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Seed germination and subsequent seedling establishment are important developmental
processes that undergo extremely complex changes of physiological status and are
precisely regulated at transcriptional and translational levels. Phytohormones including
abscisic acid (ABA) and gibberellin (GA) are the critical signaling molecules that modulate
the alteration from relative quiescent to a highly active state in seeds. Transcription
factors such as ABA insensitive5 (ABI5) and DELLA domain-containing proteins play
the central roles in response to ABA and GA, respectively, which antagonize each other
during seed germination. Recent investigations have demonstrated that the regulations
at translational and post-translational levels, especially post-translational modifications
(PTMs), play a decisive role in seed germination. Specifically, phosphorylation and
ubiquitination were shown to be involved in regulating the function of ABI5. In this
review, we summarized the latest advancement on the function of PTMs involved in
the regulation of seed germination, in which the PTMs for ABI5- and DELLA-containing
proteins play the key roles. Meanwhile, the studies on PTM-based proteomics during
seed germination and the crosstalk of different PTMs are also discussed. Hopefully, it
will facilitate in obtaining a comprehensive understanding of the physiological functions
of different PTMs in seed germination.
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INTRODUCTION

Seed germination is an indispensable event for initiating seedling establishment and plant
growth for next generation, which presents as an intricate physiological process precisely
regulated by endogenous and environmental cues (Mazer, 1999; Donohue et al., 2005; Finch-
Savage and Leubner-Metzger, 2006; Holdsworth et al., 2008). Numerous genes affecting seed
germination have been cloned, mainly including DOG1 (Nakabayashi et al., 2012; Graeber
et al., 2014; Leubner-Metzger, 2014), CYP707A1/2 (Millar et al., 2006; Matakiadis et al., 2009;
Shu et al., 2013), GA2oxs (Yamauchi et al., 2007), MYB96 (Lee H. G. et al., 2015; Lee
K. et al., 2015), OsAP2-39 (Yaish et al., 2010), CHO1 (Yamagishi et al., 2009; Yano et al.,
2009), WRKY41 (Ding et al., 2014), and ARF10/ARF16 (Liu et al., 2013). Almost all of
these genes are involved in either abscisic acid (ABA) or gibberellic acid (GA) signaling, of
which these two phytohormones play critical roles in seed germination through controlling the
shift from seed dormancy to germination (Kucera et al., 2005; Finkelstein et al., 2008; Shu
et al., 2016). The ABA molecule is recognized by its receptors PYRABACTIN RESISTANCE
(PYR)/REGULATORY COMPONENT OF ABSCISIC ACID RECEPTOR (RCAR) (Ma et al., 2009;
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Miyazono et al., 2009; Nishimura et al., 2009; Santiago
et al., 2009), and the ABA-bound receptors tightly combine
with type 2C protein phosphatases (PP2Cs), resulting in the
dissociation of SNF1-related kinases 2 (SnRK2s) from PP2C-
SnRK2 complexes (Cutler et al., 2010). The released SnRK2s
directly phosphorylate targeted transcription factors such as
ABSCISIC ACID-INSENSITIVE5 (ABI5), ABI4, and ABI3 to
mediate ABA responses (Kobayashi et al., 2005; Furihata et al.,
2006; Fujii et al., 2007; Fujii and Zhu, 2009; Zhu et al., 2020). The
mutant of ABA signaling related genes, such as biosynthetic genes
aba deficient 1 (aba1) and nine-cis-epoxycarotenoid dioxygenase
6 (nced6) (Koornneef et al., 1982; Lefebvre et al., 2006), catabolic
gene cyp707a2 (Matakiadis et al., 2009) and signal transduction
genes abi3, abi4, and abi5 (Penfield et al., 2006; Park et al.,
2011; Lim et al., 2013) in Arabidopsis had demonstrated that
ABA could directly affect seed germination. GA, antagonizing
with ABA, promotes seed germination (Holdsworth et al., 2008),
which could be supported by the fact that GA-deficient mutants
such as ga1 and ga2 fail to germinate (Lee et al., 2002; Shu
et al., 2013). The balance between ABA and GA signal during
seed germination is regulated by functional proteins such as
GERMIN-LIKE PROTEIN 2-1 (OsGLP2-1), which binds to
the promoters of ABI5 and GAMYB (Wang et al., 2020) and
INDUCER OF CBF EXPRESSION1 (ICE1) to antagonize ABI5
and DELLA activity (Hu et al., 2019).

