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Coconut production in the Amazon requires the knowledge and development of
sustainable technologies to alleviate the detrimental effects of inorganic chemical
fertilizers and intensive farming practices. In this study, we investigated the effects
of plant growth-promoting rhizobacteria (PGPR) isolated from coconut seedlings
on nutrient use efficiency (NUE) and physiological mechanisms related to biomass
accumulation of seedlings grown with reduced inorganic fertilizer levels. Of the 96 PGPR
isolates tested on rice plants, the isolate Bacillus cereus (UFRABC40) was selected, as
it resulted in the most significant gain in growth variables. In a commercial coconut
tree nursery, we subjected seedlings to two treatments, both with seven replications:
control 100% NPK chemical fertilizer (CF) and B. cereus + 50% NPK CF. The results
indicated that the inoculation increased phytohormone levels [190% indole acetic acid
(IAA), 31% gibberellic acid GA3, and 17% gibberellic acid GA4] and leaf gas exchange
[48% by assimilation of CO2 (A), 35% stomatal conductance to water vapor (gs), 33%
transpiration, and 57% instantaneous carboxylation efficiency] in leaves. Furthermore,
growth parameters (shoot, root, and total dry weight, height, and diameter) and macro-
and micronutrient levels (95% N, 44% P, 92% K, 103 Ca, 46% Fe, 84% B) were
improved. Our results show the potential ability of strain Bacillus cereus UFRABC40
to promote the growth performance of coconut seedlings under decreased application
of inorganic fertilizers. The application of microbial-based products in coconut seedling
production systems improves plants’ physiological performance and the efficiency of
nutrient use.

Keywords: Bacillus cereus, coconut palm, sustainable agriculture, growth promotion, PGPR

INTRODUCTION

The cultivation of coconut trees is of great economic and social importance due to the value
generated by coconut production. According to FAO (2018), Indonesia is the world’s largest
coconut producer, followed by the Philippines, India, Sri Lanka, and Brazil. Production in Brazil
occupies an area of 216 hectares, yielding approximately 2 million tons coconuts (IBGE, 2019), 1.5

Frontiers in Plant Science | www.frontiersin.org 1 October 2021 | Volume 12 | Article 649487

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.649487
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.649487
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.649487&domain=pdf&date_stamp=2021-10-15
https://www.frontiersin.org/articles/10.3389/fpls.2021.649487/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-649487 October 11, 2021 Time: 15:59 # 2

Cardoso et al. Bacillus cereus Improves Palm Performance

million of which are obtained from green dwarf and hybrid
plants (Sindcoco, 2017). The Amazon region produces 11% of
the country’s coconut yield; of this, 10% (200,000 tons) comes
from the state of Pará. The coconut seedlings are the first stage
affecting the productivity of the perennial plant, which has a
mean production-life of 40 years. Green dwarf coconut seeds have
a low germination rate, and their seedlings have low vigor and
quality primarily due to the incidence of leaf spots (Rabelo et al.,
2006; Vinodhini and Deshmukh, 2017).

The global demand for food has resulted in large use of CFs
to attain maximum agricultural efficiency. According to Wang
and Li (2019), only 50% of N from fertilizer is absorbed by
crops. Moreover, it has been estimated that up to 7 million
tons of P per year will be used in phosphate fertilizers by
2050 (Mogollon et al., 2018). The excessive and incorrect use
of fertilizers damages the environment via leaching, runoff, and
erosion (Good and Beatty, 2011; Savci, 2012; Conijn et al.,
2018). It also leads to changes in the soil’s physical, chemical,
and microbiological characteristics (Blanco- Blanco-Canqui and
Schlegel, 2013). The low efficiency of synthetic fertilizers is related
to nutrient loss via leaching and evaporation to the atmosphere
(Tilman, 1998; Gyaneshwa et al., 2002). Thus, the efficient use
of synthetic fertilizers is important for both productivity and
environmental protection (Paungfoo-Lonhienne et al., 2019).
Furthermore, technologies that decrease the adverse effects of
CFs on soil microbiota while promoting crop growth and
productivity should be investigated.

