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Photosynthates such as glucose, sucrose, and some of their derivatives play dual
roles as metabolic intermediates and signaling molecules that influence plant cell
metabolism. Such sugars provide substrates for de novo fatty acid (FA) biosynthesis.
However, compared with the well-defined examples of sugar signaling in starch and
anthocyanin synthesis, until recently relatively little was known about the role of signaling
in regulating FA and lipid biosynthesis. Recent research progress shows that trehalose
6-phosphate and 2-oxoglutarate (2-OG) play direct signaling roles in the regulation of FA
biosynthesis by modulating transcription factor stability and enzymatic activities involved
in FA biosynthesis. Specifically, mechanistic links between sucrose non-fermenting−1–
related protein kinase 1 (SnRK1)–mediated trehalose 6-phosphate (T6P) sensing and its
regulation by phosphorylation of WRI1 stability, diacylglycerol acyltransferase 1 (DGAT1)
enzyme activity, and of 2-OG–mediated relief of inhibition of acetyl-CoA carboxylase
(ACCase) activity by protein PII are exemplified in detail in this review.
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INTRODUCTION

Sugars occupy a central role in plant metabolism, acting as both metabolic substrates and signaling
molecules. Well-studied cases of sugar signaling in metabolism include sucrose (Suc) promotion
of fructan synthesis in grasses by the induction of fructan-synthesizing enzymes (Nagaraj et al.,
2001; Noël et al., 2001). Suc also appears to act as a signaling molecule that activates starch
synthesis by upregulating the expression of multiple genes involved in starch synthesis, such as the
large subunit of ADP-Glc pyrophosphorylase (AGPase), granule bound starch synthase 1 (GBSS1),
and β-amylase (Nakamura et al., 1991; Harn et al., 2000; Wang et al., 2001; Nagata et al., 2012)
and activating the AGPase enzyme by posttranslational redox modification (Tiessen et al., 2002).
Another well-known case of Suc regulation is the induction of the biosynthesis of anthocyanins.
Solfanelli et al. (2006) demonstrated in experiments with Arabidopsis that most of the genes coding
for enzymes related to anthocyanins and flavonoid syntheses are induced by Suc feeding. Emerging
evidence also supports a role for trehalose 6-phosphate (T6P) as both a signal (Lunn et al., 2006) and
regulator of sucrose availability (Yadav et al., 2014; Figueroa and Lunn, 2016), providing a crucial
link between energy (carbon) status and the processes of growth and development (Schluepmann
et al., 2003). In vivo T6P levels have been reported to vary over a substantial range of between
approximately 7 µM in Arabidopsis rosettes (Martins et al., 2013) to approximately 47 µM in
maize floret tissue (Nuccio et al., 2015). T6P synthase catalyzes the synthesis of T6P from UDP-
glucose and glucose 6-phosphate (G6P), two activated forms of glucose (Cabib and Leloir, 1958).
At the molecular level, T6P affects starch synthesis via posttranslational redox activation of ADP
pyrophosphorylase (Kolbe et al., 2005). It was also shown that sucrose non-fermenting−1–related
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protein kinase 1 (SnRK1) activity in crude extracts from
developing Arabidopsis thaliana tissues is inhibited by T6P, and
this inhibition appears to depend on unknown protein factor(s)
that are present only in young tissues (Zhang et al., 2009;
Martínez-Barajas et al., 2011). Subsequent work showed that at
much higher concentrations, G6P and glucose-1-phosphate can
also inhibit SnRK1 (Nunes et al., 2013).