Besides ABA and GA, other phytohormones, such as
jasmonate (JA) (Pan et al., 2020), ethylene (Jurdak et al., 2020),
cytokinin (Wang et al., 2011), auxin (Liu et al., 2013), and
brassinosteroids (BRs) (Hu and Yu, 2014), also regulate the
process of seed germination in Arabidopsis. JA regulates seed
germination through ABA signaling. JA ZIM-DOMAIN (JAZ)
proteins could inhibit the expression of ABI3 and ABI5 (Pan
et al., 2020), whereas, JAZ repressors could physically interact
with ABI3 and activate ABA signaling. The effect of ethylene
on seed germination depends on the reactive oxygen specifies
(ROS) molecules produced by the mitochondrial electron
transport chain through up-regulating AOX1a and ANAC013
in mitochondrial retrograde response complex (Jurdak et al.,
2020). The mutant of cytokinin biosynthesis exhibited ABA
insensitive phenotype during germination, and the cytokinin
signal transducers and transcription repressors, type-A ARR4,
ARR5, and ARR6, could physically interact with ABI5 to
negatively regulate ABI5 expression (Wang et al., 2011). The
mutation of auxin signaling or biosynthesis in Arabidopsis
dramatically released seed dormancy, which recruits auxin
response factors (ARF) 10 and 16 to control the expression of
ABI3 during seed germination (Liu et al., 2013).

The synthesis, modification, localization, and degradation
of proteins in the cells are critical for plants to survive from
adverse environments, in which post-translational modifications
(PTMs) of proteins increase the diversity of gene products and
influence nearly every cellular process (Fulzele and Bennett,
2018). The prevalent PTMs mainly include phosphorylation
(Mann et al., 2002; Ptacek et al., 2005; Thalassinos et al.,
2008), ubiquitylation (Bennett et al., 2010; Xu et al., 2010; Kim
et al., 2011), acetylation (Choudhary et al., 2009), glycosylation
(Dell and Morris, 2001; Zhang et al., 2003), nitrosylation

(Jaffrey et al., 2001), methylation (Clarke, 1993), and lipidation
(Ichimura et al., 2000). With the development of analytical
techniques, PTMs could be precisely detected at the global level
or within a specific protein. For example, PHYTOCHROME
INTERACTING FACTOR 3 (PIF3) is rapidly phosphorylated
and degraded as a result of interaction between phytochrome
B (phyB) and photo-activated PIF3, of which this process is
needed for proper photomorphogenesis (Ni et al., 2013). Besides,
the SUMOylated PIF3 in Lys13 residue also regulates the phyB
abundant to affect plants’ photomorphogenesis (Bernula et al.,
2020). PIF3 could be phosphorylated by multiple kinases such as
GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2)
and photo-regulatory protein kinases (PPKs), which is required
for further ubiquitination of the proteins (Li et al., 2017; Xu et al.,
2017).

Seed germination is an important physiological alteration
from quiet dormant status to active seedling establishment,
in which a large number of processes are reprogrammed.
Han and Yang (2015) have summarized the progress in
the molecular mechanisms of seed germination among
different species, including morphological changes, cellular
and its related structure recovery, metabolic variations, and
transcription activation. However, more and more evidences
have demonstrated that PTMs also play critical roles in
regulating seed germination. In this paper, we reviewed the
recent investigations on PTMs involved in seed germination
(Figure 1), which will help to understand the molecular
mechanism of seed germination.

