; Tr ,
transpiration rate; Gs, stomatal conductance; Ls, stomatal limitation; and WUE,
water use efficiency. For each parameter, the largest variable loading scores in the
two components are in bold.

et al., 2020). In our study, B10 enhanced Pn, Tr , Gs, Ls, and
WUE at critical periods of peanut growth. In contrast, 40 t ha−1

biochar decreased these parameters, relative to 10 t ha−1 biochar
(Figure 3), indicating that more biochar is not always beneficial
for leaf photosynthesis. Differences in Pn among the four biochar
rates could be due to the positive correlation between nitrogen
accumulation and Pn at flowering and pod set in both years, as
biochar application increased plant nitrogen accumulation. Plant
nitrogen accumulation was higher in B10 and B20, but decreased
in B40 at flowering and pod set (Tables 2, 3). The highest rate
of biochar (40 t ha−1) may limit plant nitrogen accumulation
which decreased leaf photosynthesis, which was likely attributed
to nitrogen immobilization caused by the high C/N ratio (Asai
et al., 2009). Photosynthetic rate had a positive relationship
with LNC (Evans, 1989). In this study, B10 improved LNC at
flowering (vegetative growth) by up to 6.6%. The significant
increase in LNC at pod set was modest and may be due to
reduction at pod set (reproductive growth), with more nitrogen
transformed to pod (Tables 2, 3). Furthermore, the increase in
dry matter production may have decreased leaf nitrogen due to

FIGURE 5 | Principal component analyses of chlorophyll fluorescence
parameters, gas exchange parameters, leaf nitrogen content, yield, and yield
components of peanut in response to four biochar application rates. Means
for flowering and pod set are for 2 years. Fv/Fm, maximal efficiency of PSII
photochemistry after dark adaptation; 8PSII, actual efficiency of PSII
photochemistry after light adaptation; 8NPQ, quantum yield for energy
dissipated via 1 pH and xanthophyll-regulated processes; 8NO, quantum
yield of non-regulated energy loss in PSII; qP, photochemical quenching;
NPQ, non-photochemical quenching; Pn, net photosynthetic rate; Tr ,
transpiration rate; Gs, stomatal conductance; Ls, stomatal limitation; WUE,
water use efficiency; and LNC, leaf nitrogen content; B0, B10, B20, and B40
represent biochar application rates of 0, 10, 20, and 40 t ha−1, respectively.

the dilution effect (Guo et al., 2021). This enhancement of leaf
photosynthetic rate could be explained by increased Gs and Tr
after biochar application (Figure 3). The improving Gs and Tr
may be associated with the increased soil water holding capacity,
which might be resulting from the porous physical structure of
biochar (Laghari et al., 2015; He et al., 2020). Additionally, some
evidences suggested that biochar benefited root morphological
development, including increased root volume, surface area and
root density, to acquire more nutrients and water for enhancing
photosynthesis (Bruun et al., 2014; Xiang et al., 2017). In fact,
our study observed that 10 t ha−1 biochar promoted root
morphology of peanut (Xia et al., 2021b). Hence, 10 t ha−1

biochar improved the nitrogen accumulation and photosynthetic
rate, and consequently peanut yield.

Effect of Biochar on Chlorophyll
Fluorescence Parameters of Peanut
Chlorophyll fluorescence is an important photosynthetic
parameter that reflects the absorption and utilization of light
energy in PSII. Fv/Fm represents the conversion efficiency of
primary light energy in the PSII reaction center. Decreases in
Fv/Fm are often observed when plants are exposed to abiotic and
biotic stresses in the light (Baker, 2008). In our study, Fv/Fm did
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not significantly differ between treatments at flowering and pod
set in either year (Figures 2A,G), which is consistent with Marks
et al. (2016). 8PSII is an indicator of the electron transport rate
in leaves, and higher 8PSII indicates a higher capacity of leaves
to convert photon energy into chemical energy (Li et al., 2010).
8NPQ is an important indicator of photo-protection energy
dissipation, and higher 8NPQ value shows a higher capacity to
eliminate redundancy light energy by regulatory heat dissipation
mechanism. 8NO is the combined pathway of radiative and
non-radiative deexcitation reactions, and higher 8NO indicates
that the absorbed light energy cannot be consumed completely
through photochemical energy conversion and protective
regulation mechanisms (Kramer et al., 2004; Klughammer and
Schreiber, 2008; Chen et al., 2017). In this study, no significant
difference in 8NO occurred between treatments at flowering
or pod set in either year (Figures 2D,J). In terms of energy
distribution, B10 promoted photosynthetic activity in peanut
leaves, significantly increasing 8PSII , and decreasing 8NPQ
and 8NO at flowering and pod set in both years (Figure 2).
B0 and B40 decreased 8PSII and increased 8NPQ, indicating
that an increase in regulated heat dissipation could protect
the photosynthetic apparatus. qP represents the proportion of
open PSII reaction centers (Hazrati et al., 2016). NPQ mainly
comprises regulated and non-regulated energy dissipation
and indicates that the light energy absorbed by PSII antenna
pigments cannot be used for photochemical electron transfer,
which dissipates as heat (Long et al., 2013; Perkins et al., 2018).
Tang et al. (2020) reported that biochar pyrolyzed at 600◦C
increased qP and decreased NPQ, relative to the no-biochar
treatment. Our results showed that B10 and B20 improved
qP at flowering and pod set, and reduced NPQ at pod set in
both years (Figure 2). It shown that 10 and 20 t ha−1 biochar
enhanced the proportion of open PSII reaction centers and
photosynthetic electron transfer rates in peanut leaves and
reduced heat dissipation, which enable full use of the light
energy absorbed in leaves for photosynthesis, and increased
peanut yield. Our results are in agreement with those of Ali
et al. (2020), who reported that appropriate rate of biochar
increased qP and decreased NPQ at maturity stage. Biochar
application improved nitrogen uptake from the soil (Sadaf
et al., 2017), and a higher nitrogen concentration increased
8PSII , qP and decreased NPQ (Lin et al., 2013). Additionally, it’s
probably because biochar application enhanced leaf chlorophyll
content (Feng et al., 2021), which ensured the synthesis of
various enzymes and electron transporter in photosynthetic
carbon assimilation, and consequently ameliorate photosynthetic
function in leaves (Hou et al., 2021). Thus, the light energy
absorbed by leaf was more used in photochemical processes,
which led to the increase of qP and decrease of NPQ. In
Summary, these results confirmed the potential of biochar
for improving chlorophyll fluorescence traits. The internal
mechanisms for biochar improving chlorophyll fluorescence
traits merit further investigation.

