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Chlorophyll content is an important indicator of winter wheat health status. It is valuable
to investigate whether the relationship between spectral reflectance and the chlorophyll
content differs under elevated CO2 condition. In this open-top chamber experiment,
the CO2 treatments were categorized into ambient (aCO2; about 400 µmol·mol−1)
or elevated (eCO2; ambient + 200 µmol·mol−1) levels. The correlation between the
spectral reflectance and the chlorophyll content of the winter wheat were analyzed
by constructing the estimation model based on red edge position, sensitive band
and spectral index methods, respectively. The results showed that there was a close
relationship between chlorophyll content and the canopy spectral curve characteristics
of winter wheat. Chlorophyll content was better estimated based on sensitive spectral
bands and difference vegetation index (DVI) under both aCO2 and eCO2 conditions,
though the accuracy of the models varied under different CO2 conditions. The results
suggested that the hyperspectral measurement can be effectively used to estimate the
chlorophyll content under both aCO2 and eCO2 conditionsand could provide a useful
tool for monitoring plants physiology and growth.

Keywords: elevated CO2, hyperspectral estimation model, chlorophyll content, red edge position, sensitive band,
spectral index, winter wheat

INTRODUCTION

It is expected that the atmospheric CO2 concentration will rise to 550 µmol·mol−1 in 2050 and
reach or exceed 700 µmol·mol−1 at the end of the 21st century due to the increase of human
population, energy production and utilization, deforestation and other intensive human activities
(IPCC, 2013). Wheat is one of the world’s most productive and important crops in the 21st
century, and also the main source of food for human (Curtis and Halford, 2014). Under elevated
CO2, the physiology, growth and yield of wheat and other species are affected (Long et al., 2006;
Wang et al., 2012).

Chlorophyll content was closely related to crop health, photosynthetic capacity and crop yield
(Lukas et al., 2014). C3 plants are more sensitive to elevated CO2 than C4 plants (Leakey et al.,
2009). The chlorophyll content and photosynthetic rate of varieties of C3 species, including crops
and trees, was increased by elevated CO2 (Zhang et al., 2013; Madhana et al., 2014; Fathurrahman
et al., 2016; Choi et al., 2017). For wheat, previous studies had shown a positive (Dubey et al., 2015)
or negative (Wang et al., 2013) CO2 effects on the chlorophyll content and the difference might be
resulted from the different experimental settings or CO2 increasing levels used in different studies.
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Given that systematic measurement of chlorophyll contents in
elevated CO2 condition is scarce, a detailed measurement of
chlorophyll content of winter wheat throughout the growing
season will be useful to understand the effect of elevated CO2 on
the physiology and growth of winter wheat.

Remote sensing methods could be used to accurately
and rapidly relate variations in leaf optical properties with
important plant characteristics, such as chlorophyll content
and photosynthetic properties at the leaf and canopy scales
(Ainsworth et al., 2014). Inversion of chlorophyll content by
hyperspectral remote sensing was of great significance for crop
growth status monitoring, yield estimation and agricultural
planning (Liang et al., 2012; Flores-De-Santiago et al., 2013).
Hyperspectral remote sensing had been used to monitor winter
wheat chlorophyll content (He et al., 2018; Kasim et al., 2018).
However, the application had been limited to specific test
conditions (Serbin et al., 2012; Zhou et al., 2016) and there
were few studies investigating hyperspectral remote sensing
applications on winter wheat under elevated CO2 conditions.

The hyperspectral estimation models could be determined
through different techniques to extract hyperspectral
characteristics, including reflectance spectrum and first
derivative spectrum, absorption and reflection location and
vegetation index (Li et al., 2014). Previous research studied the
relationship between visible and near-infrared spectra and leaf
chemical components and found out that the original spectral
reflectance and the first and second derivatives of the spectra
could be used to estimate crop agronomic parameters (Card
et al., 1988). Red edge and sensitive bands based spectral models
had been used to simulate chlorophyll and nitrogen content of
many species (Hansen and Schjoerring, 2003; Chen et al., 2013;
Clevers and Gitelson, 2013; Stratoulias et al., 2015). Identifying
optimal hyperspectral estimation models of winter wheat under
different CO2 conditions is critical in crop growth monitoring
and forecasting and requires further investigation.

