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A crop model incorporating proximal sensing images from a remote-controlled aerial

system (RAS) can serve as an enhanced alternative for monitoring field-based geospatial

crop productivity. This study aimed to investigate wheat productivity for different cultivars

and various nitrogen application regimes and determine the best management practice

scenario.We simulated spatiotemporal wheat growth and yield by integrating RAS-based

sensing images with a crop-modeling system to achieve the study objective. We

conducted field experiments and proximal sensing campaigns to acquire the ground

truth data and RAS images of wheat growth conditions and yields. These experiments

were performed at Gyeongsang National University (GNU), Jinju, South Gyeongsang

province, Republic of Korea (ROK), in 2018 and 2019 and at ChonnamNational University

(CNU), Gwangju, ROK, in 2018. During the calibration at GNU in 2018, the wheat

yields simulated by the modeling system were in agreement with the corresponding

measured yields without significant differences (p= 0.27–0.91), according to two-sample

t-tests. Furthermore, the yields simulated via this approach were in agreement with the

measured yields at CNU in 2018 and at GNU in 2019 without significant differences

(p = 0.28–0.86), as evidenced by two-sample t-tests; this proved the validity of the

proposed modeling system. This system, when integrated with remotely sensed images,

could also accurately reproduce the geospatial variations in wheat yield and growth

variables. Given the results of this study, we believe that the proposed crop-modeling

approach is applicable for the practical monitoring of wheat growth and productivity at

the field level.

Keywords: aerial images, crop model, remotely controlled aerial system, proximal sensing, simulation, wheat

INTRODUCTION

Wheat (Triticum) is a global staple food crop, a cereal grain, and a grass cultivated worldwide
with broad adaptability from temperate to cold environments (Martin et al., 2005; Shewry, 2009).
The effective increase in wheat productivity is of interest to farmers, researchers, shareholders, and
policymakers involved in the agricultural production business (Aarts et al., 2014). Early estimations
of wheat productivity and timely information regarding seasonal growth conditions are expected
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to increase its productivity through cohesive crop management
practices such as irrigation and nitrogen application regimes.
Crop modeling and remote sensing (RS) are both conventional
methodologies that, when used in conjunction, offer all the
benefits of the techniques available for practical assessments
of crop productivity and growth conditions (Nguyen et al.,
2019). A crop model allows for sequential simulation, while RS
enables consistency in the monitoring of geographic and spatial
variations in crop conditions and productivity (Ko et al., 2015;
Jeong et al., 2018b).

Mathematical crop growth models include a set of formulas
that describe crop growth and development over a continuous
scale before their maturity or harvest (Thornley and Johnson,
1990). Empirical crop models commonly comprise few equations
for the requirements of simulating growth and development for
a discrete period or crop yield. In contrast, mathematical crop
models are formulated using additional equations to simulate
seasonal crop growth based on a mathematical approach.
Therefore, mathematical crop models are advantageous
for simulating the seasonal patterns of crop growth and
productivity and for forecasting their yields. A mathematical
crop model contains growth parameters specific to cultivars
and environments, and it is highly dependent on the growth
and development of the canopy (Ahuja et al., 2000; Jones
et al., 2003). Appropriate parameters help streamline the model
for estimating variables pertaining to crop growth (Maas,
1993b). Steady simulations using a crop model require many
inputs, encompassing parameters, and variables related to the

FIGURE 1 | Schematic diagram of the remote sensing-integrated wheat model: (A) crop simulation procedure, (B) model parameterization based on remote sensing

(RS) information, and (C) simulated and observed leaf area index (LAI) using the optimization process. AGDM and PAR represent above-ground dry mass and

photosynthetically active radiation, respectively.

environment, soil, and weather. It is also challenging to obtain
adequate parameters. A mathematical crop model is often
weak in terms of geographical or regional simulations of crop
growth and productivity with realistic precision. This drawback
is attributable to the lack of appropriate spatial and temporal
information regarding canopy growth (Doraiswamy et al., 2003)
and the flaws in the input data (Moulin et al., 1998).

RS is another approach that is appropriate for exploring
the conditions of crop growth and development with respect
to geographic and spatial variability during growing seasons
(Campbell and Wynne, 2011). It is advantageous for obtaining
detailed information regarding crop growth conditions from an
available RS scene of the site of interest. However, when using
most RS platforms, either remote-controlled aerial vehicles or
satellites, it is unfeasible to deliver the necessary information
with a continuous source. This is because of the restricted
revisit time to the fields of interest or unfavorable environmental
conditions (Moulin et al., 1998; Jeong et al., 2020). Crop growth
conditions and yields can also be assessed by using the empirical
relationship between a crop growth variable and the RS data
obtained from various RS platforms (Bouman, 1992; Zarco-
Tejada et al., 2005; Dorigo et al., 2007). Some research efforts
have been devoted toward predicting and assessing crop yields
based on the empirical relationship between the yield and optical
RS information (Clevers, 1997; Labus et al., 2002; Kern et al.,
2018). These types of empirical crop models are appropriate for
evaluating growth conditions and productivity in a particular
region of interest for practical reasons. However, this approach
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FIGURE 2 | Simulated and measured leaf area index (LAI) and above-ground dry mass (AGDM) of Chokyung (A,C) and Keumkang (B,D) wheat seeded in spring

(A,B) and fall (C,D) at Gyeongsang National University, Jinju, South Korea in 2018. Vertical bars represent the standard deviations of the mean values at 95%

confidence intervals (n = 9).

