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Cultivated strawberry is the most widely consumed fruit crop in the world, and therefore,
many breeding programs are underway to improve its agronomic traits such as fruit
quality. Strawberry cultivars were vegetatively propagated through runners and carried a
high risk of infection with viruses and insects. To solve this problem, the development of
F1 hybrid seeds has been proposed as an alternative breeding strategy in strawberry. In
this study, we conducted a potential assessment of genomic selection (GS) in strawberry
F1 hybrid breeding. A total of 105 inbred lines were developed as candidate parents of
strawberry F1 hybrids. In addition, 275 parental combinations were randomly selected
from the 105 inbred lines and crossed to develop test F1 hybrids for GS model training.
These populations were phenotyped for petiole length, leaf area, Brix, fruit hardness, and
pericarp color. Whole-genome shotgun sequencing of the 105 inbred lines detected
20,811 single nucleotide polymorphism sites that were provided for subsequent GS
analyses. In a GS model construction, inclusion of dominant effects showed a slight
advantage in GS accuracy. In the across population prediction analysis, GS models
using the inbred lines showed predictability for the test F1 hybrids and vice versa,
except for Brix. Finally, the GS models were used for phenotype prediction of 5,460
possible F1 hybrids from 105 inbred lines to select F1 hybrids with high fruit hardness
or high pericarp color. These F1 hybrids were developed and phenotyped to evaluate
the efficacy of the GS. As expected, F1 hybrids that were predicted to have high fruit
hardness or high pericarp color expressed higher observed phenotypic values than the
F1 hybrids that were selected for other objectives. Through the analyses in this study,
we demonstrated that GS can be applied for strawberry F1 hybrid breeding.

Keywords: strawberry, F1 hybrid breeding, genomic selection, fruit hardness, pericarp color

INTRODUCTION

Cultivated strawberry (Fragaria × ananassa) is an allo-octoploid (2n = 8x = 56) species
that originated from an interspecific hybridization between Fragaria virginiana and Fragaria
chiloensis (Darrow, 1966). The cultivated strawberry is the most widely cultivated fruit
crop in the world and has an annual global production exceeding 9 million tons in 2017
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(FAOSTAT1). Because of its economic importance, breeding
programs for cultivated strawberries are underway to improve
fruit quality, disease resistance, and yield performance (Honjo
et al., 2011; Lerceteau-Köhler et al., 2012; Roach et al.,
2016; Gezan et al., 2017). Cultivated strawberries are usually
propagated vegetatively from runners. Therefore, development
and distribution of a new strawberry cultivar have been
performed by selecting individuals with desirable characteristics
and vegetative propagation. However, seedling production
through runners carries a risk of infection with viruses
and insects. Therefore, farmers and breeders are dedicating
substantial efforts to protect strawberry runners from viruses
and insects. To solve these problems, the development of seed-
propagated strawberry has been proposed as an alternative
strawberry breeding method. More specifically, production of
F1 hybrid seeds has begun in several countries (Bentvelsen
et al., 1997; Rho et al., 2012; Mori et al., 2015). The use
of F1 hybrid breeding has two major advantages over the
traditional vegetatively propagated strawberry breeding. One is
the risk mitigation for infection by viruses and insects because
seed infection has not been reported in major diseases in
strawberry. Second, in general, F1 hybrids express high yield and
high robustness against various stresses, although the genetic
mechanism is largely unknown (Duvick, 2001). Therefore, F1
hybrid breeding has the potential to be a new standard in
strawberry breeding.

Genomic selection (GS) is now widely used for genetic
improvement of quantitative traits (Meuwissen et al., 2001).
In GS, breeding selections are performed based on genetic
potential that has been estimated from genome-wide genotype
data; thus, GS can reduce the costs and effort required for
phenotypic observation in plant breeding (Crossa et al., 2017).
In F1 hybrid breeding, the number of parental combinations
that should be tested exponentially increases as the number of
candidate parents (i.e., inbred lines) increases. Therefore, the
pre-selection of promising F1 hybrids (or the pre-removal of
non-promising F1 hybrids) by using GS considerably contributes
to efficient F1 hybrid breeding (Xu et al., 2014; Acosta-Pech
et al., 2017; Basnet et al., 2019). In GS, a training population,
which has been phenotyped and genotyped, is used to construct
a model that predicts the genetic potential of unphenotyped
individuals using genome-wide genotype data. Therefore, the
availability of genome-wide genotyping platforms is necessary to
conduct GS. Recent advances in genome sequencing technologies
have enabled the development of analytical platforms for
complicated genomes such as allo-octoploid strawberry. The
first genome sequence assembly of allo-octoploid strawberry
was conducted for the cultivar ‘Reikou’ (Hirakawa et al., 2014).
Recently, a chromosome-scale assembly was developed for the
cultivar ‘Camarosa’ (Edger et al., 2019). These reference genomes
enable the detection of large numbers of single nucleotide
polymorphisms (SNPs) and subsequent genetic analyses. Bassil
et al. (2015) developed a high-density SNP genotyping array
that enabled the construction of genetic linkage maps in allo-
octoploid strawberry (Nagano et al., 2017). The genetic linkage