Effect of Biochar on Peanut Yield
Significant differences of pod yield were observed at least 20–
40 t ha−1 biochar application in pot experiment (Xu et al.,
2015). In our study, 10 t ha−1 biochar produced the maximum

peanut yield (and kernel yield and shelling percentage; Table 4),
as reported by Ye et al. (2019). Yamato et al. (2006) reported
that 10 t ha−1 biochar application combined with fertilizer
in infertile soil increased peanut yield by 50%. Similarly, the
biochar application rate of 10 t ha−1 significantly increased
peanut pod yield by 23% compared to the inorganic fertilizer
only treatment (Agegnehu et al., 2015). In another study,
rice husk and cottonseed husk biochar applications at 50 t
ha−1 increased peanut yields by 16.8 and 14.4%, respectively,
relative to the no-biochar amendment treatment (Tan et al.,
2018). In this study, B40 decreased peanut yield, relative to
B10 (Table 4). Some studies have reported that high rates
of biochar can cause nitrogen immobilization and decrease
nitrogen accumulation due to the high C/N ratio, reducing yield
(Lehmann et al., 2002; Asai et al., 2009; Li et al., 2018; Yan
et al., 2019). Despite the variation between studies, legumes
generally respond better to biochar than other crops. For
example, biochar application increased the yields of legumes,
wheat, maize, and rice by about 30, 11, 8, and 7%, respectively,
Liu et al. (2013). Biochar has strong potential to improve crop
productivity, especially in drought and poor soils (Batool et al.,
2015; Haider et al., 2017; Hussain et al., 2017). The large
interannual variability in rainfall is the main climatic factor
during pod formation period, causing fluctuations in peanut yield
(Craufurd et al., 2006). High soil moisture content is conducive
to pod filling in peanut. In our study, August 2019 had more
rainfall than August 2018 (Figure 1), and the peanut yields
differed accordingly.

The pod setting stage is critical for peanut yield formation. In
our study, B10 significantly improved the photosynthetic capacity
of peanut at pod set (Figure 4), ensuring reproductive growth
during the critical growth period and increasing peanut yield. The
regression coefficient between Pn and peanut yield was higher
at pod set than at flowering in both years (Figure 4), indicating
that photosynthetic capacity at pod set had a positive effect on
yield. Overall, the increased yield at 10 t ha−1 biochar might
be due to an enhanced photosynthetic capacity of functional
leaves (Figure 5).

CONCLUSION

Biochar application had a significant positive effect on
photosynthetic capacity and yield in peanut. Maximum
photochemical efficiency, actual photochemical efficiency,
photochemical quenching, gas exchange parameters, leaf
nitrogen content, plant nitrogen accumulation, yield, and yield
components of peanut with increasing biochar application
rate to 10 t ha−1 (B10). B10 significantly enhanced 8PSII and
qP in functional leaves of peanut due to the transfer of more
absorbed energy to photochemical reactions, ensuring a higher
photosynthetic capacity at flowering and pod set and higher
peanut yield than the other biochar rates. These results are in
agreement with our hypothesis. Therefore, 10 t ha−1 biochar
is recommended for increasing peanut yield in Northwest
Liaoning, China. The results from this study enhances our
understanding of the effects of biochar application on peanut
photosynthesis and yield.
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