TABLE 1 | Comparison of root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) between simulated (S) and measured (M) values of leaf area index (LAI) and

above-ground dry mass (AGDM) of wheat cultivars grown in the spring and fall seasons of 2018 at Gyeongsang National University (GNU), Jinju, South Korea, for model

calibration.

Season Cultivar LAI AGDM

S M RMSE NSE S M RMSE NSE

—— m2 m−2 —– Unitless ———- g m−2 ——— Unitless

Spring Chokyung 2.29 2.33 0.46 0.25 145.9 114.8 51.1 0.58

Keumkang 2.38 2.43 0.56 0.10 120.0 84.8 37.9 0.65

Fall Chokyung 2.91 2.92 0.11 0.89 370.2 400.3 82.9 0.87

Keumkang 3.51 3.61 0.47 0.61 305.8 327.4 52.0 0.92

has a disadvantage in that the growth and development processes
or their influences on productivity cannot be explained (Delécolle
et al., 1992; Becker-Reshef et al., 2010). This approach is also
likely to neglect the interaction between radiation and vegetation
canopies (Bouman, 1992).

A crop model integrated with RS information can reinforce
the advantages of RS and crop modeling, thereby circumventing
the weaknesses of these approaches (Delécolle et al., 1992;
Maas, 1992; Ko et al., 2015). This methodology can enable
geospatial crop productivity monitoring and yield forecasting at

different scales of croplands (Jeong et al., 2018b; Nguyen et al.,
2019). Previous studies have attempted to utilize this strategy of
combining crop modeling and RS (Moulin et al., 1998; Cheng
et al., 2016; Huang et al., 2018, 2019; Jin et al., 2018; Nguyen
et al., 2019). GRAMI (Maas, 1992), a gramineous crop model,
was developed through such efforts; this model can use RS data.
GRAMI (Maas, 1993a,b) is a mathematical model that requires
simple crop parameters, weather variables, and RS data from
any platform to simulate grain crop growth and estimate yield.
The GRAMI model was further extended to simulate cotton
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FIGURE 3 | Comparison between simulated and measured grain yields of Chokyung and Keumkang wheat seeded in spring (A,B) and fall (C,D) at Gyeongsang

National University, Jinju, South Korea in 2018. Vertical bars represent the standard errors of the mean yields at 95% confidence intervals (n = 9).

TABLE 2 | Comparison of root mean square error (RMSE) and p according to

two-sample t-tests between simulated (S) and measured (M) yields of wheat

cultivars grown in the spring and fall seasons of 2018 at Gyeongsang National

University (GNU), Jinju, South Korea, for model calibration.

Season Cultivar Simulated Measured RMSE p (α = 0.05)

—————- ton ha−1 —————- Unitless

Spring Chokyung 2.842 3.124 0.846 0.645

Keumkang 2.349 2.389 0.451 0.905

Fall Chokyung 5.549 5.370 0.208 0.273

Keumkang 3.501 3.189 0.942 0.656

(Ko et al., 2005, 2006), soybean (Shawon et al., 2020a), and
paddy rice (Ko et al., 2015). The present version of GRAMI has
been renamed as a RS-integrated crop model (RSCM), indicating
that the model is updated with the abovementioned information
for future simulations of various crops. The RSCM allows the
monitoring of croplands at different scales, ranging from farm
fields to various geographical regions (Jeong et al., 2018a,b, 2020;
Yeom et al., 2018; Shawon et al., 2020a).

Recently, there has been growing interest in employing a
remote-controlled aerial system (RAS) for different agricultural

and industrial activities, such as field-based crop assessments
and management practices (Mesas-Carrascosa et al., 2015; Jeong
et al., 2016; Cai et al., 2019). The RSCM is also capable of
evaluating geospatial crop growth conditions and productivity
using RAS-based RS images (Jeong et al., 2018a). This study
aimed to achieve an advanced management option for stable and
improved wheat production with different cultivars and various
nitrogen application regimes employing the modeling system.
These cultivation practices were designed to explore the best
management practice option based on the modeling system. We
extended the RSCM to simulate geospatial wheat productivity
at the field scale by using RAS-based RS data to perform the
study goal.

MATERIALS AND METHODS

Field Experiment
We carried out field experiments at two study sites—one in
Jinju and another in Gwangju, South Korea—to assess the
RSCM in terms of its capability of simulating wheat growth
and yield during the growing seasons of 2018 and 2019.
The field experiment in Jinju was performed at Gyeongsang
National University (GNU; 35◦8′ N, 128◦5′ E; 33m), during the
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FIGURE 4 | Simulated and measured leaf area index (LAI) and above-ground dry mass (AGDM) vs. measured LAI and AGDM of Chokyung wheat at Chonnam

National University, Gwangju, South Korea, in 2018. Vertical bars represent the standard deviations (A) and standard errors (B) of the mean values at 95% confidence

intervals (n = 9).