1http://faostat3.fao.org

maps revealed that subgenome-specific loci were randomly
located across the genomes. Hardigan et al. (2019) conducted
genotyping-by-sequencing (GBS) for a diversity panel of Fragaria
species, including F. × ananassa, F. chiloensis, and F. virginiana,
which revealed macrosynteny between cultivated strawberries
and wild progenitors. These genome-wide genotyping platforms
for strawberry have also been applied for GS. Gezan et al. (2017)
assessed the potential of GS to improve basic agronomic traits
such as fruit quality and yield performance. Pincot et al. (2020)
evaluated GS model accuracy for soil-borne disease resistance
by using a genetically diverse population. However, to the best
of our knowledge, no study has applied GS for F1 hybrid
breeding in strawberry.

In this study, we conducted a potential assessment of GS in
strawberry F1 hybrid breeding. For this objective, we used 105
inbred lines that were developed as candidate parents in an F1
hybrid-breeding program. In addition, we developed 275 test F1
hybrids whose parental combinations were randomly selected
from the 105 inbred lines. The genotype and phenotype data
for these populations were used to construct GS models for
vegetative and fruit-related traits. Then, the GS models were
used for phenotype prediction of 5,460 possible F1 hybrids from
the 105 inbred lines. Finally, we conducted breeding selection
for the characteristics of fruit hardness and pericarp color to
demonstrate the efficacy of GS in strawberry F1 hybrid breeding.

MATERIALS AND METHODS

Plant Materials
A total of 105 inbred lines were developed for candidate parents
of hybrid breeding at the Institute of Vegetable and Floriculture
Science, National Agriculture and Food Research Organization,
Ano, Tsu, Japan (Figure 1A). The ancestors of the 105 inbred lines
are strawberry cultivars that include ‘Aiberry,’ ‘Aistro,’ ‘Akanekko,’
‘Akihime,’ ‘Amaou,’ ‘Asukaruby,’ ‘Athene,’ ‘Benihoppe,’ ‘Chukan-
bohon Nou 2,’ ‘Hinomine,’ ‘Houkou wase,’ ‘Kentaro,’ ‘Kurume
58,’ ‘Pajaro,’ ‘Sachinoka,’ ‘Sagahonoka,’ ‘Santigo,’ ‘Satsumaotome,’
‘Tochihime,’ ‘Tochinomine,’ ‘Toyonoka,’ and ‘Yumeamaka.’ After
three cycles of recurrent random crosses, 105 progenies that did
not show low fertility and aberrant morphology were selected.
Thus, genomes of the progenies consist of a mixture of ancestor
genomes. Four generations of single seed descent were then
performed to develop the inbred lines. In addition, 275 test
F1 hybrids were developed for GS model training (Figure 1A).
Parental combinations of the test 275 F1 hybrids were randomly
selected from the 5,460 possible combinations (i.e., we did
not consider whether a line was used for seed- or pollen-
parent). Validity of the selected parental combinations as a GS
training population was confirmed using the genetic relationship
between the 275 test F1 hybrids and the other possible parental
combinations (see below; Figure 2C). Figure 1A represents the
GS breeding scheme in this study and the role of the population.

Phenotyping
Strawberry agronomic traits analyzed in this study are
summarized in Table 1. Each phenotypic value in this study
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FIGURE 1 | Experimental design in this study. (A) Schematic representation of GS strategy in this study. (B) Periods where plant growth and phenotyping were
conducted in this study. ‘105-ILs’ indicates the 105 inbred lines. ‘275-F1s’ indicates the 275 test F1 hybrids. ‘GS hybrids’ indicates the F1 hybrids that were selected
for the pilot GS experiment in this study.

was the average of six plants per genotype. Leaf area was
determined by approximating the ellipse, calculated as leaf length
(cm) × leaf width (cm) × 3.14. Brix values were measured
using a refractometer, PAL-1 (ATAGO, Tokyo, Japan). Fruit
hardness was measured using a digital force gage DS2-5N, and
the data were analyzed using the ZP-Recorder software (IMADA,
Aichi, Japan). To measure fruit hardness, fruits were compressed
using a 2 rigid plunger at a 10 mm/min compression speed. To
evaluate pericarp color, lightness (L∗) and hue (a∗, b∗) were
measured using a colorimeter, CR-20 (KONICA MINOLTA,
Tokyo, Japan). Pericarp color value was calculated as L∗ × b∗/a∗,
where lightness (L∗) and hue (a∗, b∗) were measured using
the colorimeter. The distribution of the phenotypic values are

shown in Supplementary Figure 1. Figure 1B represents periods
where plant growth and phenotyping for each population were
conducted. Plant growth and phenotyping were performed using
elevated cultivation system in a greenhouse at the Institute of
Vegetable and Floriculture Science, National Agriculture and
Food Research Organization, Ano, Tsu, Japan.