In order to find an optimal estimation model for chlorophyll
content and promote spectral analysis in the application of
agriculture management under future global change conditions,
an open top chamber (OTC) based CO2 manipulation
experiment was conducted for 2 years in this study. The
objectives of this study were: (1) to establish statistical models
to study the relationship between hyperspectral characteristics
and chlorophyll content of winter wheat throughout the growing
stages; (2) to investigate whether the relationship between
hyperspectral characteristics and chlorophyll content varies
under elevated CO2 conditions.

MATERIALS AND METHODS

Experimental Site
The study site was located in the agrometeorological
experimental station of Nanjing University of Information
Science and Technology, in Nanjing city, Jiangsu province
of China (32◦16’N, 118◦86’E). The climate in this region
characterizes subtropical monsoon season, with annual average
precipitation of 1,100 mm, the average temperature in recent

years of 15.6◦C and the average annual frost-free period of 237
days. The soil texture in the tillage layer of winter wheat was
loamy clay, and the clayey content was 26.1%. The bulk density of
0–20 cm soil was 1.57 g·cm−3, the pH (H2O) value was 6.3, and
the organic carbon and total nitrogen content were 11.95 and
1.19 g·kg−1, respectively.

Experimental Design
Open top chambers (OTC) were used in the experiment to
manipulate CO2 concentration. There were eight OTC chambers,
all of which were octagonal prisms (opposite side diameter 3.75
m, height 3 m, bottom area 10 m2) and equipped with aluminum
alloy frames and toughened glass with high transmittance. There
were two CO2 treatments, ambient CO2 (aCO2) and elevated
CO2 (eCO2, aCO2 + 200 µmol·mol−1), each with four replicates.
The treatment of elevated CO2 started from regreening stage and
lasted to the end of growing stage.

In order to avoid the rapid loss of CO2 gas and reduce the
experiment cost, the top opening of OTC was designed to tilt
inward for 45◦. The CO2 concentration in the chambers was
controlled with an automatic control platform, composed of CO2
sensors, gas-supplying devices and automatic control system.
Three wind-blowing fans were placed in each chamber to make
the CO2 gas in the chamber evenly distributed. The CO2 sensor
feeds back the CO2 concentration information in the chamber
to the automatic control system every two seconds. The CO2
concentration averaged was 650 ± 58 µmol·mol−1 in elevated
CO2 chambers and 455 ± 42 µmol·mol−1 in ambient chambers
across two growing seasons.

The local winter wheat variety of Ningmai 13 was selected in
the study. The field measurement of spectrum and chlorophyll
was conducted in 2018–2019 and 2019–2020 growing
seasons. During the whole growing stages, fertilizer and water
management were carried out in the local conventional way.

Spectrum Measurement
The spectral reflectance of winter wheat was measured by
Field Spec4 of American analytical spectral device (ASD). The
wavelength range was set at 350–2,500 nm. The sampling interval
and resolution was set at 1.4 and 3 nm in the range of 350–
1,000 nm; and 2 and 10 nm in 1,001–2,500 nm, respectively.
The reflectance of winter wheat at five growth stages (jointing,
booting, heading, filling and maturity stage) was measured on
sunny days at 10:00 a.m.–2:00 p.m. Field Spec4 needed to be
preheated 30 min before measurement. During the measurement,
the sensor probe was placed vertically downward, the field of
view angle was 10◦ and the probe was about 20 cm away from
the top of the canopy. The measurement was carried out 10
times in different areas of an OTC. The reference white board
was corrected immediately before and after the measurements
in each chamber.

Measurement of Chlorophyll Content
At the same time as the spectral measurement, the chlorophyll
content was measured by the portable chlorophyll meter SPAD-
502. Relevant studies have shown that soil and plant analyzer
developrnent (SPAD) value was positively correlated with the
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total chlorophyll content, with the correlation coefficient up
to 0.99, and the SPAD value could be used to represent the
chlorophyll content of plants (Costa et al., 2001; Uddling
et al., 2007). When measuring the chlorophyll content, five
wheat plants were selected at the corresponding position
of canopy spectrum measurement, then SPAD values were
measured for five times uniformly on the upper, middle and
lower leaves of each plant, and the average value was taken
as the chlorophyll content of this sample point. A total of
200 chlorophyll samples were measured in 2018–2019 and
120 samples in 2019–2020. Two years of data were combined
together, among which 240 samples were selected to establish
the models, and the remaining 80 samples were used to
verify the models.