The use of rhizobacteria in plant production can promote
growth (Gange and Gadhave, 2018), and some genera such as
Pseudomonas sp. and Bacillus sp. have been shown to promote the
growth of coconut seedlings (George et al., 2018). Rhizobacteria
can alter anatomical characteristics and improve photosynthetic,
hormonal, and nutritional performance (Glick et al., 1999; Lucy
et al., 2004; Lwin et al., 2012; Samaniego-Gámez et al., 2016).
They also stimulate the synthesis of phytohormones such as
indole acetic acid (IAA) and gibberellins that promote root
and shoot growth (Pahari and Mishra, 2017). Rhizobacteria
also optimize the use of CFs and are considered a sustainable
technology (Angulo et al., 2020). They include N2 fixers,
phosphorus, and potassium solubilizers (Bhardwaj et al., 2014).
In rice, a 50% reduction in N and P fertilization resulted
in better nutrient absorption and chlorophyll content (Naher
et al., 2018). Additionally, the use of Bacillus amyloliquefaciens
combined with 50% CF changed the hormonal behavior of oil
palm seedlings in Amazonian climatic conditions, increasing
IAA levels by 66%, shoot dry matter by 110%, and root dry
matter by 123% and improving macro- and micronutrient uptake
(Lima et al., 2020).

Coconut production in the Amazon requires knowledge
and sustainable technology development to counteract the
negative impacts of CF dependency. Access to the diverse
range of microorganisms associated with plants and soil in
the Amazon biome may improve bioinoculant production.
Bioinoculant production is a process sensitive to both biotic and
abiotic factors.

Therefore, this study aimed to evaluate the effects of
plant growth-promoting rhizobacteria (PGPR) inoculation on

coconut seedlings growth by investigating the physiological
and nutritional mechanisms in seedlings grown under
low CF conditions.

MATERIALS AND METHODS

The experiment was conducted in a coconut tree seedling
nursery, Santa Isabel do Pará-Brazil (1◦13′26′′ S, 48◦02′29′′ W).

Isolation of Bacterial Strains
Six soil samples containing roots (100 g) were collected from
an 8-year-old dwarf coconut plantation in Brazil. Each sample
was divided into portions of 10 g to obtain the isolates. Each
soil sample (10 g) was diluted in 50 mL of sterile distilled
water and agitated for 30 min. An aliquot of 20 µL was then
separated from the original suspension and diluted in 80 µL
(10−3). Next, an aliquot of 50 µL was separated from the
concentrated suspension and seeded into three 9-mm Petri
plates containing 10 mL of culture medium (per liter: g of
sucrose, 8 g of hydrolyzed acid casein, 4 g of yeast extract,
2 g of K2HPO4, 0.3 g of MgSO4, and 15 g of agar) (Kado
and Heskett, 1970). Plates were subsequently incubated at
27◦C ± for 12 h. After incubation, colonies with different
colors, borders, and morphology in the same plate were isolated
and streaked into a new plate containing culture medium
(Kado and Heskett, 1970). These plates were incubated for
the same time and temperature as described above, followed
by bacterial isolate purification. The bacteria were collected in
microtubes containing distilled and sterile water and kept at 5◦C
in a refrigerator.

Selection of Isolates
The selection of growth-promoting isolates was carried out on
rice plants, and subsequently, their interaction with coconut
seedlings was tested according to the method described by de
Castro et al. (2020).

Briefly, rice seeds (10 g) were inoculated with 20 mL of
bacterial suspension obtained from the culture growth in liquid
medium to 108 CFU·mL−1 (Kado and Heskett, 1970) and kept
under agitation at 114 rpm at 27◦C for 24 h (Filippi et al.,
2011). The experimental design consisted of 97 treatments (96
rhizobacteria isolates and a control) with three replicates each
in a greenhouse. Twenty-one days after germination, plants were
evaluated for root and shoot length (LR and LS, respectively) and
total biomass (TDM). Analysis of variance was performed for all
variables, followed by a comparison of means using the Scott–
Knott test (p < 0.05). The R40 isolate (Supplementary Material)
resulted in superior growth parameters compared with all other
treatments; therefore, it was subjected to in vitro biochemical tests
and selected for subsequent testing with green dwarf coconut
seedlings from Brazil.

Identification of Bacterial Isolate
The R40 isolate was cultured in culture medium 523 (Kado
and Heskett, 1970) for 24 h at 28◦C. Two inoculation loops
were added to a microtube containing 1 mL of extraction buffer
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TABLE 1 | Selection of growth-promoting rhizobacteria in rice, isolated from the rhizosphere of commercially grown green dwarf coconut trees from Santa Isabel,
PA, Brazil.