Whole Genome Shotgun (WGS)
Sequencing
Genomic DNA of the 105 inbred lines was extracted from the
leaves using the Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden,
Germany). The DNA was physically sheared into approximately
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FIGURE 2 | Genetic relationship of the populations in this study. (A) Chromosomal distribution of 28,011-SNPs used in this study. (B) Homozygosity of the 105
inbred lines. The horizontal line indicates expected homozygosity genotype ratio (i.e., 0.9375). (C) Principal component analysis of the populations in this study
based on 28,011-SNP genotypes. The gray crosses indicate the 5,460 possible F1 hybrids. The black crosses indicate the 275 test F1 hybrids. The white circles
indicate the 105 inbred lines.

350bp fragments using Covaris S220 (Covaris, Woburn, MA,
United States) and fragments of 300–400 bp in length were
fractionated with the Sage Science BluePippin (Sage Science,
Inc., Beverley, MA, United States). The fractionated DNA was
used for DNA library construction with Illumina TruSeq DNA
PCR-Free Library Preparation Kit (Illumina, San Diego, CA,
United States) in accordance with the manufacturer’s protocols.
Sequencing of the DNA library was conducted with Illumina
HiSeq X with 2 × 150 paired end reads. The obtained reads
were subjected to quality control as follows. Bases with quality
scores less than 10 were filtered using PRINSEQ version 0.20.4
(Schmieder and Edwards, 2011) and adaptor sequences in
the reads were trimmed using fastx_clipper from the FASTX-
Toolkit version 0.0.132. The filtered reads were mapped onto
the reference sequence of the strawberry genome (FAN_r2.3;
Strawberry GARDEN3) using Bowtie 2 version 2.3.2 (Langmead
and Salzberg, 2012) with parameters of maximum fragment size
length 1000 (X = 1000), in the ‘–sensitive’ preset of the ‘–end-to-
end’ mode. The resulting binary alignment map (BAM) files were
subjected to variant calling using the mpileup option (parameters

2http://hannonlab.cshl.edu/fastx_toolkit/index.html
3http://strawberry-garden.kazusa.or.jp/

of -Duf) of SAMtools version 0.1.20 and the view option
(parameters of -vcg) of BCFtools (Li et al., 2009). The variants
were filtered using VCFtools version 0.1.13 (Danecek et al., 2011)
with the following parameters: minimum read depth = 10 (–
minDP 10), minimum mean read depth = 1000 (–min-meanDP
1000), maximum mean read depth = 6000 (–max-meanDP
6000), minimum minor allele frequency = 0.05 (–maf 0.05),
minimum genotype quality = 20 (–minGQ 20), and maximum
proportion of missing data = 0.1 (–max-missing 0.1). Linkage
disequilibrium (LD)-based variant pruning was performed using
BCFtools (Li et al., 2009) with parameters of maximum LD = 0.95
(−l 0.95), and window size = 1000 bp (-w 1000). The missing
genotypes were estimated using the R package missForest
version 1.4 with default parameter settings (Stekhoven and
Bühlmann, 2012). The SNPs whose frequency of heterozygotes
was greater than 0.25 were filtered out because these may
not be subgenome-specific loci (Supplementary Figure 2).
Finally, the SNPs detected on unanchored scaffolds of the
reference genome were excluded from further analyses because
of ambiguity in their chromosomal location. To investigate the
genetic relationship between the populations in this study, we
conducted a principal component analysis (PCA) with the R
function ‘prcomp.’
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TABLE 1 | Strawberry traits and their estimated heritability.

Trait Details Estimated heritabilitya

105-ILs 275-F1s

h2
A h2

A h2
AD

Petiole length Petiole length (cm) 0.630 0.715 0.733

Leaf area Ellipse approximation calculated as leaf length (cm) × leaf width (cm) × 3.14 0.589 0.769 0.78

Brix Degree of brix, measured using a refractometer 0.357 0.724 0.765

Fruit hardness Samples compressed with a 2ϕ rigid plunger and a compression speed of 10 mm/min 0.400 0.618 0.691

Pericarp color Calculated as L* × b*/a*, where lightness (L*) and hue (a*, b*) were measured by a colorimeter 0.260 0.739 0.783

a105-ILs: 105 inbred lines; 275-F1s: 275 test F1 hybrids; h2
A: heritability based on additive effect model; h2

AD: heritability based on additive plus dominant effect model.