TABLE 3 | Comparison of root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) between simulated (S) and measured (M) values of leaf area index (LAI) and

above-ground dry mass (AGDM) of Chokyung wheat seeded in the fall of 2018 at CNU, Gwangju, and seeded in the spring and fall seasons of 2019 at Gyeongsang

National University (GNU), Jinju, south Gyeongsang province, South Korea, with different amounts of nitrogen (N) applications of 40 kg ha−1 at planting, 30 kg ha−1 at

rejuvenation, and 0 kg ha−1 at initial reproduction (N40-30-0), N40-30-30, and N40-30-60 for model validation.

Season and site N treatment LAI AGDM

S M RMSE NSE S M RMSE NSE

—— m2 m−2 —– Unitless ———- g m−2 ——— Unitless

Fall, CNU 40-30-30 3.57 3.51 0.24 0.95 514.7 364.7 187.8 −0.61

Spring, GNU 40-30-30 2.90 2.94 0.44 0.90 229.3 184.6 75.5 −0.93

Fall, GNU 40-30-0 2.31 2.32 0.19 0.92 346.8 316.7 44.7 0.92

40-30-30 2.50 2.50 0.22 0.83 363.9 316.7 66.0 0.85

40-30-60 2.76 2.79 0.52 0.44 367.7 341.8 44.2 0.94

wheat seasons in 2018 and 2019 to estimate model parameters
and obtain datasets for evaluating the modeling scheme. The
experiment in Gwangju was performed at Chonnam National
University (CNU; 35◦10′ N, 126◦53′ E; 33m), during the wheat
season in 2018 to validate the modeling scheme. Both these
study locations experience a typical East Asian monsoon climate.
According to Korea Meteorological Administration (https://
www.kma.go.kr/eng/), mean annual temperature and average
yearly precipitation have been recorded at 13.1◦C and 1,513mm
in Jinju and 13.8◦C and 1,391mm in Gwangju, respectively,
over the past 30 years. It typically rains (∼60%) during the
summer and monsoon seasons (i.e., July–August). At GNU, the
topsoil layer (0–20 cm) is categorized as sandy loam (71.4% sand,
18.8% silt, and 9.7% clay), with a pH of 5.9, organic carbon
content (OCC) of 8.6 g C kg−1, available phosphorus (P) of
185mg P2O5 kg−1, cations exchange capacity (CEC) of 6.3 cmolc
kg−1, and total nitrogen (TN) before fertilization of 0.053 g N
kg−1, according to National Institute of Agricultural Sciences
(www.naas.go.kr/english/). At CNU, the topsoil layer (0–30 cm)
is categorized as loam (43.1% sand, 30.9% silt, and 26.0% clay),

with a pH of 6.5, OCC of 12.3 g C kg−1, P of 131mg P2O5 kg−1,
CEC of 14.4 cmolc kg−1, and TN of 1.0 g N kg−1.

Two wheat cultivars—Chokyung and Keumkang—were sown
on October 30, 2017, and February 9, 2018, and harvested
on June 25, 2018, over an area of ∼714.0 m2 at GNU, while
only Chokyung with different N treatments was seeded on
October 30, 2018 and February 18, 2019 and harvested on
June 10, 2019. At CNU, Chokyung was sown on February
26, 2018 and harvested on June 20, 2018, over an area of
∼634.0 m2. Additional information regarding the cultivars can
be referenced from the website of the National Institute of Crop
Science (www.nics.go.kr/english/). There were two different
experimental arrangements for the N treatments (recognized as
specific and gradient levels) at GNU in 2019. The N treatments
involved varying applications of 40 kg ha−1 at planting, 30 kg
ha−1 at rejuvenation, and 0 kg ha−1 at initial reproduction (N40-
30-0), N40-30-30, and N40-30-60. The gradient N treatment was
arranged with N40-0-0, N40-10-10, N40-20-20, N40-30-30, N40-
40-40, N40-50-50, and N40-60-60. All the experimental blocks
at both GNU and CNU were placed in a randomized complete
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block design at three replications for each corresponding year.
Wheat grains were sown in a row spacing of 0.2m and a hill-
to-hill spacing of 0.1m using a mechanical seed drilling device.
The N fertilizer for the standard treatment in this study was
applied at 100 kg ha−1, spreading 40% under the soil surface

TABLE 4 | Comparison of root mean square error (RMSE) and p according to

two-sample t-tests between simulated (S) and measured (M) yields of Chokyung

wheat seeded in the fall of 2018 at Chonnam National University (CNU), Gwangju,

and seeded in the spring and fall seasons of 2019 at Gyeongsang National

University (GNU), Jinju, south Gyeongsang province, South Korea, with different

amounts of nitrogen (N) applications of 40 kg ha−1 at planting, 30 kg ha−1 at

rejuvenation, and 0 kg ha−1 at initial reproduction (N40-30-0), N40-30-30, and

N40-30-60 for model validation.

Season

and site

N treatment Simulated Measured RMSE p (α = 0.05)

—————- ton ha−1 —————- Unitless

Fall, CNU 40-30-30 3.991 3.843 1.512 0.858

Spring,

GNU

40-30-30 6.445 6.513 0.438 0.276

Fall, GNU 40-30-0 3.050 3.317 1.175 0.717

40-30-30 4.561 4.842 0.728 0.389

40-30-60 4.067 5.066 1.456 0.859

as a basal dosage before seeding and being treated as a side
dressing at 30% for the tillering and panicle initiation stages. Two
fertilizers (P) and potassium (K), were applied at 70 and 35 kg
ha−1, respectively. Full doses of P and K were spread under the
soil surface as a basal application before seeding.