Isolate LA LR TDM Isolate CL RL TDM

(cm) (g) (cm) (g)

1 35.53b 16.16d 0.10b 51 35.26b 15.33d 0.07c

2 34.16b 20.00b 0.08c 52 36.28b 15.75d 0.08c

3 34.95b 27.75b 0.09c 53 32.73b 22.56b 0.10b

4 46.03a 13.66e 0.09c 54 31.50b 20.30b 0.10b

5 32.33c 25.91b 0.11b 55 36.35b 20.06b 0.05c

6 37.45b 21.10b 0.16ab 56 31.20b 23.63b 0.13b

7 32.16b 19.33c 0.10b 57 27.90c 20.80b 0.06c

8 33.00b 14.16e 0.09c 58 32.16b 17.93d 0.08c

9 34.6b 19.5c 0.16ab 59 28.16c 18.70d 0.07c

10 32.66b 21.53b 0.07c 60 46.30a 16.60d 0.09c

11 32.06b 21.83b 0.09c 61 28.34c 11.83e 0.09c

12 36.00b 11.00e 0.09c 62 28.13c 18.23d 0.07c

13 32.86b 20.60b 0.12b 63 31.40b 27.13ab 0.09c

14 42.33a 20.00b 0.08c 64 36.20b 23.40b 0.12b

15 41.10a 15.33d 0.12b 65 27.90c 21.13b 0.13b

16 43.00a 25.00b 0.12b 66 35.06b 24.23b 0.11b

17 37.93b 18.90d 0.10b 67 25.10c 14.50e 0.06c

18 43.66a 14.66e 0.10b 68 30.90b 27.03ab 0.13b

19 40.50a 24.53b 0.10b 69 36b 27.8a 0.1b

20 41.50a 20.46b 0.09c 70 29.03bc 22.2b 0.06c

21 32.23b 23.86b 0.15b 71 27.9c 20.8b 0.06c

22 33.70b 20.56b 0.14b 72 29bc 22b 0.09c

23 33.56b 19.26c 0.12b 73 26.8c 17d 0.13b

24 34.23b 20.16b 0.08c 74 22.76c 13.90e 0.10b

25 34.56b 23.90b 0.12b 75 24.90c 13.66e 0.07c

26 35.53b 23.30b 0.14b 76 30.60b 18.26d 0.05c

27 42.83a 16.06d 0.09c 77 28.23c 20.90d 0.13b

28 38.46b 15.03d 0.08c 78 32.63b 18.43d 0.11b

29 32.7b 22.6b 0.01d 79 27.90c 19.50d 0.08c

30 37.5b 18.1d 0.07c 80 27.70c 19.03d 0.06c

31 34.4b 17.9d 0.07c 81 35.16b 25.46b 0.14b

32 36.3b 14.5e 0.08c 82 38.13b 27.83ab 0.17ab

33 35.35b 16.20d 0.07c 83 28.60c 21.53b 0.09c

34 40.76a 13.16e 0.06c 84 35.80b 21.86c 0.15b

35 39.30b 15.03d 0.12b 85 39.40b 24.63b 0.15b

36 36.83b 18.76d 0.13b 86 36.23b 16.26d 0.08 e

37 40.60a 17.23d 0.15b 87 34.70b 19.60d 0.17ab

38 34.20b 22.16b 0.15b 88 31.80b 20.33d 0.16ab

39 35.46b 23.80b 0.17ab 89 32.26b 24.61b 0.14b

40* 49.6a 28.5a 0.19a 90 31.10b 23.36b 0.12b

41 37.33b 21.66b 0.12b 91 27.90c 20.80b 0.07 e

42 45.80a 22.60b 0.13b 92 33.10b 24.54b 0.15b

43 46.23a 21.36 b 0.15b 93 38.13b 16.66d 0.17ab

44 36.20b 19.63b 0.16ab 94 39.56b 17.40d 0.12b

45 36.93b 23.40b 0.14b 95 28.23c 21.80c 0.13b

46 30.90b 21.30b 0.08c 96 36.33b 17.4d 0.12b

47 28.33c 14.83e 0.05c Control 24.70c 17.86d 0.05 e

48 35.50b 20.63a 0.14b

49 31.90b 16.53d 0.08c

50 26.80c 17.06d 0.16ab

Same letters indicate no significant difference (SNK test, p< 0.05). LR, root length; LA, shoot length (determined with the aid of a millimeter rule); TDM, total biomass
(g/weight of dryplant). *Isolate selected as promising for promoting growth in model plants.
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(Tris-HCl 1x). Then, DNA extraction was performed according
to the method described by Mariano and Silveira (2005). The
R40 isolate was identified using the 16S rDNA region gene
and 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R
(5′ACCTTGTTACGACTT-3′) primers (Lane et al., 1985). The
PCR amplification reaction was composed of 1x Master Mix 2x
(Promega) (0.05 U µL−1 Taq DNA polymerase, 4 mM MgCl2
reaction buffer, 0.4 mM of each DNTP; Promega Corporation,
Madison, WI, United States), 10 µM of each primer, and 50 ng
DNA. Amplification of the 16S rDNA region was performed
in a thermal cycler (MasterCycler Nexus, Eppendorf, Hamburg,
Germany) with the following steps: initial denaturation at 94◦C
for 4 min; 25 cycles of 94◦C for 1 min, 55◦C for 1 min, and
72◦C for 1 min; and a final extension at 72◦C for 7 min.
Reactions were purified using 5 µL of PCR product plus 2 µL