Heritability
In this study, we estimated trait heritability using two methods.
One is the additive effect heritability (ĥ2

A), which was calculated
using the following equation:

ĥ2
A = σ̂2

A
/ (

σ̂2
A + σ̂2

e
)

(1)

where σ̂2
A and σ̂2

e are additive genetic variance and error variance,
respectively. The second heritability is additive plus dominant
effect heritability (ĥ2

A), which was calculated as the following:

ĥ2
AD =

(
σ̂2
A + σ̂2

D
) / (

σ̂2
A + σ̂2

D + σ̂2
e
)
, (2)

where σ̂2
D is the dominant genetic variance. σ̂2

Aand σ̂2
D were

estimated using the additive (A) and dominance (D) relationship
matrices, respectively (Endelman and Jannink, 2012; Vitezica
et al., 2013). For ĥ2

A, σ̂2
Awas estimated using the following:

V̂ = Aσ̂2
A + Iσ̂2

e , (3)

where I is an n × n identity matrix, and V̂ is the phenotypic
variance–covariance matrix. For ĥ2

AD, σ̂2
A and σ̂2

D was estimated
by fitting:

V̂ = Aσ̂2
A + Dσ̂2

D + Iσ̂2
e (4)

Fitting of eq. 3 and 4 were performed using the function ‘BGLR’
in the R package BGLR version 105 (Pérez and de Los Campos,
2014). In the estimation of ĥ2

AD, we did not show the value of each
variance component (i.e., σ̂2

Aand σ̂2
D) since precise calculation of

each variance component was difficult because of the correlation
between A and D.

GS Model Construction
In this study, we tested five statistical models to construct the GS
models. The genomic best linear unbiased prediction (GBLUP;
VanRaden, 2008), Bayes B (BB; Meuwissen et al., 2001), and
Bayesian Lasso (BL; Park and Casella, 2008) are linear models.
For the linear models, we compared two options: additive effect
model and additive plus dominant effect model. As for nonlinear
models, we tested reproducing kernel Hilbert spaces regression
(RKHS; Gianola and Van Kaam, 2008) and random forest (RF;
Breiman, 2001). We did not test the additive plus dominant effect
model for the two nonlinear models because these models have
been designed to incorporate dominant effects.

The additive and additive plus dominant effect models for
GBLUP were equivalent to eq. 3 and 4. Fitting of the GBLUP
models were performed using the function ‘BGLR’ in the
R package BGLR version 1.0.5 (Pérez and de Los Campos,
2014). The additive plus dominant effect model for BB and BL
were designed using the concatenation of genotype matrix and
heterozygosity matrix as the explanatory variables. The genotype
matrix includes SNP genotype values that were coded as {−1, 0,
1} = {aa, Aa, AA}. In the heterozygosity matrix, heterozygosity
of the SNP genotype was coded as {0, 1, 0} = {aa, Aa, AA}. BB
and BL in this study were performed using the function ‘vigor’
in the R package VIGoR version 1.0 (Onogi and Iwata, 2016).
RKHS was performed using function ‘kin.blup’ in the R package
rrBLUP version 4.6.1 (Endelman, 2011). RF was performed using
function ‘randomForest’ in the R package randomForest version
4.6 (Liaw and Wiener, 2002).

Cross-Validation
Two-fold cross-validation was performed to evaluate the
accuracy of the GS models in this study. We performed 50
replicates for each trait and the same fold was used between
combinations of statistical models and traits. The predictive
accuracy was measured as the Pearson’s correlation coefficient
between the predicted and observed phenotypic values using the
R function ‘cor.test.’

Genotypes of the Possible F1 Hybrids
The SNP genotypes of the 5,460 possible F1 hybrids (Figure 1A)
were determined using the following rules. If the genotype of an
SNP in parent 1 (P1) and parent 2 (P2) was {P1, P2} = {AA, AA},
then the genotype in the F1 hybrid was {F1} = {AA}. In a similar
manner, {P1, P2, F1} = {aa, aa, aa} and {P1, P2, F1} = {AA, aa,
Aa}. If the genotype of the parent(s) was heterozygous, then we
determined the genotype of the F1 hybrids as {P1, P2, F1} = {Aa,
aa, Aa}, {P1, P2, F1} = {Aa, Aa, Aa}, and {P1, P2, F1} = {aa, Aa, Aa}.

RESULTS

Genetic Relationship Between Parental
Inbred Lines and the F1 Hybrids
A total of 28,011-SNP sites were detected by WGS for the
105 inbred lines (Figure 2A). The selected SNPs covered the
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entire subgenomic regions of the reference genome (FAN_r2.3;
Strawberry GARDEN3). Because the SNPs were almost evenly
distributed on the subgenomes, we evaluated the homozygosity
of the 105 inbred lines as the ratio of homozygous SNP genotypes
of each line (Figure 2B). The expected homozygosity of the 105
inbred lines (i.e., after four generations of selfings) was 0.9375.
However, 98 out of 105 inbred lines were below this expected
homozygosity ratio (Figure 2B).

The genetic relationship between the training population and
breeding population is an important factor for the success of
GS. In this study, 105 inbred lines and 275 test F1 hybrids were
provided as training populations, while 5,460 possible F1 hybrids
were the test population (Figure 1A). It should be noted that the
5,460 possible F1 hybrids include the 275 test F1 hybrids. The
genetic relationship was investigated using principal component
analysis (Figure 2C). The first and second principal components
represented 29.3% and 16.9% of the total genetic variations,
respectively. The distribution of possible F1 hybrids indicated
that some hybrids were genetically close to the 105 inbred lines,
but most of the hybrids were genetically distinct from the inbred
lines (Figure 2C). Contrarily, the 275 test F1 hybrids showed
more genetic diversity, and most of the possible hybrids showed
a close genetic relationship with some of the 275 test F1 hybrids
(Figure 2C). This result indicates that the 275 test F1 hybrids
are genetically suitable for constructing GS models for predicting
phenotypes of all possible F1 hybrids.