Statistical Analyses
View Specpro_6.0, Matlab_2017 and Origin_2018 were used
to process and analyze the data. The spectral band range was
set at 350–1,350 nm, and the wavelength corresponding to the
largest first-order differential value in the red edge range (680–
760 nm) was selected as the red edge position λr. The correlation
analysis between canopy spectral reflectance and SPAD values
of winter wheat was conducted, and the correlation coefficient
was calculated to find out the sensitive bands. According to
the original reflectance of winter wheat canopy, five common
vegetation indexes were calculated. Each vegetation index had
different characteristics. The normalized difference vegetation
index (NDVI) was a common vegetation index and very sensitive
to green vegetation. Ratio vegetation index (RVI) was sensitive
to vegetation with high coverage. Difference vegetation index
(DVI) and perpendicular vegetation index (PVI) were sensitive
to the change of soil background. Optimizing soil and adjusting
vegetaŷition index (OSAVI) explained the changes in the optical
characteristics of the background and corrected the sensitivity
of NDVI to the soil background (Bannari et al., 2007; Yan
et al., 2013). The calculation of each vegetation index was listed
in Table 1.

Using the canopy spectral data of winter wheat, a regression
estimation model with hyperspectral variables as independent

variables and the chlorophyll content as dependent variables was
established. Linear regression model was selected for all models:

Y = a+ bx (1)

In this study, the coefficient of determination (R2) and the
root mean square error (RMSE) were used to verify the linear
regression model. The higher coefficient of determination R2 and
the smaller RMSE indicated a more accurate estimation model.

R2
=

∑n
i=1(ŷi − ȳi)2∑n
i=1(yi − ȳi)2 (2)

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (3)

Where ŷi and yi were the predicted values and measured values
of the sample respectively, and i was the average value of the
measured values of the sample, and n was the number of samples.

RESULTS

Chlorophyll Content
The chlorophyll content in winter wheat under aCO2 and eCO2
in five growth stages was listed in Table 2. The chlorophyll
content was lowest in the maturing stage and highest in the
heading stage and varied under different CO2 treatments. At
different growth stages, the effects of eCO2 on chlorophyll
content of winter wheat were different. In booting and heading
stage, eCO2 increased the chlorophyll content by 4.70–6.90%;
in jointing, filling and maturity stage, eCO2 decreased the
chlorophyll content by 2.80–18.20%. During the whole growth
stage, the chlorophyll content under aCO2 was lower than that
under eCO2 (Table 2).

Canopy Spectral Reflectance
The original spectral band range was set at 350–1,350 nm and
the canopy spectral reflectance under aCO2 and eCO2 at different

TABLE 1 | The calculation of the vegetation indexes.

Spectral index Formulation Authors

NDVI NDVI = (RNIR − RRED)/(RNIR + RRED) Rouse et al., 1973

RVI RVI = RNIR/RRED Jordan, 1969

DVI DVI = RNIR − RRED Richardson and Wiegand, 1977

PVI PVI = (RNIR − 10.489× RRED − 6.604)/
√

1+ 10.4892 Huete et al., 1985

OSAVI OSAVI = (1+ 0.16)(RNIR − RRED)/(RNIR + RRED + 0.16) Rondeaux et al., 1996

TABLE 2 | The chlorophyll content of winter wheat.

Data composition Jointing Booting Heading Filling Maturity SD CV%

aCO2 48.04 ± 2.53c 55.50 ± 2.15b 57.42 ± 4.35a 55.32 ± 3.78b 44.28 ± 4.26d 7.33 14.70

eCO2 46.70 ± 3.53d 58.10 ± 4.97b 61.38 ± 3.75a 51.98 ± 2.51c 36.20 ± 7.36e 10.65 21.38

SD is the standard deviation and the CV (%) is the coefficient of variation. Lowercase letters indicate significant levels (p < 0.05).
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FIGURE 1 | Spectral reflectance of winter wheat canopy at different growing stages under aCO2 and eCO2.

FIGURE 2 | The relationship between the chlorophyll content and the red-edge positions.