The above-ground dry mass (AGDM) and leaf area index
(LAI) were considered as growth variables and measured
during the main wheat development stages. LAI was measured
using LAI-2200C (LI-COR Inc., Lincoln, NE, USA), which
can quantify the LAI of the canopy under diffuse sunlight,
even under daylight, through its light-diffusing cap and light
scattering correction method, thereby affording precise and
accurate results. LAI was measured on the 87, 101, 115, 130, and
144 day of year (DOY) for the autumn-seeded wheat and the
101, 115, 130, 144, and 158 DOY for the spring-seeded wheat at
GNU in 2018. In 2019, LAI measurements were conducted on
the 68, 81, 102, 111, and 145 DOY for the autumn-seeded wheat
and the 102, 111, and 145 DOY for the spring-seeded wheat. LAI
measurements at CNU were conducted on the 100, 106, 111,
117, 124, 128, 134, 141, and 149 DOY in 2018. LAI was measured
three times in repetition at the same plot. Meanwhile, the plant
samples were harvested for AGDM estimation. Plant samples
were harvested, except for the root, at each plot on the 100, 111,
120, and 128 DOY in 2018 at CNU, Gwangju. Likewise, plant

FIGURE 5 | Simulated and measured leaf area index (LAI) and above-ground dry mass (AGDM) of Chokyung wheat seeded in spring (A) and fall with different nitrogen

applications of 40 kg ha−1 at planting, 30 kg ha−1 at rejuvenation, and 0 kg ha−1 at initial reproduction (N40-30-0) (B), N40-30-30 (C), and N40-30-60 (D) at

Gyeongsang National University, Jinju, South Korea, in 2019. Vertical bars represent the standard deviations of the mean values at 95% confidence intervals (n = 9).
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FIGURE 6 | Comparison between simulated and measured grain yields of Chokyung wheat seeded in spring (A) and fall with different nitrogen applications of 40 kg

ha−1 at planting, 30 kg ha−1 at rejuvenation, and 0 kg ha−1 at initial reproduction (N40-30-0) (B), N40-30-30 (C), and N40-30-60 (D) at Gyeongsang National

University, Jinju, South Korea, in 2019. Vertical bars represent the standard errors of the mean values at 95% confidence intervals (n = 9).

samples at GNU, Jinju, in 2018 were collected on the 72, 87, 102,
116, 129, and 144 DOY for the autumn-sown wheat and the 87,
102, 116, 129, and 144 DOY for the spring-sown wheat. Plant
sampling in 2019 was conducted on the 67, 80, 102, and 109 DOY
for the autumn-sown wheat and the 96, 123, and 130 DOY for the
spring-sown wheat. The plant samples were then separated into
their leaves, stem, and spike, and the samples were oven-dried
at 70◦C for 1 week, depending on the sample condition. Plant
sampling was performed to estimate biomass partitioning
through photosynthesis by utilizing photosynthetically
active radiation.

Weather data at the study sites were recorded using
automated weather stations, MetPRO (Campbell, Logan, UT,
USA) at GNU and WS-GP1 (Delta-T Devices, Cambridge,
UK) at CNU. The daily average mean temperature, solar
radiation, and precipitation at GNU were 8.79 ◦C, 11.81
MJ m−2 d−1, and 2.96mm d−1 during the 2018 season
(October 30, 2017, to June 25, 2018) and 8.28 ◦C, 13.11
MJ m−2 d−1, and 1.95mm d−1 during the 2019 season
(October 30, 2018, to June 10, 2019), respectively. The daily
average mean temperature, solar radiation, and precipitation at

CNU were 16.62 ◦C, 18.25 MJ m−2 d−1, and 3.19mm d−1,
respectively, during the 2018 season (February 26, 2018, to June
20, 2018).

Proximal and RAS RS
We obtained proximally sensed data on the ground and RAS
RS images at GNU in 2018 and 2019 and ground-based
proximal sensing at CNU in 2018. In this study, all the
field campaigns to measure the wheat canopies’ reflectances
were conducted an hour before or after the local solar noon
(12:40 p.m. KST) to minimize perspective effects on the
wheat’s target sensing zone canopies or scene images. A hand-
held multispectral radiometer, MSR16R (CROPSCAN, Inc.,
Rochester, MN, USA), was employed to measure the wheat
canopy reflectance in order to define growth and development
conditions during the principal development stages. MSR16R
can quantify 16 wavebands within the range of 450 and
1,750 nm. The proximal sensing procedures at both GNU and
CNU were performed on the same dates along with the LAI
measurements to determine vegetation indices (VIs) by using
canopy reflectance values from the wavebands at 800, 660,
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FIGURE 7 | Two-dimensional simulated projections of normalized yield index, NYI (A), leaf area index, LAI (B), and above-ground dry mass, AGDM (C) of two wheat

cultivars seeded in fall and spring 2018 at Gyeongsang National University, Jinju, South Korea. The remote-controlled aerial image data for (B,C) were obtained 60

days after rejuvenation. FC, fall-seeded Chokyeong; FK, fall-seeded Keumkang; SC, spring-seeded Chokyeong; SK, spring-seeded Keumkang; the numbers after

each upper character and dash symbol represent experimental blocks.