Trait Heritability
We estimated trait heritability for both the 105 inbred lines and
the 275 test F1 hybrids (Table 1). The value of heritability was
high for all traits, indicating a significant contribution of genetic
effects on the phenotypic values, and, thus, the applicability
of GS for these traits. The higher heritability observed in the
275 test F1 hybrids than that of the 105 inbred lines may be
attributable to larger genetic variation in the test F1 hybrids
(Figure 2C). In the F1 hybrids, the inclusion of the dominant
effect increased estimated heritability in all analyzed traits in this
study (Table 1). This result suggests that dominant effects make a
notable contribution to phenotypic values.

The inbred lines showed more heterozygosity than the that of
the theoretically expected values (Figure 2B); thus, we estimated
the heritability of the inbred lines by using a dominance
relationship matrix. Unexpectedly, the use of the dominance
relationship matrix resulted in extremely high heritability values
(Supplementary Table 1). Although it is possible that the
heterozygous regions in the inbred lines have significant effects
on phenotypic values, it seems that the high heritability values
are due to accidental overfitting as the dominant effects have little
impact on GS accuracy (see below, Table 2).

GS Model Accuracy
In this study, we have two populations that can be provided as
a training population for GS model construction (i.e., the 105
inbred lines and the 275 test F1 hybrids). To assess the validity
of GS for strawberry population in this study, we evaluated
GS model accuracy using three methods. The first and second
methods were within population cross-validation for the 105

inbred lines and the 275 test F1 hybrids, respectively. The
third method was across population prediction that predicted
phenotypes of the 275 test F1 hybrids by using the 105 inbred
lines as a training population and vice versa.

Cross-Validation Within the 105 Inbred Lines
Petiole length exhibited the highest accuracy while Brix and
pericarp color showed the lowest accuracy (Table 2). These
GS accuracies were correlated with the estimated heritabilities
(Table 1). The difference in the GS model construction methods
showed little difference in accuracy (Table 2). However, in linear
models, additive plus dominant effect models showed higher
accuracy than the additive effect model in all cases, although
these were not statistically significant (Table 2). These results
suggested that the heterozygous regions remained in the 105
inbred lines (Figure 2B), and the dominant effects contributed
to the phenotypic values.

Cross-Validation Within the 275 Test F1 Hybrids
In fruit quality related traits that consisted of Brix, fruit hardness,
and pericarp color, GS model accuracy was higher in the 275
test F1 hybrids than in the 105 inbred lines (Table 2). This
result could be attributed to higher heritability in the 275 test F1
hybrids (Table 1). Unlike the results for the 105 inbred lines, the
advantage of additive plus dominant effects in linear methods was
not clear in the 275 test hybrids (Table 2). As in the case of the 105
inbred lines, the difference in GS model construction methods
showed little difference in accuracy (Table 2).

Across Population Prediction
Prediction of the 275 test F1 hybrids using the 105 inbred lines
showed higher accuracy than prediction of the 105 inbred lines
using the 275 test F1 hybrids (Table 3 and Figure 3). In linear
models, additive plus dominant effect models showed higher
accuracy than additive effect models except for pericarp color in
the prediction of the 275 test F1 hybrids (Table 3). This result
indicated the contribution of dominant effects to the strawberry
phenotypes. In both cases, the accuracy for Brix was lower than
that for the other traits (Table 3). In particular, GS models showed
no predictability in the 105 inbred lines (Table 3 and Figure 3).
These results indicate difficulty in the application of GS for Brix
in this study. Because both the 105 inbred lines and the 275 test
F1 hybrids showed GS predictability except for Brix (Figure 3),
we concluded that both populations can be used in the GS model
construction for F1 hybrid breeding in strawberry.

GS in Strawberry F1 Hybrid Breeding
Because both the 105 inbred lines and the 275 test F1 hybrids
showed GS predictability (Figure 3), we reconstructed GS models
using both populations as the training populations. The GS model
was constructed using GBLUP with additive plus dominant
effects. GBLUP was selected because (1) the difference in GS
model construction methods showed little difference in accuracy
(Tables 2, 3), and (2) GBLUP is one of the most widely used
methods for GS model construction (VanRaden, 2008). As an
option of GBLUP, an additive plus dominant effects model
was used because inclusion of dominant effects increased GS
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TABLE 2 | Accuracy of GS models in traits analyzed in this study.