Exo-SAP enzyme (Exonuclease). Samples were purified via a
thermal cycler, performed at 37◦C for 4 min, followed by
an incubation period at 80◦C for 1 min to inactivate both
enzymes irreversibly. After the purification reaction, sequencing
was carried out in an automated sequencer (ABI3730) at the
Laboratory of Bioinformatics and Evolutionary Biology, Federal
University of Pernambuco (LABBE-UFPE).

DNA sequence analysis and assembly of the R40 isolate contigs
were performed using the Staden Package (Staden et al., 1998).

The nucleotide sequence of the UFRABC40 bacteria was
compared with the isolate sequences available in the National
Center for Biotechnology Information (NCBI) database using
the BLASTn software1. Afterward, all sequences were aligned
(MEGA). Bayesian inference (IB) analysis was performed by
means of Mr. Bayes v. 3.2.6 (Ronquist et al., 2012) implemented
in CIPRES2 using the best nucleotide replacement model. This
was selected according to Aikake’s Information Criterion (AIC)
through Mr. Modeltest 2.3 (Nylander, 2004) using 1,000,000,000
generations of Markov Chain Monte Carlo (MCMC) with
sampling every 1,000 and 10,000 generations. Identification of
access and phylogenetic trees was obtained by comparing the
selected strain with the reference strains using 29 reference
accessions to identify the selected strain (R40). Identifying a
bacterial isolate using 16S rRNA was used to identify the
strain selected with the strain of greatest homology. Subsequent
probabilities were calculated after discarding the first 25% of
the generations. All trees obtained from individual genes and
concatenated through the IB method were visualized through the
Fig Tree 1.4.1 software3.

1https://www.ncbi.nlm.nih.gov
2https://www.phylo.org/portal2/home.action
3http://tree.bio.ed.ac.uk/software/figtre

FIGURE 1 | R40 isolate in vitro biochemical tests. (A) R40 isolate colony in Petri plate, (B) phosphate solubilization detection, (C) siderophore production, and (D)
indole acetic acid (IAA) production.
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Biochemical Tests
Indole Acetic Acid Production
The R40 isolate was grown in a Luria Bertani (LB) medium
under 100 rpm agitation and incubated at 28◦C for 78 h.
Subsequently, 3 mL of the suspension was centrifuged at 4◦C
for 10 min at 4,000 rpm (Moustaine et al., 2017). Then,
90 µL of the supernatant and 60 µL of the Salkowski reagent
were placed in a microtube and incubated in the dark for
30 min to determine if a change in mean media color occurred
(Gordon and Weber, 1951).

Production of Siderophores
The R40 isolate was inoculated into test tubes containing a
10 mL Tryptic Soybean Broth (TSB) (1:10 diluted) medium
(3 g in 1,000 mL distilled water) and incubated at 28◦C under
agitation at 114 rpm for 24 h. Subsequently, tubes containing the
bacterial suspension were centrifuged for 10 min at 12,000 rpm.
Then, 1 mL of the supernatant was transferred into another tube
containing 1 mL of the blue chrome S (BCS) solution. Fifteen
minutes after mixing, if siderophores were produced, the dark
blue mixture turned yellow (Schwyn and Neilands, 1987).

Phosphate Solubilization
The R40 isolate was grown in an NBRIP growth medium
containing 10 g glucose, 2.5 g Ca3(PO4), 25 g MgCl2W6H2O,
0.25 g MgSO4W7H2O, 0.2 g KCl, and 0.1 g (NH4)2SO4 (Nautiyal,
1999), at a pH of 7.0, and with the addition of 1.5% agar in
triplicate. The plates were incubated for 14 days at 28◦C; the
presence of a halo was indicative of phosphate solubilization.