PHOSPHORYLATION REGULATION OF
SEED GERMINATION

Protein phosphorylation and dephosphorylation is an important
switch for the activity of proteins, and more than 75% of
eukaryotic proteins are potentially phosphorylated, which control
almost all the biological processes (Sharma et al., 2014). ABI5
plays central roles in the ABA signaling pathway, and its
phosphorylation regulation among ABA signaling transduction is
well characterized, which directly influence the seed germination.
In the presence of ABA, the protein kinase SnRK2 could
phosphorylate ABI5 and promote its stability, through which
seed germination was inhibited (Kobayashi et al., 2005; Fujii et al.,
2007; Nakashima et al., 2009). The BR receptor BIN2 enhances
the downstream signaling of ABA through phosphorylating ABI5
to further regulate the seed germination (Hu and Yu, 2014).
SOS2-like protein kinase 5 (PKS5) also phosphorylates ABI5 at
Ser-42 to regulate seed germination in Arabidopsis (Zhou et al.,
2015). Calcineurin B-like Interacting Protein Kinase (CIPK) 26
not only interacts with ABI1, ABI2, and ABI5 in Arabidopsis,
but also phosphorylates ABI5 in vitro, through which CIPK26
enhances the sensitivity of seed germination (Lyzenga et al.,
2013). The Arabidopsis RING-ANK family protein, KEEP ON
GOING (KEG), contains a kinase domain with phosphorylation
activity, and negatively regulates ABA signaling through
interacting with ABI5 (Stone et al., 2006). The mutation
of two PROTEIN PHOSPHATASE6 (PP6) genes, FyPP1 and

Frontiers in Plant Science | www.frontiersin.org 2 March 2021 | Volume 12 | Article 642979

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-642979 March 16, 2021 Time: 16:33 # 3

Yu et al. PTMs in Seed Germination

FIGURE 1 | The diverse post-translation modifications (PTMs) involved in seed germination. (A) The key genes regulated by PTMs involved in seed germination.
(B) The PTMs identified by proteomics techniques involved in seed germination. The phytohormones GA and ABA function antagonistically with each other in
regulating seed germination, of which the signal transduction is largely coordinated by PTMs. ABI5, a key transcription factor in response to ABA, suppresses the
seed germination, and it is phosphorylated by different kinases such as SnRK2, BIN2, CIPK26, PKS5, and KEG. KEG also ubiquitinates ABI5, CIPK26, and ABF1/3
to directly inhibit seed germination. DWA1, DWA2, and DDB1 interact with each other forming a complex that elevates the level of ABI5, in which DWA1 and DWA2
are ubiquitinated by CUL4. CUL4 also ubiquitinated ABD1 targeted for ABI5 degradation through 26S proteasome. The phosphatase FyPP1/2 and SIZ1
dephosphorylated and sumoylated ABI5, respectively. GA facilitated the expression of SLY1, which ubiquitinated two DELLA containing proteins RGA and RGL2 to
derepress for germination. MADS-box transcription factor AGL67 acetylated the promoter of zinc-finger protein SOM to promote its expression that inhibited seed
germination, and AtMIA40 formed the complex with AtSLP2 to coordinate its phosphatase activity, which negatively regulated the GA-related process under seed
germination. Furthermore, the PTMs including phosphorylation, ubiquitination, carbonylation, glycosylation, acetylation, and succinylation were also involved in
multiple metabolism processes such as protein processing, ribosome complex, brassinosteroid signal transduction, and reactive oxygen species. GA, gibberellin;
ABA, abscisic acid; ABI5, ABA insensitive 5; SnRK2s, SNF1-related kinases 2; BIN2, BRASSINOSTEROID-INSENSITIVE 2; CIPK26, Calcineurin B-like Interacting
Protein Kinase 26; PKS5, SOS2-like protein kinase 5; KEG, KEEP ON GOING; ABF1/3: ABRE binding factor 1/3; DWA1/2, DWD hypersensitive to ABA1; CUL4,
CULLIN4; DDB1, damaged DNA binding1; ABD1, ABA-hypersensitive DCAF1; SIZ1, SUMO E3 ligases; SLY1, F-box-containing proteins SLEEPY1; RGA,
REPRESSOR OF ga1-3; RGL2, RGA-like 2; SOM, SOMNUS; AGL67, AGAMOUS-LIKE67; AtSLP2, Arabidopsis Shewanella-like protein phosphatase 2; AtMIA40,
Arabidopsis mitochondrial oxidoreductase import and assembly protein 40; P, phosphorylation; U, ubiquitination; carb, carbonylation; glyc, glycosylation; acet,
acetylation; succ, succinylation; sumo, sumoylation.