Populationa Trait Modelb

GBLUP-A GBLUP-AD BB-A BB-AD BL-A BL-AD RKHS RF

105-ILs Petiole length 0.771 (0.036) 0.773 (0.035) 0.764 (0.034) 0.764 (0.034) 0.769 (0.038) 0.773 (0.037) 0.773 (0.036) 0.744 (0.047)

Leaf area 0.590 (0.054) 0.611 (0.049) 0.588 (0.043) 0.600 (0.043) 0.580 (0.060) 0.597 (0.055) 0.587 (0.057) 0.575 (0.054)

Brix 0.279 (0.091) 0.288 (0.089) 0.258 (0.095) 0.270 (0.094) 0.294 (0.082) 0.306 (0.081) 0.375 (0.073) 0.309 (0.087)

Fruit hardness 0.514 (0.063) 0.520 (0.063) 0.526 (0.059) 0.528 (0.059) 0.466 (0.073) 0.474 (0.073) 0.505 (0.076) 0.498 (0.074)

Pericarp color 0.306 (0.073) 0.310 (0.074) 0.316 (0.070) 0.317 (0.070) 0.260 (0.087) 0.265 (0.086) 0.286 (0.097) 0.291 (0.085)

275-F1s Petiole length 0.584 (0.043) 0.585 (0.044) 0.559 (0.043) 0.564 (0.043) 0.608 (0.048) 0.593 (0.052) 0.568 (0.048) 0.574 (0.049)

Leaf area 0.672 (0.032) 0.684 (0.034) 0.644 (0.029) 0.659 (0.030) 0.686 (0.039) 0.683 (0.040) 0.675 (0.036) 0.676 (0.041)

Brix 0.565 (0.049) 0.564 (0.052) 0.568 (0.044) 0.566 (0.046) 0.532 (0.053) 0.526 (0.055) 0.553 (0.056) 0.535 (0.053)

Fruit hardness 0.712 (0.036) 0.703 (0.035) 0.702 (0.035) 0.699 (0.035) 0.702 (0.039) 0.688 (0.038) 0.694 (0.037) 0.661 (0.039)

Pericarp color 0.667 (0.038) 0.668 (0.037) 0.644 (0.035) 0.642 (0.034) 0.662 (0.042) 0.659 (0.041) 0.668 (0.037) 0.658 (0.042)

Accuracy was evaluated as a Pearson’s correlation coefficient between phenotypic and predicted values from 50-cycles of 2-fold cross-validation. The values in
parentheses are standard deviations.
a105-ILs, 105 inbred lines; 275-F1s, 275 test F1 hybrids.
bGBLUP, Genomic best linear unbiased prediction; BB, Bayes B; BL, Bayesian Lasso; RKHS, Reproducing kernel Hilbert space regression; RF, Random forest.; -A,
additive effect model; -AD, additive plus dominant effect model.

TABLE 3 | Across population prediction accuracy of GS models.

Training populationa Test population Trait Modelb

GBLUP-A GBLUP-AD BB-A BB-AD BL-A BL-AD RKHS RF

105-ILs 275-F1s Petiole length 0.352 0.364 0.326 0.338 0.369 0.375 0.359 0.343

Leaf area 0.440 0.466 0.383 0.415 0.461 0.481 0.442 0.463

Brix 0.167 0.214 0.087 0.148 0.268 0.284 0.241 0.254

Fruit hardness 0.557 0.570 0.588 0.591 0.454 0.455 0.582 0.487

Pericarp color 0.430 0.413 0.438 0.425 0.412 0.403 0.435 0.400

275-F1s 105-ILs Petiole length 0.309 0.335 0.330 0.350 0.297 0.336 0.338 0.355

Leaf area 0.282 0.333 0.296 0.364 0.261 0.318 0.317 0.402

Brix −0.049 −0.024 −0.061 −0.036 −0.043 0.013 −0.029 0.021

Fruit hardness 0.497 0.517 0.522 0.543 0.482 0.501 0.499 0.467

Pericarp color 0.302 0.310 0.341 0.344 0.279 0.287 0.299 0.316

The accuracy was evaluated as a Pearson’s correlation coefficient between phenotypic and predicted values.
a105-ILs, 105 inbred lines; 275-F1s, 275 test F1 hybrids.
bGBLUP, Genomic best linear unbiased prediction; BB, Bayes B; BL, Bayesian Lasso; RKHS, Reproducing kernel Hilbert space regression; RF, Random forest.; -A,
additive effect model; -AD, additive plus dominant effect model.

accuracy in most cases in this study (Tables 2, 3). The GS models
were then used for phenotype prediction of 5,460 possible F1
hybrids (Figure 1A). Comparison of GS predicted values between
F1 hybrids and their parents indicated that the GS predicted
values in the F1s were not simply intermediate of their parents
(Supplementary Figure 3). This comparison also indicated that
dominant effects contributed the GS prediction, despite the
fact that the dominant effects had little impact on overall GS
accuracy (Table 2).