Evaluating R40 Isolate Ability to Promote
Growth Coconut Seedlings
Coconut Seeds Preparation
In a coconut tree nursery, the coconut seeds were sown in
wooden boxes (30 cm high, 2 m wide, and 10 m long) containing
coconut fiber and moistened daily for 90 days. The chemical

FIGURE 2 | Green dwarf coconut seedlings from Brazil. (A) Control coconut
seedlings with 100% chemical fertilization and (B) coconut seedlings
inoculated with Bacillus cereus and 50% chemical fertilization.

characterization of the coconut fiber substrate (Golden Mix type
4 – AMAFIBRA R©) was as follows: 0.086 g kg−1 N, 0.264 g kg−1

P, 0.580 g kg−1 K, 0.128 mg kg−1 Ca, 0.447 mg kg−1 MgO,
272.86 mg kg−1 S, 42.25 mg Na, 0.703 mg L−1 B, 0.12 g kg−1,
copper Cu, 0.5 mg kg−1 Fe, 0.6 mg kg−1 Mn, 0.78 mg kg−1 Zn,
and 92.43% organic matter (OM).

Coconut Seedling Preparation
Seedlings with 15 cm tall and two leaves were transplanted to
polyethylene bags (40 × 40 × 40 cm) containing 7.5 kg/bag
of coconut fiber (50% moist). Chemical fertilization was
performed 30 days after transplanting (DAT) with 3 g urea,
40 g simple superphosphate (18% P2O5), 10 g potassium
chloride (60% K2O), and 5 g magnesium oxide (30% Mg)
(Lins and Viégas, 2008).

Evaluation of Coconut Seedling Growth
For the establishment of treatments, the recommendation
of commercial fertilization was followed. Thus, the control
treatment is characterized as 100% chemical fertilization (CF)
and without the use of bioinoculant. The control treatment used
standard CF (as described in the previous section) applied at
90 and 150 DAT. The treatment with rhizobacteria comprised
inoculation with a suspension of R40 isolate (108 CFU) + 50%
standard CF at 90 DAT. The bacterial strain was inoculated
by applying 300 mL plant−1 of a suspension at 108 CFU·mL−1

through watering at 40 and 70 DAT. Biometrics, gas exchange,
hormone levels, and nutrient levels were evaluated at 160 DAT.
The experimental design was completely randomized, with 10
replications and 2 treatments.

Biometrics
The following biometric variables were evaluated: shoot, root,
and total dry weight, height, and diameter. Additionally, the leaf
area was determined from photographs using the APS Assess
software version 2.0 (Lamari, 2002).

Leaf Gas Exchange
Gas exchange parameters were estimated using the first
physiologically mature, fully expanded leaf, from apex to
base, at 3 months of age. The net assimilation of CO2 (A),
stomatal conductance to water vapor (gs), transpiration
rate (E), and instantaneous carboxylation efficiency (A/Ci)
were estimated between 08:00 and 11:00 am using a
portable open-flow gas-exchange system (LI6400XT, LI-
COR, Lincoln, NE, United States) under an external CO2
concentration of 400 µmol mol−1 of air and artificial
photosynthetically active radiation (PAR) of 900 µmol of
photons m−2 s−1.

Hormone Profile
Indole acetic acid (IAA) and gibberellic acid (GA3 and GA4)
hormone levels were determined according to Munné-Bosch
et al. (2011). For this, 300 mg of fresh tissue from the
second leaf of each plant was stored in liquid N. The tissue
material was then lyophilized and macerated in liquid N. Then,
40 mg dry mass was weighed, and 400 µL of extraction
solvents (methanol:isopropyl alcohol:acetic acid; 20:79:1) was
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added. Samples were vortexed four times for 20 s (on ice),
sonicated for 5 min, placed on ice for 30 min, and then
centrifuged at 13,000 rpm for 10 min at 4◦C. After centrifugation,
350 µL of supernatant was removed and transferred to another
microtube. Approximately 300 µL of the extract obtained in
flasks was added, and 5 µL of the mixture was injected into
the NuBioMol LC/MS system (Biomolecule Analysis Center,
UFV, Brazil). A chromatography column (Agilent Eclipse; Agilent
Technologies, Santa Clara, CA, United States) was used (RRHD,
C18 column, 50 mm × 2.1 mm, 1.8 µm) with a flow
rate of 0.3 mL min−1 coupled to a triple quadrupole QQQ
mass spectrometer (Agilent Technologies). Mass spectra were
alternately negative/positive operated according to the retention
time for each hormone. The generated mass spectra were

processed using the MassHunter software to obtain the extracted
ion chromatograms (XIC) for each transition and area values,
indicating the abundance of each hormone. A curve pattern for
each hormone over a concentration range from 0.1 to 300 ng
mL−1 was used to convert the XIC area values into ng g−1 of
plant tissue. Molecular mass spectra analysis was conducted using
the Skyline software.