As an important sensor of low-carbon/low-energy status in
the cell, SnRK1 is the plant ortholog of the evolutionarily
conserved protein kinase family that includes the yeast sucrose
non-fermenting kinase 1 (SNF1) and mammalian AMP-
activated protein kinase (AMPK) (Broeckx et al., 2016). In
response to cellular energy and/or carbon deficits, SNF1/AMPK
phosphorylates multiple target proteins, leading to activation of
catabolic processes and inhibition of anabolic processes, thereby
rebalancing the energy and/or carbon status of the cell. At
the molecular level, SnRK1 has been shown to phosphorylate
and inactivate hydroxymethylglutaryl-CoA reductase, nitrate
reductase, sucrose-phosphate synthase, and 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphate 2-phosphatase, which catalyze
regulated steps in isoprenoid biosynthesis, nitrogen assimilation,
sucrose biosynthesis, and the regulation of photosynthetic carbon
partitioning, respectively (Sugden et al., 1999b; Kulma et al., 2004;
Robertlee et al., 2017). SnRK1 also phosphorylates transcription
factors, especially members of the bZIP family, including bZIP63,
which is a key regulator of the energy/carbon starvation
response in plants. The phosphorylation of bZIP63 by SnRK1
increases its ability to bind to other bZIP proteins and leads
to changes in gene expression (Mair et al., 2015). SnRK1 was
shown to phosphorylate B3-domain transcription factor FUSCA3
(FUS3) and increase its stability (Tsai and Gazzarrini, 2012).
Accumulated evidence supports the crucial roles for SnRK1
in both normal development and responses to a wide variety
of stresses that limit carbon supply, including sugar depletion,
salt and osmotic stress, hypoxia, herbivory, and viral infection
(Baena-González and Sheen, 2008). Structurally, both SNF1
and AMPK function as heterotrimers comprising a catalytic
α-subunit together with regulatory β and γ subunits (Hardie,
2007). Although plants possess canonical α, β, and γ subunits,
some of their β and γ subunits have domain architectures
that are unique to plants, and a chimeric βγ subunit is the
predominant γ-type subunit in SnRK1 heterotrimers (Ramon
et al., 2013), suggesting that SnRK1 is a somewhat atypical
member of the AMPK/SNF1/SnRK1 family (Emanuelle et al.,
2015). The catalytic kinase activity of this family resides in the
α subunits (i.e., KIN10, KIN11, and SnRK1.3 in Arabidopsis)
and is strongly influenced by reversible phosphorylation of
a specific threonine residue in the T-loop (also known as
the activation loop) of these subunits (Estruch et al., 1992;
Hawley et al., 1996; Shen et al., 2009). The degree of T-loop
phosphorylation is inversely related to the energy or carbon
status of the cell, because it is activated by phosphorylation
under low-energy or low-carbon conditions and inactivated
by dephosphorylation when energy or carbon levels increase.
In mammals, the Ca2+/calmodulin-dependent protein kinase
kinase and the serine-threonine liver kinase B1 phosphorylate
T172, whereas the PP2C and PP1 protein phosphophatases are

responsible for its dephosphorylation (Davies et al., 1995; Woods
et al., 2005; Garcia-Haro et al., 2010). In plants, geminivirus Rep-
interacting kinases GRIK1 and GRIK2 phosphorylate T175 in the
T-loop of KIN10 (Shen et al., 2009; Glab et al., 2017), whereas
protein phosphatases abscisic acid insensitive 1 (type 2C protein
phosphatase) and type 2C protein phosphatase A mediate its
dephosphorylation (Rodrigues et al., 2013). In plants, activated
SnRK1 can phosphorylate and moderate the activity of GRIK,
providing potential feedback control over SnRK1 activation
(Crozet et al., 2010). In mammals, the binding of AMP to the
AMPK γ subunit induces conformational changes that promote
the phosphorylation of T172 and inhibit its dephosphorylation
(Sanders et al., 2007; Oakhill et al., 2011; Xiao et al., 2011;
Gowans et al., 2013). In plants, there have been fragmentary
reports of AMP inhibition of SnRK1, e.g., Sugden et al. (1999a).
However, a more recent study disputed these findings, based
on evidence that AMP neither directly activates recombinant
SnRK1 heterotrimers nor inhibits their dephosphorylation by
PP2C, indicating that plant SnRK1 is not directly affected by
AMP (Emanuelle et al., 2015).