In this pilot experiment, we focused on the fruit hardness
and pericarp color. These traits were selected because of
their agronomic importance and high accuracy in GS models
(Tables 2, 3). We selected five classes of F1s, whose performances
were predicted using the GS models: (1) high-pericarp color,
(2) low-pericarp color, (3) high-fruit hardness, (4) low-fruit
hardness, and (5) intermediate phenotype. Figure 4A shows
the distribution of GS predicted values for 5,460 possible F1

hybrids and the F1 hybrids from the five classes. We then
developed F1 hybrids from the five classes and performed
phenotyping (Figure 1B). Parental combinations of the top or
bottom predicted values were not selected because these crossings
were difficult due to gaps in flowering time. Figure 4B shows the
distribution of the observed phenotypic values in the F1 hybrids
from the five classes. The distribution of phenotypic values of the
F1 hybrids corresponded with the GS predicted values (Figures
4A,B). Figure 4C shows the relationship between GS predicted
and observed phenotypic values in the F1 hybrids from the
five selected classes. It should be noted that the extremely high
correlation in fruit hardness and pericarp color is attributable to
the selection of parental combinations (i.e., F1 hybrids with high
and low were selected for these traits; Figure 4A). Interestingly,
GS predicted values were correlated with observed phenotypic
values in petiole length and leaf area (Figure 4C). These results
reconfirmed that the GS models can predict the phenotype of
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FIGURE 3 | Across population prediction accuracy of GS models. The predicted values were calculated by GBLUP with additive plus dominant effect model. The
value in each panel indicates the correlation coefficient (r) between predicted and observed values. The black squares indicate the predicted values. The gray
crosses indicate the fitted values in the training population. (A) Prediction of the 275 test F1 hybrids by using the 105 inbred lines as the training population.
(B) Prediction of the 105 inbred lines by using the 275 test F1 hybrids as the training population.

F1 hybrids. However, the GS models did not show predictability
in Brix (Figure 4C). This result is reasonable because the results
from across population prediction accuracy suggested difficulty
in GS prediction of this trait (Table 3 and Figure 3).

Because GS models based on the 105 inbred lines showed
predictability for phenotypic value of the 275 test F1 hybrids
(Figure 3), we investigated whether similar results could
be obtained in the hybrids selected for the GS. Figure 4D
represents the correlation between the observed phenotypic
values and predicted values from GS models using the 105
inbred lines as the training population. The correlation
coefficients were equivalent between GS models using
just the 105 inbred lines and GS models using both the
105 inbred lines and the 275 test F1 hybrids (Figures
4C,D), as in the results from cross-validation based on
across population prediction (Figure 3B). These results
reconfirmed the conclusions drawn from the cross-validation
(Figure 3B); namely, data from the parental inbred lines
were sufficient in predicting the phenotypes of strawberry F1
hybrids in this study if estimated GS accuracy was sufficient
in cross-validation.

DISCUSSION

F1 hybrid breeding in strawberry is a promising strategy to avoid
the risk of infection with viruses and insects in traditional runner-
based cultivars (Bentvelsen et al., 1997; Rho et al., 2012; Mori
et al., 2015). In this study, we conducted a potential assessment of
GS for strawberry F1 hybrid breeding (Tables 2, 3 and Figure 3)
and demonstrated its efficacy in a practical breeding selection
experiment (Figure 4).

The WGS in this study detected 28,011-SNP sites covering the
entire subgenomic regions of the reference genome (Figure 2A;
Strawberry GARDEN3). This result was consistent with a
previous study that indicated the random location of subgenome-
specific loci on the entire genome (Nagano et al., 2017). Diploid-
like pairing and availability of genotype data covering entire
subgenome regions enables direct application of genetic analysis
methods designed for diploid to allo-polyploids. In this study,
we did not use SNPs that are not from subgenome-specific
loci. In genotype calling using next-generation sequencing data,
abundant sequence data are needed for SNPs with higher
ploidy levels (Gerard et al., 2018). In addition, sufficient prior
information such as genotype of population in a simple pedigree
is necessary, especially in allo-polyploids (Clark et al., 2019).
Preparation of both data is difficult in strawberry genetic
study, and therefore, subgenome-specific loci were used for
GS in this study and the previous studies (Gezan et al., 2017;
Pincot et al., 2020). Recent advances not only in throughput
of sequencers but also experimental methods are increasing
accuracy of genotype calling for SNPs with higher ploidy levels
(Wadl et al., 2018). Application of the latest technologies will
enable precise genotype calling for polyploid SNPs and valid
application of the SNPs in GS.

When we investigated the homozygosity of the 105 inbred
lines, 98 of 105 inbred lines were below the expected
homozygosity ratio (Figure 2B). It is possible that this result was
due to SNP genotypes that were not from subgenome-specific
loci. However, we believe that the contribution of this possibility
was not significant because we had removed SNP sites whose
frequency of heterozygotes was greater than 0.25 (see section
“Materials and Methods”). This filtering resulted in an increase,
rather than a decrease, in the observed homozygosity, as there
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FIGURE 4 | Application of GS for strawberry hybrid breeding. The predicted values were calculated by GBLUP with additive plus dominant effect model. The gray
crosses indicate the 5,460 possible F1 hybrids. The black and white circles indicate the F1 hybrids selected for high- and low-pericarp color, respectively. The black
and white squares indicate the F1 hybrids selected for high- and low-fruit hardness, respectively. The black triangles indicate the F1 hybrids selected for intermediate
phenotypes. (A) Distribution of predicted fruit hardness and pericarp color in 5,460 possible F1 hybrids. (B) Distribution of observed phenotypic values in the
selected F1 hybrids. (C) Accuracy of GS models in the selected F1 hybrids. The value in each panel indicates the correlation coefficient (r) between predicted and
observed values. The GS models were constructed using both the 105 inbred lines and the 275 test F1 hybrids as the training populations. (D) Accuracy of GS
models in the selected F1 hybrids. The value in each panel indicates the correlation coefficient (r) between predicted and observed values. The GS models were
constructed using the 105 inbred lines as the training population.