Nutritional Content
Leaf samples dried in an oven with forced air circulation at
60◦C were ground. The samples were submitted to sulfuric
and nitroperchloric digestion. The determination of nitrogen
(N) was by distillation in Microdistillator Kjeldhal, phosphorus
(P) by visible ultraviolet spectrophotometry (UV-VIS), and

FIGURE 3 | Biometrics of green dwarf coconut seedlings from Brazil (uninoculated and inoculated with B. cereus). (A) Height, (B) stem diameter, (C) shoot dry
matter, (D) root dry matter, (E) total dry matter (E), and (F) leaf area in plants with 100% chemical fertilization (control) and plants inoculated with Bacillus cereus with
50% chemical fertilization. The same letters indicate no significant difference (t-test, p < 0.05).
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potassium (K), calcium (Ca), and iron (Fe) by absorption
spectrometry atomic, flame modality (EAA/cham). Analysis
of boron (B) was undertaken after dry digestion of the
samples using the method described by Azometrinah (Malavolta
et al., 1997; Carmo et al., 2000). The nutrient use efficiency
(NUE) was estimated from agronomic efficiency, NUE (g
DW g −1) = aerial dry weight (g)/plant applied nutrient (g)
(Fageria et al., 2008).

Statistical Analysis
Differences among means for treatments were evaluated using
the t-test (p < 0.05). All data were analyzed using the R software
(R Core Team, 2017).

RESULTS

Isolate Selection in the Plant Model
The rice plants used as a model for selecting rhizobacteria
showed that the R40 isolate was better for root and shoot
length variables and total biomass compared with the other

treatments (Table 1). The isolate R40 increased by 101% shoot
length, 60% root length and 280% total biomass in comparation
that is seedlings non-bioinoculation. In vitro biochemical tests
were performed, showing that the R40 isolate was able to
solubilize phosphate as proven by the halo formation around
the bacterial colonies. There were also reactions indicating
siderophore and IAA production when the R40 isolate was
exposed to CAS solution and Salkowski’s test, respectively
(Figure 1). Thus, the R40 isolate was selected to evaluate growth
promotion in green dwarf coconut seedlings in Brazil under
nursery conditions.

Growth-Promotion Coconut Seedlings
The R40 isolate sequence was compared in GenBank using
the BLASTn tool. The isolate showed 100% identity with the
genus Bacillus (ATCC14579T). Based on the construction of the
phylogenetic tree from 29 accesses, it was possible to identify
the isolate as B. cereus. The sequence was deposited in GenBank
as B. cereus (UFRABC40) with accession number MN393059
(Supplementary Table 1 and Supplementary Figure 1).

FIGURE 4 | Leaf gas exchange in green dwarf coconut seedlings. (A) The net assimilation of CO2 (A), (B) stomatal conductance to water vapor (gs), (C)
transpiration (E), and instantaneous carboxylation efficiency (A/Ci) in plants with 100% chemical fertilization (control) and plants inoculated with Bacillus cereus with
50% chemical fertilization. The same letters indicate no significant difference (t-test, p < 0.05).
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FIGURE 5 | Phytohormone quantification in coconut seedlings. (A) Indoleacetic acid (IAA), (B) gibberellic acid GA3, and (C) gibberellic acid GA4 in plants with 100%
chemical fertilization (control, T1) and plants inoculated with Bacillus cereus with 50% chemical fertilization (T2). The same letters indicate no significant difference
(t-test, p < 0.05).

The inoculation of strain B. cereus promoted the growth of
coconut seedlings even in the presence of lower levels of chemical
fertilizers (Figure 2). The application of B. cereus significantly
increased shoot dry weight (47%), root dry weight (122%), total
dry weight (35%), height (26%), and diameter (30%) compared
with the control treatment (Figure 3).

Gas exchange was also influenced by inoculation with B. cereus
from the third month of age in Brazilian green dwarf coconut
tree seedlings. The nursery trial results indicated a maximum
increase of 48% in A, 35% in gs, 33% in E, and 57% in A/Ci in
plants inoculated with B. cereus compared with the uninoculated
control (Figure 4). B. cereus inoculation led to an increase of
190% in IAA, 31% in GA3, and 17% in GA4 in coconut seedlings
compared with the uninoculated control (Figure 5).

The B. cereus application significantly increased
macronutrients and micronutrients in coconut plants by
95%, 44%, 82%, 103%, 46%, and 84% for N, P, K, Ca, Fe,
and B, respectively (Table 2), compared with the control.
Treatment with B. cereus shows greater efficiency in the use of
nutrients (Table 3).