Lipids are primary metabolites in cells, playing important roles
as structural components of cell membranes, storing energy in
the form of triacylglycerols (TAGs) and in cell signaling. Fatty
acids (FAs) are major components of lipids. TAGs are mostly
sequestered in lipid droplets, also known as oil bodies. Catalyzed
by FA synthase, the sugar-derived substrate acetyl-CoA, along
with ATP and reductant in the form of NADPH, is required for
de novo FA synthesis. Diacylglycerol acyltransferase 1 (DGAT1)
is responsible for the final step of TAG synthesis by catalyzing
the conversion of diacylglycerol and fatty acyl CoAs to TAG
(Bhatt-Wessel et al., 2018). Although some studies showed Suc
potentiates FA synthesis, knowledge of its precise role in this
process has lagged behind our understanding of the role of sugar
signaling in anthocyanin and starch syntheses. Recent studies
have begun to elucidate the roles of sugar signaling in regulating
lipid metabolism.

SUGAR STABILIZES WRI1 AND
POTENTIATES FATTY ACID AND TAG
ACCUMULATION

Lipids are derived from sugar (photosynthates), so it would
be expected that higher sugar level would favor increased
lipid synthesis. Sanjaya et al. (2011) observed both a 3-fold
increase in Suc and 30% more TAG accumulation in leaves of
AGPase-deficient plants in which ADG1 (the small subunit of
AGPase) expression was reduced by RNAi. It was also shown
that Arabidopsis accumulated a 4-fold increase in TAG in roots
when cultured on half-strength MS medium supplemented with
5% Suc than when cultured in the absence of exogenous Suc
(Kelly et al., 2013). To test the influence of endogenous sugar
content on FA and TAG accumulation, a high-leaf-sugar mutant
was generated by reducing sugar phloem loading and starch
synthesis by crossing the suc2 (encoding a Suc/H+ symporter
that loads Suc into phloem) mutant (Srivastava et al., 2009)
with the adg1 mutant. The sugar content (combined Glc and
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Suc) in adg1suc2 leaves is 80-fold higher than that of wild-
type (WT). Leaf total FA content in adg1suc2 was 8.3% of dry
weight (DW), i.e., 1.8-fold higher than WT. Leaf TAG of adg1suc2
accumulated to 1% (DW), which is more than 10-fold higher than
that of WT plants (Zhai et al., 2017b). Together, these studies
confirmed that sugar potentiates TAG accumulation, lending
support to the notion that sugars play roles beyond providing
carbon skeletons for FA synthesis. Previous studies suggested
that sugars regulate the expression of WRI1, an APETALA2
(AP2) transcriptional factor that induces the expression of more
than 20 genes involved in glycolysis and FA synthesis (Cernac
and Benning, 2004; Maeo et al., 2009). For instance, it was
shown that glucose and fructose are necessary for elevated
TAG accumulation in seedlings ectopically overexpressing WRI1
(Cernac and Benning, 2004) and that the expression of WRI1
is enhanced by Suc in Arabidopsis leaves (Masaki et al., 2005).
Sanjaya et al. (2011) also observed that the expression of WRI1 in
seedling of AGP-deficient lines was increased compared to WT.
However, later reports did not observe a significant increase in
WRI1 expression in suc2adg1, but a significant increase in the
accumulation of WRI1 polypeptide in suc2adg1 was observed
relative to WT (Zhai et al., 2017b). Sugar-dependent regulation of
gene expression and increased stability of the WRI1 polypeptide
are consistent with the previously reported involvement of sugar
signaling in regulating FA and TAG synthesis (Sanjaya et al.,
2011).

KIN10 DIRECTLY PHOSPHORYLATES
WRI1 AND RESULTS IN ITS
PROTEASOMAL DEGRADATION

While screening for genes that can increase TAG accumulation
in plant vegetative tissues, transient co-expression of WRI1 and
KIN10, the catalytic subunit SnRK1 in tobacco, was found to
strongly suppress the level or WRI1 polypeptide and abolish its
stimulation of TAG accumulation (Zhai et al., 2017a). Further
studies showed that KIN10 directly phosphorylates WRI1 at
sites within its two AP2 DNA-binding domains, predisposing
it to proteasomal degradation (Zhai et al., 2017a). This
finding is consistent with previous observations showing high
sugar levels in adg1suc2 posttranscriptionally stabilizing WRI1.
KIN10-dependent degradation of WRI1 provides a homeostatic
mechanism that favors FA synthesis when intracellular sugar
levels are elevated, and KIN10 is inhibited; conversely, FA
synthesis is curtailed as sugar levels decrease, and sugar-
dependent inhibition of KIN10 abates.