were numerous SNP sites whose frequency of heterozygotes was
greater than 0.25 (Supplementary Figure 2). The selection of the
inbred lines was performed to avoid low fertility and aberrant
morphology. Therefore, one of the reasons for the observed high
heterozygosity may have been the existence of loci associated with
inbreeding depression (Zhang et al., 2019). Further analyses are
necessary to investigate this hypothesis.

Because the objective of this study was to predict the F1
hybrid phenotype in strawberry, we incorporated the dominant
effect in trait heritability estimation and GS model construction.
We then compared the results with the models to those with
the additive effect only. In both heritability and GS model
accuracy, additive plus dominant effect models showed higher
values than additive effect models in most cases (Tables 1, 2).
The advantage of additive plus dominant effect models was
not statistically significant in GS model accuracy (Table 2).
As reported in previous studies, large, extensive datasets are
necessary for statistical testing to determine the advantage of

dominant effects. Therefore, the inclusion of dominant effects in
GS models has resulted in insignificant improvements in most
studies (Varona et al., 2018). Nevertheless, the use of additive plus
dominant effect models in this study showed a slight advantage
in GS accuracy, but did not show a disadvantage against additive
only effect models (Table 2). Moreover, the comparison of GS
predicted values between some F1 hybrids and their parents
indicated that there were over-dominant effects in some parental
combinations (Supplementary Figure 3). These results suggest
that the inclusion of dominant effects in the GS model is
preferable for hybrid breeding, even if the advantage is not clear
in cross-validations.

In the across population prediction, GS accuracy of Brix was
lower than that of the other traits (Table 3), despite the fact
that the GS accuracy seemed reasonable in within-population
cross-validation (Table 2). The low accuracy in Brix may be
attributable to genotype-by-environment interaction effects due
to differences in year of phenotyping between the populations
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(Figure 1B). In most GS studies, phenotype data were obtained
over replication for several years. However, in projects at the
initial stage, such as strawberry F1 hybrid breeding, such data
are not available; therefore, data-driven approaches are necessary.
Nevertheless, our results indicated that phenotype data obtained
from long-term replication are necessary to avoid the risk of
overestimating GS accuracy due to unexpected genotype-by-
environment interaction effects.

The most important advantage of GS is that it enables breeding
selection without phenotypic observation. This means not only
breeding selection at the seedling stage, but also the selection
of parental combinations for better progenies (Iwata et al.,
2013; Yamamoto et al., 2017). The latter matches the situation
of hybrid breeding in this study. Therefore, we conducted a
pilot experiment for GS in strawberry F1 hybrid breeding.
For this objective, we developed 21 F1 hybrids that consisted
of five classes with different characteristics (Figure 4A). The
phenotypic values of the F1 hybrids were well correlated with
the GS predicted values, indicating that GS is applicable for
strawberry hybrid breeding (Figures 4B,C). In this study, we
focused on fruit hardness and pericarp color because these are
important targets of our breeding project (Table 1). The most
preferable characteristics in our breeding project are both high
fruit hardness and high pericarp color. Unfortunately, we could
not find such F1 hybrids not only in the observed phenotypic
values, but also in the GS predicted values (Figure 4A). To obtain
F1 hybrids that have both high fruit hardness and high pericarp
color traits, other breeding strategies such as recurrent selection
may be necessary (Yamamoto et al., 2016).
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Supplementary Figure 1 | Distribution of phenotypic values. The upper and lower
panels indicate the 105 inbred lines and the 275 test F1 hybrids, respectively. (A)
Petiole length; (B) leaf area; (C) brix; (D) fruit hardness; and (E) pericarp color.

Supplementary Figure 2 | Frequency of heterozygous genotypes in the SNPs
detected. The vertical red line indicates the threshold (0.25) used for filtration (see
section “Materials and Methods”).

Supplementary Figure 3 | Comparison of GS predicted values between the F1

hybrids and their parents. The predicted values were calculated using Genomic
best linear unbiased prediction (GBLUP) with an additive plus dominant effect
model. P1 and P2 on the x-axes indicate the parents of the F1 hybrids. F1 hybrids
and their parents are connected with solid lines. The black and white circles
indicate the F1 hybrids selected for high- and low-pericarp color, respectively. The
black and white squares indicate the F1 hybrids selected for high- and low-fruit
hardness, respectively. The black triangles indicate the F1 hybrids selected for
intermediate phenotypes. (A) Petiole length; (B) leaf area; (C) brix; (D) fruit
hardness; and (E) pericarp color.
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