DISCUSSION

The rhizobacteria B. cereus promoted the growth of green dwarf
coconut seedlings. Bacterial inoculation induced changes in the
metabolism of coconut tree seedlings, by stimulating hormonal
modulation, and photosynthetic performance and efficient use
of nutrients, which ultimately resulted in a greater growth of
coconut tree seedlings. These results may be due to the increase
in IAA concentrations derived from the enhanced production by
B. cereus strain (as shown in Figure 1) or due to the regulation
of its biosynthesis in the plants (Figure 5). Indole acetic acid is
responsible for modulating the differentiation and elongation
of lateral roots, as well as increasing the number of root hairs,
therefore promoting greater nutrient absorption (Costa et al.,
2015; Cassán et al., 2020). Combined with the positive effects of
IAA, it is possible that bioinoculation has reduced ethylene levels
in the roots by the activity of the enzyme 1-aminocyclopropane-
1-carboxylic acid (ACC) deaminase. This enzyme regulates
ethylene synthesis by cleaving its acid precursor, ACC (Belimov
et al., 2004; Siddikee et al., 2011), thus decreasing the negative

Frontiers in Plant Science | www.frontiersin.org 8 October 2021 | Volume 12 | Article 649487

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-649487 October 11, 2021 Time: 15:59 # 9

Cardoso et al. Bacillus cereus Improves Palm Performance

TABLE 2 | Nutritional content in the shoots of green dwarf coconut seedlings from Brazil.

Treatments N P K Ca Fe B

(g/Dry leaf weight) (mg/Dry leaf weight)

Control 0.71b 0.09b 1.28b 0.33b 10.29b 1.21b

B. cereus 1.39a 0.13a 2.33a 0.67a 15.02a 2.23a

Control treatment (100% chemical fertilization) and inoculated with Bacillus cereus combined with 50% chemical fertilization. The same letters indicate no significant
difference (t-test, p < 0.05).

TABLE 3 | Nutrient use efficiency (NUE) of green dwarf coconut seedlings from Brazil.

Treatments N P K Ca Fe B

NUE (g DW g −1)

Control 8.7b 0.7b 2.5b 107.2b 27.5b 19.6b

B. cereus 25.9a 2.0a 7.3a 320.6a 82.1a 56.6a

Dry weight (DW). Control treatment (100% chemical fertilization) and inoculated with Bacillus cereus combined with 50% chemical fertilization. The same letters indicate
no significant difference (t-test, p < 0.05).

effects of ethylene on growth and allowing the development
of a better root system in inoculated plants (Glick, 2012).
Bacillus cereus inoculation resulted in the more efficient use
of macro- and micronutrients. A significant positive effect
on the levels of the seven nutrients evaluated was observed
(Tables 2, 3). Recommendations for the use of CFs are based on
soil analysis and the mechanisms of macro- and micronutrient
loss, such as volatilization, leaching, and adsorption, resulting
in low absorption by the plant (Biswas et al., 2000; Ahmad
et al., 2019). These root regions have a high influx of available
ions, resulting in greater water and nutrient absorption. Root
system changes induced by microorganisms improve NUE.
This phenomenon has been reported in the interaction
between banana and the bacterial strains Pseudomonas
fluorescens Ps006 and Bacillus amyloliquefaciens Bs006 (Gamez
et al., 2018) resulting in greater plant biomass. Another
mechanism involved in the NUE of biostimulated coconut
plants is the mineralization rate of the coconut fiber substrate
by bioinoculant enzymatic activity, resulting in increased
nutrient availability.

For N, B. cereus may make N available from the organic
N contained in the coconut fiber via ammonium and nitrite
oxidation. This was described by Di Benedetto et al. (2016),
who found that Pseudomonas and Bacillus strains were able
to oxidize ammonia to NO2

− ions (nitrosification) and
then to NO3

− ions (nitrification). In a study with Triticum
aestivum, the inoculation of Bacillus megaterium SNji (BmeSNji)
and Azospirillum brasilense 65B (Abr65B) provided greater
availability of nutrients to plants, such as N, from decomposition
of organic matter resulting in greater accumulation of biomass in
plants (Nguyen et al., 2019).

Coconut plants inoculated with B. cereus also had
enhanced K uptake. This might be explained by its ability
to produce organic acids that act in the mineralization of
K present in the coconut fiber substrate, making K+ ions
available for plant absorption. According to Sheng and He
(2006), the Bacillus edaphicus NBT strain and its mutants
can chelate metals and mobilize K from K-containing

minerals using organic acids such as citric, oxalic, tartaric,
and succinic.