and 560 nm, as discussed in the following subsection RSCM
for Wheat. A RAS, eBee (senseFly, Cheseaux-sur-Lausnne,
Switzerland), was used to obtain aerial sensing images for
the experimental wheat field at GNU. The RAS comprises a
fixed-wing UAV (size of 960mm and a weight of 700 g) and
a digital camera, Powershot S110 NIR (Cannon, Inc., Japan),
with a 12.1 MP sensor and three wavebands of green (G),
red (R), and near infra-red (NIR). The center wavelengths of
the bands are 550 nm (G), 625 nm (R), and 850 nm (NIR).
RAS RS images were obtained on the 87, 101, 115, 130, 144,
and 158 DOY in 2018 and the 53, 67, 81, 102, 123, and
144 DOY in 2019. These image data were radiometrically
rectified to represent wheat growth conditions and mosaicked
to deliver entire experimental field scenes using Pix4D mapper
software (Pix4D S.A., Prilly, Switzerland). The processed images
were then geometrically corrected using ERDAS IMAGINE
software (Hexagon Geospatial, Madison, AL, USA), followed by
georeferencing and registration using ArcGIS software (Esri, Inc.,
Redlands, CA, USA).

RSCM for Wheat
RSCM is a mathematical crop-modeling system that can
simulate crop growth and yield using simple input requirements,
owing to the integration of RS information (Figure 1). The
RSCM for wheat simulates daily wheat growth through four
simple processes, i.e., determining the daily growing degree
days (GDD), the absorption of incident solar radiation by
the crop canopy, the daily increase in AGDM, and the daily
change in LAI (increase or senescence), based on arithmetic
designs (Supplementary Table 1). RSCM is formulated such
that the simulated LAI values agree with the observed LAI
values, by using a Bayesian model as a part of the within-
season calibration procedure. The model is coded using an
IDL program version 8.5 (https://www.l3harrisgeospatial.com/
Software-Technology/IDL).

We employed VIs to evaluate the wheat canopy growth
based on the integrated modeling system. These included
the normalized difference vegetation index (NDVI) (Rouse
et al., 1974), optimized soil adjusted vegetation index (OSAVI)
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FIGURE 8 | Two-dimensional simulated projections of normalized yield index, NYI (A), leaf area index, LAI (B), and above-ground dry mass, AGDM (C) of Chokyeong

wheat treated with different nitrogen (N) levels at the tillering and heading stages at Gyeongsang National University, Jinju, South Korea, in 2019. The

remote-controlled aerial image data for (B,C) were obtained 60 days after rejuvenation. FN1, fall-seeded with different nitrogen applications of 40 kg ha−1 at planting,

30 kg ha−1 at rejuvenation, and 0 kg ha−1 at initial reproduction (N40-30-0); FN2, fall-seeded N40-30-30; FN3, fall-seeded N40-30-60; SN, spring-seeded

N40-30-30; the numbers after each dash symbol represent experimental blocks.

(Rondeaux et al., 1996), modified triangular vegetation index 1
(MTVI1) (Haboudane et al., 2004), and re-normalized difference
vegetation index (RDVI) (Roujean and Breon, 1995). The four
VIs were determined using the following formulas:

NDVI = (R800−R660)/(R800 + R660) (1)

RDVI = (R800−R660)/
√

(R800+R660) (2)

OSAVI = (R800−R660)/(R800 + R560 + 0.16) (3)

MTVI1 = 1.2·[1.2·(R800 − R660)−2.5·(R660−R560)] (4)

where R800, R660, and R560 represent the reflectance at 800, 660,
and 560 nm, respectively.

As the plant canopy forms the plant’s top surface, the
VI, or reflectance, is most likely a two-dimensional data type
representing the electromagnetic radiation exposure of the
plant canopy. In contrast, LAI is a three-dimensional concept.
We assumed that a log-log regression model with a slope of
approximately two-thirds of the LAI could define the relationship
between the VIs and the LAI. Based on this scheme, we
formulated the correlations between LAI and four VIs (i.e.,

MTVI1, NDVI, RDVI, and OSAVI) using the following log-log
linear regression model:

log (VIt)=αVI+βVI log (LAIt)+ǫt (5)

where αVI , βVI , and ǫt (∼ N(0, σ 2
VI) represent the intercept,

slope, and error of the log-log linear regression model,
respectively. This scheme was adopted to obtain more robust LAI
estimations using an ensemblemethod based on the relationships
between the four VIs and LAI (Nguyen et al., 2019). The
development of LAI for each pixel was defined by the RSCM-
wheat regime by using four parameters of θ = (L0, a, b, and
c). Separate parameter values were generated from the prior
distribution, ψ ∼ N(µ,D), ranging between 0 and 1 by using
the following transformations:

ψ =
(

ψ1,ψ2,ψ3,ψ4

)

=

(

log
a

1−a
, log

b

1−b
, log

c

1−c
, log

L0

1−L0

)

,

θ = θ (ψ)=

(

eψ1

1+eψ1
,
eψ2

1+eψ2
,
eψ3

1+eψ3
,
eψ4

1+eψ4

)

(6)
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TABLE 5 | Descriptive statistical indices (DSI) of mean with standard deviation (SD), maximum, and minimum for two-dimensional variation in simulated values of

normalized yield index (NYI), leaf area index (LAI), and above-ground dry mass (AGDM) of wheat cultivars grown in the spring and fall seasons of 2018 at Gyeongsang

National University (GNU), Jinju, South Korea.