FyPP2, lead to the ABA hypersensitive phenotypes at seed
germination and seedling growth in Arabidopsis, which directly
interact with and dephosphorylate ABI5, acting antagonistically
with SnRK2 kinases (Dai et al., 2013). Moreover, a protein
phosphatase 2A-associated protein TAP46 could enhance the

stability of ABI5 through binding to and phosphorylating ABI5
(Hu et al., 2014). These investigations collectively indicated that
the phosphorylation and dephosphorylation of ABI5 is precisely
regulated in the ABA-mediated signaling pathway, which further
controls seed germination and seedling establishment. The
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recent investigation also showed that Arabidopsis Shewanella-like
protein phosphatase 2 (AtSLP2) interacts with the mitochondrial
oxidoreductase import and assembly protein 40 (AtMIA40) in
the mitochondrial intermembrane space, which is required for
the phosphatase activity of AtSLP2, and the complex of AtSLP2
and AtMIA40 negatively regulates the GA-related process during
seed germination (Uhrig et al., 2017).

Besides the functional elucidation of phosphorylation in
specific proteins, phosphoproteomics is a well way to globally
identify the phosphorylated proteins in the tissues, through
which numerous phosphorylation modified proteins involved in
seed germination have been discovered. Systematical analysis of
phosphorylated proteins in the embryo of germinating seeds at
the early stage demonstrated that phosphorylation of proteins
related to stress response and storage was gradually enhanced,
and proteins involved in BR signal transduction were also
phosphorylated while brassinolide treatment enhanced the ability
of seed germination in rice, implying seed germination is possibly
triggered by BR signal (Han et al., 2014a,b). A gel-free/label-free
phosphoproteomics were conducted to detect phosphorylated
nuclear proteins at the early stage of rice seed germination
(Li M. et al., 2015). The results demonstrated that proteins
related to protein synthesis were mainly phosphorylated with
29 proteins displaying significant changes in phosphorylation
level over the period of imbibition. Phosphorylation analysis of
phaseolin in the dormant and 4-day germinating bean seed of
two different cultivars found that the phosphorylation levels of
phaseolin were remarkably changed from the dormancy status
to early germination stage (López-Pedrouso et al., 2014). The
phosphorylation of multiple plant-type phosphoenolpyruvate
carboxylase (PTPC) isoenzymes at their conserved N-terminal
seryl site was also identified in sorghum during seed germination
(Ruiz-Ballesta et al., 2016). Furthermore, the proteins involved
in storage substance degradation and plant defense were also
detected to be phosphorylated in wheat (Triticum aestivum
L.) during seed germination (Dong et al., 2015), suggesting
that protein phosphorylation participates in diverse metabolism
processes in seed germination.

UBIQUITINATION REGULATION OF
SEED GERMINATION

Ubiquitination is another most prevalent PTMs in plants,
which widely involves in various pivotal processes including
protein turnover, genomic integrity, signaling processing among
others (He et al., 2020a). GA is a key phytohormone that
promotes seed germination with DELLA proteins being the
most important repressors of GA signaling (Dill et al., 2001;
Lee et al., 2002; Tyler et al., 2004; Davière and Achard,
2016). The GA receptor GID1 has a higher affinity for GA4,
which also interacts with DELLA proteins (Nakajima et al.,
2006). In the presence of GA, the F-box-containing protein
SLEEPY1 (SLY1) directly interacts with the GA receptor and
DELLA protein REPRESSOR OF ga1-3 (RGA) through their
C-terminal GRAS domain, which mediates the ubiquitination
and the subsequent degradation of RGA to promote the GA

signaling pathway (Dill et al., 2001, 2004; Ueguchi-Tanaka
et al., 2005). The RGA-like 2 (RGL2) is expressed during the
imbibition period and plays a critical role in inhibiting seed
germination, which is also degraded through F-box protein SLY1
mediated ubiquitination (Lee et al., 2002; Tyler et al., 2004;
Piskurewicz et al., 2008). Other DELLA proteins, including GA
insensitive (GAI), RGA and RGL1, enhance the function of
RGL2, and the far-red light repressed the seed germination
through stabilizing GAI, RGA, and RGL2 (Cao et al., 2005;
Piskurewicz et al., 2009). These investigations illustrated that
ubiquitination of DELLA proteins is the key step in derepressing
the inhibition of GA-signaling involved in seed germination in
Arabidopsis.