Solubilization of P by rhizobacteria requires the production of
phosphatases and phytases that mineralize the organic material
by esters and H3PO4 anhydride hydrolysis (Tabatabai, 1994;
Nannipieri et al., 2011). In maize, Pseudomonas plecoglossicida
(PSB5) inoculation increased P production by 18% and its
total absorption by 46%. This was due to the increased activity
of enzymes such as dehydrogenases and phytases (Kaur and
Reddy, 2013). In this study, B. cereus was able to solubilize P
in vitro, and plants inoculated with this strain showed higher
levels of P than control ones. As observed in vitro, B. cereus
can produce siderophores, which are low molecular weight
iron-chelating compounds with a great affinity and selectivity
for binding and forming a Fe complex (III), reducing Fe3+

to Fe2+ (Hider and Kong, 2010; Fukushima et al., 2013).
In mustard, the capacity of Bacillus sp. PZ-1 to produce
siderophores resulted in higher Fe levels available for the plant
(Yu et al., 2017).

Boron is a micronutrient essential for plant growth and
development, and coconut plants have high B requirements
(Moura et al., 2013). Brazilian Amazonian soils are generally
deficient in B, and appropriate CF use is critical to avoid
B deficiency. However, the application of excess exogenous B
can easily be lethal to plants. Boron is not described as an
essential nutrient for PGPR growth; however, in Arthrobacter
nicotinovorans strain C, phenylboronic acid (PBA) catabolism
was demonstrated, releasing B as orthoboric acid [B(OH)3]
(Negrete-Raymond et al., 2003). Rhizobacterium-mediated B
availability to plants occurs through the production of organic
acids in the rhizosphere region, resulting in medium acidification
and pH decrease, the latter being the main limiting factor
in B availability (Deubel et al., 2000; Turan et al., 2006).
Concomitant B uptake by the plant occurs through the mass
flow from transpiration (Alpaslan and Gunes, 2001). Therefore,
the increased transpiration rate provided by PGPR inoculation
can influence B absorption (Mayak et al., 2004; Dodd and
Pérez-Alfocea, 2012). In the present study, plants inoculated

Frontiers in Plant Science | www.frontiersin.org 9 October 2021 | Volume 12 | Article 649487

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-649487 October 11, 2021 Time: 15:59 # 10

Cardoso et al. Bacillus cereus Improves Palm Performance

with B. cereus had almost twice the accumulated B in the
shoots and twice the transpiration rate compared with the
control. According to our analysis, this may be due to the
enzymatic activity of B. cereus on the coconut fiber substrate
that contained 70.35 ppm of B. The positive relationship between
P and B absorption found in plants inoculated with Bacillus
sp. has been recorded in canola; Bacillus improved B and
P availability by 37% and 30%, respectively, in native soil
(Samreen et al., 2019). These results are like ours, obtained
with B. cereus coconut seedlings (Table 2). The increasing use
of CFs especially with NPK and B is rapidly making them
polluting agents. When not absorbed by the plants, they are
leached and deposited in watercourses, or immobilized and
accumulated in the soil. Implementing microbial technology
in coconut seedlings tree production systems improves the
physiological performance and NUE of plants, reducing the need
for CFs.

In this study, the increases in the root system induced by
B. cereus provided coconut seedlings with a greater possibility
of absorption and translocation of nutrients, contributing to
a greater growth in the aerial part (Amir et al., 2005). The
increase in the aerial part growth and leaf expansion promoted by
B. cereus can be attributed to the greater synthesis of gibberellins,
according to the results obtained in this study (Figure 3).
Increased active gibberellin concentration in the leaf tissue was
stimulated by the activity of Azospirillum spp. because this
microorganism promoted a significant synthesis and consequent
increase in the concentration of this phytohormone (Lucangeli
and Bottini, 1997; Piccoli et al., 1997; Cassán et al., 2001).
Similar results were observed in alder (Alnus glutinosa) plants,
where the use of Bacillus sp. enhanced the production of several
isomers of gibberellins (GA1, GA3, GA4, and GA20) that were
responsible for leaf area expansion and increased leaf emission
rate (Gutiérrez-Mañero et al., 2001; Chauhan et al., 2015). Larger
leaf areas resulted in a higher biomass accumulation in B. cereus
inoculated plants.

This leaf modulation promoted by the microorganisms led
to increased light capture and, consequently, increased CO2
assimilation. The increased CO2 input is due to a larger stomatal
opening, verified in the present study, allowing greater CO2
diffusion, and reducing stomatal resistance (Flexas et al., 2012;
Zhang et al., 2017). B. cereus regulates most of the Rubisco
carboxylation, the electron transport rate, and increases the
supply of ATP and NADPH molecules for photosynthesis (Shi
et al., 2010), increasing carbon fixation and, consequently,
increasing carbohydrate production as observed in the improved
growth parameters of B. cereus inoculated plants.
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