Season Cultivar DSI NYI LAI AGDM

Unitless −− m2 m−2
−− −− g m−2

−−

Spring Chokyung Mean ± SD 0.56 ± 0.241 1.5 ± 0.40 357.1 ± 95.98

Max 1.00 2.5 582.3

Min 0.00 0.4 82.7

Keumkang Mean ± SD 0.59 ± 0.226 1.1 ± 0.46 252.5 ± 117.83

Max 0.99 2.3 557.3

Min 0.02 0.1 22.7

Fall Chokyung Mean ± SD 0.76 ± 0.085 2.9 ± 0.33 719.6 ± 31.89

Max 0.89 3.5 785.2

Min 0.29 1.6 586.0

Keumkang Mean ± SD 0.70 ± 0.163 2.7 ± 0.55 726.5 ± 36.95

Max 0.95 3.7 785.9

Min 0.24 1.5 595.7

We acquired both the log-log linear regression coefficients
(

αℓ,βℓ, σ 2
ℓ

)

, ℓ = 1, 2, 3, and 4, and the hyper-parameters
(µ, D) from the data collected in this study for parameter
estimation. These included the measured values of the VIs and
LAI (refer to Supplementary Figure 4). Each of the parameter,µ,
was specified using the “before-calibration” values (L0 = 0.2, a=
3.25 × 10−1, b = 1.25 × 10−3, and c = 1.25 × 10−3). Parameter
D is a diagonal matrix with all diagonal elements equivalent to
0.5. The following arithmetic procedure was employed to obtain
θ for each pixel. In Step 1, setµ served as the initial guess ofψ for
each pixel. In Step 2, we define LAIt = G̃ (t;ψ) = G (t; θ (ψ))
and use the following objective function:

∑5

ℓ=1

{

1

σ 2
ℓ

∑n

t=1

(

logVIℓt−αℓ−βℓ log G̃(t;ψ)
)2

}

+ (ψ − µ)
′

D−1 (ψ − µ) (7)

In Step 3, the simulated curve for each pixel is obtained from
the estimated ψ in Step 2. In Step 4, µ,D is updated using
the sample means and variances from the estimations in Step
2. In this calculation method, the parameter ψ was estimated
by minimizing the abovementioned function. Optimization was
achieved using the POWELL optimization routine (Press et al.,
1992) for one-point simulation cases and the Quasi-Newton
minimizer (Nash, 1990) for two-dimensional simulation cases.
The POWELL optimizer is included in the IDL program.
Meanwhile, we designed the Quasi-Newton minimizer callable
from a separate C program to efficiently deal with big data.

The performance of the RSCM-wheat regime was evaluated
using a two-sample paired t-test as well as two statistical indices—
the root mean squared error (RMSE) and the Nash–Sutcliffe
model efficiency (NSE) (Nash and Sutcliffe, 1970)—with Python
(https://www.python.org). The power analysis for the t-test (α =

0.05) showed that power 0.5 is achievable with an effect size of
0.99 and a 9 sample size that we obtained for each element in the

field measurement practice. NSE verifies the relative magnitude
of the residual variance of simulated data in comparison with
the observed data variance. Consequently, this index can assess
how well the observed and simulated data fit the 1:1 line in a
scatter plot. NSE values can range from –∞ to 1. The model
is dependable if the NSE value is close to 1. In contrast, the
simulated data are considered less consistent if the NSE value is
nearer to zero.

RESULTS

Formulation and Evaluation of RSCM for
Wheat
We formulated the RSCM for wheat by estimating parameters
specific to wheat growth from the data set obtained at GNU,
Jinju, in 2018 for effective calibration of the model (refer
to Supplementary Figures 1–3 and Supplementary Table 1).
These parameters included radiation use efficiency (RUE),
specific leaf area (SLA), and light extinction coefficient (k).
The formulated modeling system was then calibrated using the
dataset obtained for parameter estimation. During calibration,
the simulated LAI and AGDM values were in good agreement
with the measured LAI and AGDM values; the RMSE ranged
from 0.11 to 0.56 m2 m−2 for LAI and from 37.9 to 82.9 g m−2

for AGDM, whereas the Nash–Sutcliffe efficiency (NSE) ranged
from 0.10 to 0.89 for LAI and from 0.58 to 0.92 for AGDM
(Figure 2 and Table 1). We found that the modeling system
closely reproduced the measured data showing differences in LAI
and AGDM between the cultivars and planting seasons.

The simulated grain yields were in good agreement with the
measured yields, with the RMSE ranging from 0.208 to 0.942
ton ha−1 and without any significant differences (a range of
p from 0.273 to 0.905), as indicated by the two-sample t-tests
(α = 0.05) (Figure 3 and Table 2). Likewise, the RSCM system
reproduced themeasured value differences in grain yield between
the cultivars and planting seasons.
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TABLE 6 | Descriptive statistical indices (DSI) of mean with standard deviation (SD), maximum, and minimum for two-dimensional variation in simulated values of

normalized yield index (NYI), leaf area index (LAI), and above-ground dry mass (AGDM) of wheat grown in the spring and fall seasons of 2019 with different nitrogen (N)

treatments at Gyeongsang National University (GNU), Jinju, South Korea.