Frontiers in Plant Science | www.frontiersin.org 4 March 2021 | Volume 12 | Article 642917

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-642917 March 20, 2021 Time: 13:42 # 5

Cai et al. Hyperspectral Estimation Model

FIGURE 3 | The measured and estimated values of the chlorophyll content based on the red-edge position model under aCO2 and eCO2.

growth stages was shown in Figure 1. In each growth stage, the
reflectance showed similar trend under aCO2 and eCO2, with an
absorption band around 500 nm, an obvious “green peak” around
550 nm, the minimum value around 680 nm, and a “red edge”
within the band range of 680–760 nm.

The spectral reflectance of winter wheat canopy under eCO2
was slightly lower at jointing, heading and maturity stages, and
was higher at filling stage than that at aCO2, especially in the
wavelength range of 760–1,350 nm. In the booting stage, the
spectral reflectance of the two treatments was similar. Among the
five growth stages, the spectral reflectance at the booting stage was
the highest, reaching about 0.45.

Chlorophyll Content Estimation Models
The Red-Edge Position Model
Spectral reflectance rose rapidly at about 680 nm and slowly at
about 760 nm. The band ranging between 680 and 760 nm was
selected as the “red edge” spectrum. The linear regression model
between the red edge position and the chlorophyll content was
established to estimate chlorophyll content (Figure 2). The rest of
the spectra and the chlorophyll content data were used to verify
the model (Figure 3). The R2 of the model was 0.36 and 0.41
under aCO2 and eCO2, respectively (Figure 2). The estimation
model based on the red edge location estimated chlorophyll
content slightly better under eCO2 than under aCO2 (Figure 3).

The Sensitive Band Spectral Model
The correlation coefficient of the spectral reflectance and
chlorophyll content of winter wheat during the whole growth
stage was analyzed (Figure 4). The correlation coefficient under
aCO2 was higher than that under eCO2 between 350 and
1,350 nm. The canopy reflectance had the greatest correlation
with the chlorophyll content at 740 and 749 nm under aCO2 and
eCO2, respectively.

The sensitive bands of 740 and 749 nm were then selected
under aCO2 and eCO2 respectively, and the linear model between

the spectral reflectance and chlorophyll content of the sensitive
bands was established to estimate the chlorophyll content of
winter wheat (Figure 5). The model was validated using the rest
of the sampling data (Figure 6). The R2 of the linear model was
0.72 and 0.52 under aCO2 and eCO2, respectively (Figure 5) and
the estimated values correlated well with the measured values of
chlorophyll content under aCO2 and eCO2 (Figure 6).

The Spectral Index Model
Five different spectral indexes were extracted from the spectral
reflectance curves (Table 2). Linear regression models of the five
spectral indexes and chlorophyll contents of winter wheat were
established. Under aCO2, the rank of R2 of the linear models
was DVI > PVI > OSAVI > NDVI > RVI. Under eCO2, the
rank of the R2 was DVI > OSAVI > NDVI > PVI > RVI

FIGURE 4 | The correlations between the chlorophyll content and the spectral
reflectance of winter wheat during the whole growing season.
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FIGURE 5 | The relationship between the chlorophyll content and the sensitive bands position of the spectral reflectance.

FIGURE 6 | The measured and estimated values of chlorophyll content based on the sensitive band position model under aCO2 and eCO2.

TABLE 3 | Estimation models of the chlorophyll content in wheat canopy based
on different spectral indexes.

Treatment Spectral index Estimation equation R2 Significance

aCO2 NDVI y = 19.10x+38.22 0.56 p < 0.01

RVI y = 0.32x+46.38 0.21 p < 0.01

DVI y = 0.39x+40.80 0.67 p < 0.01

PVI y = 0.77x+34.28 0.57 p < 0.01

OSAVI y = 16.53x+38.23 0.56 p < 0.01

NDVI y = 27.83x+32.82 0.54 p < 0.01

RVI y = 0.50x+44.61 0.22 p < 0.01

eCO2 DVI y = 0.58x+37.31 0.60 p < 0.01

PVI y = 0.71x+36.72 0.30 p < 0.01

OSAVI y = 24.04x+32.89 0.54 p < 0.01

(Table 3). The DVI based estimation models was established
using half of the measured data (Figure 7) and validated
using the rest of the sampling data (Figure 8). The R2 of

the linear model established was 0.67 under aCO2 and 0.60
at eCO2 (Figure 7) and the estimated correlated well with
the measured values of chlorophyll content under aCO2 and
eCO2 (Figure 8).