DGAT1 IS A TARGET OF KIN10

SnRK1 recognition motifs were first identified in A. thaliana
DGAT1 (Zou et al., 1999) and subsequently in other plant
DGAT1 sequences. Xu et al. (2008) demonstrated that
substitution of Ser197 for Ala, within a SnRK1 recognition
site in the Tropaeolum majus DGAT1, resulted in an increase
in activity between 38 and 80%. More recently, Brassica napus

DGAT1 was shown to be a direct substrate of SnRK1, which
catalyzed its phosphorylation and converted it to a less active
form (Caldo et al., 2018). SnRK1 (KIN10)–mediated modulation
of DGAT1, the activity of which can limit TAG assembly (Sharma
et al., 2008), provides another direct connection between cellular
carbon (energy) status, sugar signaling, and TAG accumulation.

TREHALOSE-6-PHOSPHATE INHIBITS
THE PLANT CARBON/ENERGY SENSOR
SnRK1 POSITIVELY REGULATING FATTY
ACID SYNTHESIS

That WRI1 is a target of KIN10 that suggested T6P, a potent
inhibitor of KIN10 (Zhang et al., 2009), might stabilize WRI1
and positively regulate FA and synthesis and TAG assembly. In a
recent study employing microscale thermophoresis, a technique
for directly measuring dissociation constants (Kds), T6P was
demonstrated to directly bind to KIN10 at physiologically
relevant concentrations. The same approach was used to
demonstrate that T6P binding weakens the KIN10-GRIK1
association, thereby reducing the activation of KIN10 and thus
SnRK1 activity (Figure 1). T6P inhibition of KIN10 activity
was shown to be strictly GRIK-dependent, in experiments using
either purified recombinant proteins or crude Arabidopsis leaf
extracts. Extracts from young leaves of grik1, grik2, and grik1grik2
mutants showed reduced inhibition of KIN10 relative to those
derived from WT leaves, confirming the dependency of T6P-
mediated inhibition of KIN10 on GRIK1 (Zhai et al., 2018).