Season N treatmenta DSI NYI LAI AGDM

unitless −− m2 m−2
−− −− g m−2

−−

Spring N40-30-30 Mean ± SD 0.49 ± 0.095 1.9 ± 0.39 281.4 ± 53.21

Max 1.00 3.1 439.0

Min 0.27 1.1 150.5

Fall N40-30-0 Mean ± SD 0.35 ± 0.116 2.4 ± 0.46 749.1 ± 25.40

Max 0.74 5.1 854.8

Min 0.09 1.9 701.0

N40-30-30 Mean ± SD 0.40 ± 0.125 2.2 ± 0.32 761.3 ± 25.64

Max 0.74 4.0 851.0

Min 0.06 1.5 683.0

N40-30-60 Mean ± SD 0.40 ± 0.131 2.0 ± 0.27 737.6 ± 24.27

Max 0.74 5.4 847.6

Min 0.02 1.5 649.3

aN40-30-0, N40-30-30, and N40-30-60 indicate N applications of 40 kg ha−1 at planting, 30 kg ha−1 at rejuvenation, and 0 or 30 or 60 kg ha−1 at initial reproduction.

The wheat-modeling regime was then validated for its
consistency by using datasets separately obtained during the
wheat-growing seasons at both CNU in 2018 and GNU in 2019.
During validation using the dataset in 2018 from CNU, the
simulated LAI and AGDM values agreed with the corresponding
measured values, with RMSEs of 0.24 m2 m−2 for LAI and
187.8 g m−2 for AGDM and NSEs of 0.95 for LAI and −0.61
for AGDM (Figure 4 and Table 3). There was no significant
difference between the simulated and measured grain yields (p
= 0.858), according to a two-sample t-test (α = 0.05), with an
RMSE of 1.512 ton ha−1 (Table 4). At GNU, for the wheat season
of 2019, the simulated LAI and AGDM values corresponded to
the measured LAI and AGDM values, with the RMSE ranging
from 0.19 to 0.52m2 m−2 for LAI and from 44.2 to 75.5 g m−2 for
AGDM and the NSE ranging from 0.44 to 0.92 for LAI and from
−0.93 to 0.94 for AGDM (Figure 5 and Table 3). The RSCM
system closely simulated the measured differences in LAI and
AGDM between the regions and nitrogen application regimes.

There were no significant differences between the simulated
and measured grain yields (with p ranging from 0.276 to 0.859),
according to two-sample t-tests (α = 0.05); furthermore, the
RMSE ranged from 0.438 to 1.456 ton ha−1 (Figure 6 and
Table 4). The modeling system also simulated the measured
grain yield differences between the regions and nitrogen
application regimes.

Two-Dimensional Simulation of Wheat
The RSCM for wheat was applied for reproducing two-
dimensional wheat growth and yield variations for the datasets
obtained at GNU in 2018 and 2019 (Figures 7, 8). The
RSCM system closely simulated the field variabilities of
normalized yield index (NYI), LAI, and AGDM due to different
planting regimes and cultivars in the wheat season of 2018
(Figure 7). The simulated NYI, LAI, and AGDM were larger
for the fall-sown wheat than the spring-sown wheat, indicating
comparatively greater variability in the spring-seeded wheat

(Table 5). The RSCM system also presented apparent seasonal
growth differences in terms of LAI and AGDM because of the
differences in seasonal planting periods.

Likewise, the RSCM closely simulated field variabilities in
NYI, LAI, and AGDM due to the different planting regimes
and N treatments for the wheat season of 2019 (Figure 8). The
simulated NYI values were 0.49 ± 0.095 for the spring-sown
wheat and ranged from 0.35 ± 0.116 to 0.40 ± 0.131 for the
N treatments in the case of the fall-sown wheat, indicating
similar variation trends of LAI and AGDM with respect to the
treatment effects on the NYI (Table 6). Furthermore, it was
also noted that the overall two-dimensional projection generally
matched the measured data in the field presented in the earlier
subsection Formulation and Evaluation of RSCM for Wheat
(refer to Figures 4–6).

We also note that the RSCM could reproduce yield and growth
changes in response to different N gradient levels (Figure 9
and Supplementary Table 4). The border effects could also be
observed for low levels of N (i.e., G1–G3 in Figure 9). The
yields and growth conditions in the border pixels appear to
have more productive environments than those in the inner
pixels due to lower plant-to-plant compatibility. The spatial
variations in the projected variables showed more variability
under lower N levels; this is likely because, under these N levels,
wheat growth depended on the variability in soil fertility rather
than N fertilization.