The level of ABI5 is also regulated by ubiquitination during
seed germination. The RING-type E3 ligase KEG is needed to
maintain the low level of ABI5, of which ABI5 is a substrate
of KEG for ubiquitination (Liu and Stone, 2013). KEG is also
self-ubiquitinated and degraded through the 26S proteasome
system to increase the ABI5 level in response to ABA (Liu
and Stone, 2010), and CIPK26 is also ubiquitinated by KEG
and degraded through 26S proteasome (Lyzenga et al., 2013).
Two ABI5-related transcription factor, ABRE binding factor
1 (ABF1) and ABF3, also regulate seed germination, and the
detailed investigations demonstrated that KEG could directly
interact with and ubiquitinate ABF1 and ABF3 to regulated their
protein abundance (Finkelstein et al., 2005; Chen et al., 2013).
The mutant of two Arabidopsis DWD proteins DWA1 (DWD
hypersensitive to ABA1) and DWA2 that are substrate receptors
of CULLIN4 (CUL4) E3 ubiquitin ligases displayed delayed
germination, which were involved in ABA signal transduction
(Lee et al., 2010). DWA1, DWA2 and Damaged DNA Binding1
(DDB1) can directly interact with each other to form CUL4-based
complexes that target and mediate the ubiquitination of ABI5.
The members of DDB1-CUL4–associated factors (DCAFs) family
that bind to DDB1 are also the substrate receptors of CUL4.
ABA-hypersensitive DCAF1 (ABD1) belongs to DCAF1 family
that interacts with DDB1, and the loss of ABD1 could result
in ABA-hypersensitivity phenotypes during germination and
seedling growth (Seo et al., 2014). ABD1 directly interacts with
ABI5 and the degradation of ABI5 by the 26S proteasome was
also suppressed in the ABD1 mutant lines. Collectively, protein
ubiquitination through E3 ubiquitin ligases is an important
PTM regulating the ABI5 levels in ABA signaling during
seed germination.

Furthermore, the high throughput ubiquitylome using
K-ε-GG antibody enrichment integrated with mass spectrometry
has been developed to identify a large amount of ubiquitinated
proteins in tissues (Fulzele and Bennett, 2018). The PR-619-
treated (deubiquitylase inhibitor) rice seed displayed a delayed
germination, and analysis of ubiquitylated proteins at 0, 12,
and 24 h after imbibition in rice embryos has demonstrated
that 2,576 lysine sites in 1,171 proteins were ubiquitylated and
the differentially ubiquitinated proteins were mainly involved
in the categories of protein processing, DNA and RNA
processing/regulation related, signaling and transport, indicating
that ubiquitination is a regulator involved in the multifaceted
process during seed germination (He et al., 2020b).
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OTHER PTMS REGULATION OF SEED
GERMINATION

Phosphorylation and ubiquitination are the two prevalent PTMs
that have been widely studied and shown to be involved in many
physiological processes through regulating protein activity and
levels. However, it has been shown that many PTMs other than
these two, such as sumoylation, carbonylation, glycosylation,
acetylation, and succinylation, are also involved in seed
germination. Overexpression of small ubiquitin-related modifier
1/2 (AtSUMO1/2) exhibited increased levels of sumoylation and
was less sensitive to ABA (Lois et al., 2003), while SUMO E3
ligases SIZ1 directly sumoylated ABI5 enhancing its stability in
response to ABA in seed germination (Miura et al., 2009). MADS-
box transcription factor AGAMOUS-LIKE67 (AGL67) recruits
the histone mark reader EARLY BOLTING IN SHORT DAY
(EBS) to form a complex that is necessary for histone H4K5
acetylation in the promoter of zinc-finger protein SOMNUS
(SOM), which activates SOM expression, ultimately inhibiting
seed germination under high-temperature stress (Li et al.,
2020). The investigation of rice acetylated or succinylated
embryonic proteins after 24 h imbibition using nano-LC-MS/MS
has identified 699 acetylated sites from 389 proteins and 665
succinylated sites from 261 proteins, which covered nearly
all aspects of cellular functions, with ribosome complex and
glycolysis/gluconeogenesis related proteins being significantly
enriched (He et al., 2016). The enzymes related to acetyl-CoA
and succinyl-CoA metabolism were modified through acetylation
or succinylation, respectively. The dynamic pattern of protein
carbonylation in rice embryos during germination was also
analyzed using sequential window acquisition of all theoretical
fragment ion spectra (SWATH) method, and 288 carbonylated
peptides corresponding to 144 proteins were identified, which
mainly involved in maintaining the levels of reactive oxygen
species, ABA and seed reserves (Zhang et al., 2016). The mutant
of Arabidopsis UGT74F2, a glycosyltransferase, accumulates high
levels of glycosylated nicotinate, and the mutant displayed
decreased rates of seed germination, of which the germination
drawback of the ugt74f2 mutant could be fully recovered
by overexpressing UGT74F2 (Li W. et al., 2015). Moreover,
N-glycosylation mapping of rice embryos during germination
has discovered 242 glycosites from 191 unique proteins, and
these N-glycosylated proteins were enriched in starch and sucrose
metabolism pathway, which were predicted to interact with
several BR signaling proteins, implying that N-glycosylation
is involved in carbohydrate metabolism and BR signaling to
regulate seed germination (Ying et al., 2017).