DISCUSSION

In order to establish statistical models to study the relationship
between the optical properties and chlorophyll content of
winter wheat under elevated CO2 conditions, we measured
the chlorophyll content and spectral reflectance in winter
wheat canopy under aCO2 and eCO2 conditions throughout
the growing season for 2 years. The effects of elevated CO2
on the chlorophyll content and spectral reflectance depended
upon growing stages. The statistical models established in
this study was effective under both ambient and elevated
CO2 conditions.
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FIGURE 7 | The relationship between the chlorophyll content and the DVI.

FIGURE 8 | The measured and estimated values of the chlorophyll content based on the DVI model under aCO2 and eCO2.

Elevated CO2 increased the chlorophyll content of winter
wheat at booting and heading stage, but decreased it at filling
and maturity stage in this study. Elevated CO2 usually had a
positive effect on the chlorophyll content, but the specific effect
depended on treatment duration and different species (Long
et al., 2004). The increase of CO2 concentration in the late
growing stage might lead to the faster decline of chlorophyll
concentration of wheat (Ommen et al., 1999). In this study,
the senescence of winter wheat under eCO2 was faster than
that under aCO2 and the chlorophyll content was decreased
under eCO2 at the later growing stages. The overall shapes
of spectral curves did not change throughout the growing
season, except in the maturity stage, the curves flattened due
to the senescence of the leaves. The effect of elevated CO2
on the spectral curves varied at different growing stages, with
no impact in the earlier jointing and boosting stages, positive

impact in the filling and negative impact in the heading and
maturity stages. Though elevated CO2 changed the maximum
reflectance, it did not change the overall shape of the spectral
curves of winter wheat at all the growing stages. The results
were consistent with previous studies where the shapes of
soybean canopy spectral curve did not change under different
CO2 treatments (Gray et al., 2010) and O3 concentrations
(Campbell et al., 2007).

Red edge position, sensitive band and vegetation index were
effective means to retrieve crop chlorophyll content from the
spectral curves (Dou et al., 2018; Kasim et al., 2018; Wang
et al., 2019). Previous studies had shown that the position and
reflectance of red edge were highly correlated with chlorophyll
content of plant leaves and could be used as an indicator of
chlorophyll content (Filella and Penuelas, 1994; Gitelson et al.,
1996). The current study showed that the reflectance at the
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680–740 nm wavelengths had a positive relationship with the
content of chlorophyll under both ambient and elevated CO2.

Sensitive bands could be used to calculate spectral
indexes, which were sensitive to the difference of chlorophyll
concentration in plant canopy (Hunt et al., 2011). The current
results showed that the sensitive bands at 740 and 749 nm
wavelength correlated with the chlorophyll content most, under
aCO2 and eCO2, respectively (Figures 4–6), even though the
established model fit slightly better under aCO2 than at eCO2
conditions. Vegetation indexes calculated from hyperspectral
remote sensing technology had long been used to monitor the
chlorophyll content of vegetation leaves (Meng et al., 2012; Guo
et al., 2020). Among the five tested vegetation indexes, the DVI
based model simulated the chlorophyll content best under both
aCO2 and eCO2 conditions and the model using overall data
from both the CO2 treatments gave similar results (results not
shown). Though the methods tested in the study proved effective
to simulate winter wheat chlorophyll content under different CO2
conditions, further investigations on how the spectral reflectance
correlates with other biochemical contents and biophysical
processes are still urgently needed for the purpose of guiding
crop management and monitoring crop growth status in the
future climate change situations.

In conclusion, the hyperspectral estimation models based on
the red edge position, sensitive band and DVI vegetation index
could all simulate the chlorophyll content of winter wheat. The
accuracy of vegetation index and sensitive bands based models
was higher than that of the red edge position model. The results
suggested that the hyperspectral measurement can be effectively
used to estimate the chlorophyll content under both aCO2 and
eCO2 conditions and different equations should be established at
specific CO2 growing conditions based on the methods chosen.
The findings in the study were useful in providing hyperspectral

methods to monitor the growth status of winter wheat in the
future global change situations.
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