DISCUSSION

This study evaluated and applied a crop-modeling system
integrated with proximal sensing information for reproducing
the two-dimensional variation in wheat productivity. The
proposed RSCM for wheat was first calibrated based on
parameter estimation of wheat growth-specific parameters (i.e.,
RUE, SLA, and k) by using the Jinju dataset of 2018. Previous
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FIGURE 9 | Two-dimensional simulated projections of normalized yield index,

NYI (A), leaf area index, LAI (B), and above-ground dry mass, AGDM (C) of

Chokyeong wheat treated with different nitrogen gradient (G) levels at the

tillering and heading stages at Gyeongsang National University, Jinju, South

Korea, in 2019. The remote-controlled aerial image data for (B,C) were

obtained 60 days after rejuvenation. G1, nitrogen applications of 40 kg ha−1 at

planting, 0 kg ha−1 at rejuvenation, and 0 kg ha−1 at initial reproduction

(40-0-0); G2, 40-10-10; G3, 40-20-20; G4, 40-30-30; G5, 40-40-40-40; G6,

40-50-50; G7, 40-60-60.

studies have introduced parameter estimation techniques for
crop simulation modeling in order to reduce the model’s
complexity and investigate the best possible fit (Maas, 1993a;
Ahuja et al., 2000). RUE, defined as the amount of dry biomass
produced per unit of intercepted solar radiation (Monteith,
1977), is an important parameter employed in many crop models
(Jones et al., 2003; Ko et al., 2010; Nguyen et al., 2019). Both k
and SLA are also crucial parameters in simulating crop growth
and development for most RUE-based crop models (Shawon
et al., 2020a). The parameter k, which is dependent on the type
of crop and the leaf angle distribution, among other factors, is
utilized to simulate the amount of PAR intercepted in the crop
canopy (Charles-Edwards et al., 1986; Goudriaan, 1988). SLA,
adopted as a concept in the analysis of whole plant growth (Gunn
et al., 1999), plays a key role in determining crop productivity;
this is because changes in the SLA reflect the changes in the
structure and nutritional content of leaves (Gong and Gao, 2019).
A crop model is generally designed to simulate crop responses
to environments, considering ideal growth and management
practices (Lövenstein et al., 1992). The current modeling system
was also formulated and parameterized based on this strategy, by
using the abovementioned growth-specific parameters.

An appropriately calibrated crop model can accurately
simulate crop growth and productivity, as well as environmental
conditions such as soil moisture (Ahuja et al., 2000). This
could be realized through the calibration and validation
results of the proposed RSCM for wheat growth and yield.
Although there were a few anomalies in the statistical
comparison index (i.e., NSE) for AGDM during validation
at CNU and GNU, the other statistical analysis cases for
AGDM indicated significant agreement between the simulated
and measured values. The proposed RSCM for wheat also
reproduced LAI and yield values for the different cultivars
and management practices of planting and N treatments in
statistically significant agreement with the corresponding
measured values. Therefore, the wheat-modeling system
showed potential for application in simulation case studies
for different cultivation and management regimes such as
planting and N treatments and the geospatial variations
in growth and productivity by employing pixel-based
two-dimensional simulations.

The RSCM was constructed to simulate crop growth
and productivity with simple input prerequisites to integrate
proximal or RS data. There have been previous endeavors
to establish such integrated crop-modeling systems for barley
(Shawon et al., 2020b), rice (Ko et al., 2015; Nguyen et al., 2019),
and soybean (Shawon et al., 2020a). The proposed RSCMwith the
incorporated modeling procedure could simulate wheat growth
and productivity, with statistically good precision. It would be
significantly advantageous if the RSCM becomes capable of
simulating major agronomic crops through the integration of
RS information from various platforms, such as optical satellites
(Yeom et al., 2018; Jeong et al., 2020) and remote-controlled
aerial systems (Jeong et al., 2018a). The current study introduces
one such prospect of applying the RSCM for wheat growth and
yield monitoring by using a RAS.

The current RSCM system employing RAS-based imagery
requires well-quantified proximal sensing images for enhanced
applicability and distinctive images embodying the growth
of the crop of interest during its growing season (Ko et al.,
2015; Jeong et al., 2016). An essential enhancement is the use
of radiometrically well-calibrated imagery complemented
with a relatively sophisticated sensor. Enhanced RAS
images could afford improved applicability of the model
for monitoring crop growth conditions and productivity
(Jeong et al., 2018a). Such improvements would allow the
incorporation of additional values in the RSCM, thereby
facilitating the investigation of agricultural production
systems. The RSCM can possibly be extended and applied
to information delivery systems and decision support tools
for different crop cultivation management measures and
practical cultivation management tools; this would afford
more precise agricultural practices owing to the accurate
information regarding crop growth and development conditions
provided by the RAS images. Future improvements in the
modeling system could involve formulating it with forecast
feasibility within the crop growing season and for long
periods. Such an enhanced modeling system would be more
applicable as a decision-making system for various practical
management scenarios.
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CONCLUSION

This study introduced an RSCM for simulating the field-
based geospatial variations in wheat growth and yield to
determine a best management practice to achieve improved
wheat productivity. We assume that the modeling system
is applicable for scouting wheat growth and evaluating the
productivity, as well as for field management, owing to the
integration with proximal or RS information from different
platforms (such as sensors on the ground or aboard satellites
and human- or remotely controlled aerial systems). The current
study demonstrated that the RSCM system could reproduce
wheat productivity with different cultivars and various nitrogen
application regimes and its geospatial variation. As an advantage,
a user can operate the RSCM, which has simple input
requirements, with minimal climate data pertaining to solar
radiation and temperatures and proximal or RS images; this is
possible owing to the integration of the crop modeling scheme
and sensing information. The proposed RSCM for wheat requires
appropriately quantified sensing data or imagery for being
applicable in more accurate productivity monitoring of wheat
and different field management decisions.
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