CROSSTALK AMONG PTMS INVOLVED
IN SEED GERMINATION

The direct evidence of crosstalk regulation for PTMs involved
in seed germination are from the modification of ABI5.
As mentioned above, the protein levels of ABI5 could be
precisely regulated through multiple PTMs. For example, protein
kinase SnRK2, BIN2, PKS5 promote phosphorylation of ABI5

(Kobayashi et al., 2005; Fujii et al., 2007; Nakashima et al.,
2009; Hu and Yu, 2014, Zhou et al., 2015), whereas protein
phosphatase FyPP1 and FyPP2 lead to dephosphorylation of
ABI5 (Dai et al., 2013). In addition, DWA1, DWA2, and ABD1
directly interact with and ubiquitinate ABI5 (Lee et al., 2010;
Seo et al., 2014), and the SIZ1 sumoylates ABI5 during seed
germination (Miura et al., 2009), KEG protein contains RING-
HC and kinase domains, which function in ubiquitination and
phosphorylation activity of ABI5 to control its protein level,
respectively (Stone et al., 2006; Liu and Stone, 2010, 2013).
KEG also ubiquitinated CIPK26 that phosphorylates ABI5.
These results demonstrate the existence of crosstalk among
phosphorylation, ubiquitination and sumoylation, with ABI5
being the node. Moreover, N-glycosylation and N-acetylation
sites were predicted at the N terminus of ABI5 although
experimental evidence is needed (Yu et al., 2015). Acetylation and
succinylation analysis of germinated embryos in rice identified
133 common sites on 78 proteins modified by these two PTMs
(He et al., 2016), implying the potential crosstalk between
acetylation and succinylation during seed germination. Of the
ubiquitylome in germinated rice embryo (He et al., 2020b), 88
proteins were also modified by phosphorylation (Han et al.,
2014a) and 82 lysine residues in 49 proteins were also modified by
acetylation (He et al., 2016), of which 12 proteins were modified
by these three PTMs, indicating that co-modification occurred
in these proteins. However, detailed investigations of specific
proteins or sites are needed to clarify the molecular mechanism
of how these PTMs co-regulated seed germination.

CONCLUDING REMARKS

A successful break of dormancy in seed to initiate germination
is an irreplaceable process in the plant life cycle, and numerous
efforts have been conducted to investigate the molecular
mechanisms underlying the initiation of seed germination
and seedling establishment at (post-)transcriptional and (post-
)translational levels. This review presented here provides a
relatively comprehensive summary of the PTMs involved in
the regulation of seed germination, which mainly included
phosphorylation, ubiquitination, sumoylation, carbonylation,
glycosylation, acetylation, and succinylation. The PTMs on ABI5
provides a model that could be used to understand the stability
and activity of specific proteins modified by different PTMs.
However, numerous questions related to PTMs involved in
seed germination still need to be investigated in the future.
This is not only decided by the complexity of germinating
processes but limited by the analytic techniques including the
accuracy of identification and analysis for PTMs. Not only the
protein functions are determined by the combination of multiple
PTMs but also the crosstalk among PTM regulation of seed
germination remains largely unknown. The summarization of
PTMs presented here will promote the study of the molecular
basis underlying seed germination especially for the processes
regulated by PTMs. The future work will be mainly conducted
to mine clues in regulation of seed germination as follows: (i)
PTMs involved in the other hormones such as auxin and ethylene,
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except ABA and GA; (ii) whether phosphorylation or other
PTMs are involved in GA signaling, because only ubiquitination
was detected in DELLA proteins; (iii) the detailed mechanisms
of PTMs such as sumoylation, carbonylation, glycosylation,
acetylation, and succinylation identified through proteomics
technique and how they regulate seed germination; and (iv)
whether other PTMs are involved in seed germination since over
600 PTMs have been detected so far.
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