2-OXOGLUTARATE BINDING TO PII
REGULATES ACETYL-CoA
CARBOXYLASE

Another example of sugar signaling directly involved in
regulating FA synthesis is through the PII protein. The PII
protein is a signal integrator involved in the regulation of
nitrogen/carbon homeostasis in bacteria (Gerhardt et al., 2015)
and plants (Uhrig et al., 2009). PII binds ATP and 2-
oxoglutarate (2-OG), and depending on the degree of ligand
binding, it interacts with a constellation of enzymes, transcription
factors, and transporters, modifying their activities (Arcondéguy
et al., 2001; Ninfa and Jiang, 2005; Osanai and Tanaka, 2007;
Forchhammer, 2008; Uhrig et al., 2009). In plant plastids,
PII binds to biotin carboxyl carrier protein of acetyl-CoA
carboxylase (BCCP), a subunit of the plastidial heteromeric
acetyl-CoA carboxylase (ACCase), and inhibits ACCase activity
in chloroplast extracts by up to 50%. The tricarboxylic acid (TCA)
cycle intermediates 2-OG, pyruvate and oxaloacetate (OAA) were
shown to completely reverse this PII-dependent inhibition of
ACCase (Bourrellier et al., 2010) (Figure 1). The sugar derivatives
OAA and pyruvate are not only involved in acetyl-CoA synthesis
but are also closely related to the cellular carbon/energy status.
It was shown by Nukarinen et al. (2016) that sugars are lower,
whereas TCA intermediates including 2-OG, OAA, and pyruvate
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FIGURE 1 | Sugar signaling in regulating plant fatty acid and TAG biosynthesis. High levels of cellular sugars (carbon) are associated with the accumulation of
trehalose 6-phosphate (T6P), which binds to KIN10 (shown as small molecule superimposed on KIN10), the catalytic subunit of SnRK1, weakening its affinity for
GRIK. This results in decreased phosphorylation of the KIN10 activation loop, thereby reducing the proportion of activated KIN10. Under low KIN10 activity, WRI1 is
more stable and activates the transcription of genes involved in glycolysis and fatty acid (FA) synthesis such as BCCP, KAS (3-ketoacyl-acyl carrier protein synthase),
and PKP1β (plastidial pyruvate kinase 1 beta), promoting FA biosynthesis. DGAT1 is also more active and catalyzes the conversion of diacylglycerol and fatty acyl
CoA to triacylglycerol (TAG). Conversely, when the cellular sugar levels are low, levels of T6P decrease, and GRIK binds tightly to KIN10, phosphorylating its
activation loop and increasing SnRK1 activity. Activated KIN10 phosphorylates WRI1 and causes its degradation via the ubiquitin-proteasomal pathway (UPP) to
amino acids (AA), thereby reducing FA synthesis. Activated KIN10 also phosphorylates DGAT1, inhibiting its enzyme activity, reducing TAG synthesis. High levels of
cellular sugars are also associated with the accumulation of TCA cycle intermediates including 2-OG, which binds to PII protein (shown as small molecule
superimposed on PII), disrupting its interaction with BCCP. This blocks the ability of PII to inhibit ACCase activity, thereby promoting FA biosynthesis. Conversely,
when the cellular carbon level is low, the level of 2-OG decreases, and PII binds tightly to BCCP inhibiting ACCase activity and consequently FA biosynthesis.

are elevated, in the snrk1α1/α2 mutant under extended dark
conditions. By binding with TCA intermediates, PII conveys
the signal of cellular carbon status directly to ACCase, thereby
regulating FA synthesis.

SUMMARY AND FUTURE
PERSPECTIVES

Recent reports elucidating the mechanisms by which 2-OG
suppresses PII-mediated ACCase inhibition and T6P disrupts
SnRK1-mediated turnover of WRI1 along with modulation
of DGAT1 activity are revealing the critical roles of sugar
signaling in lipid synthesis. It is interesting to note that
while PII and KIN10 are unrelated evolutionarily, both
mechanistically act as metabolic sensors that bind 2-OG and
T6P, respectively. Further, the metabolite binding reduces their
affinity for their respective protein binding partners, in both
cases making FA synthesis contingent upon the availability of
sufficient metabolic resources to support the process. While
the research summarized herein has begun to fill a key
knowledge gap in metabolic regulation by establishing clear
mechanistic connections between sugar signaling and lipid
synthesis and accumulation, it is anticipated that many additional

connections will be discovered in the near future. Potential
connections are included but not limited to the yet-to-be
identified E3 ubiquitin ligase of WRI1 or other key enzymes
of lipid metabolism that may be involved in sugar signaling,
unknown regulators of WRI1 or LEC2 transcription that may
also be a part of the carbon sensing network. Sugar signaling
may also play roles in oil body stability and regulation of
fatty acid degradation in peroxisomes from the perspective of
carbon(energy) demand.
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GLOSSARY

T6P Trehalose 6-phosphate

2-OG 2-Oxoglutarate

SNF1 Non-fermenting kinase 1

AMPK AMP-activated protein kinase

SnRK1 Sucrose non-fermenting-1–related protein kinase1

GRIK Geminivirus Rep-interacting kinase

TAG Triacylglycerol

DGAT1 Diacylglycerol acyltransferase

ADG1 Small subunit of ADP-Glc pyrophosphorylase

ACCase Acetyl-CoA carboxylase

BCCP Biotin carboxyl carrier protein of acetyl-CoA carboxylase

KAS 3-Ketoacyl-acyl carrier protein synthase

PKP1β Plastidial pyruvate kinase 1 beta
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