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Plants are unable to physically escape environmental constraints and have, therefore,
evolved a range of molecular and physiological mechanisms to maximize survival
in an ever-changing environment. Among these, the post-translational modification
of ubiquitination has emerged as an important mechanism to understand and
improve the stress response. The ubiquitination of a given protein can change its
abundance (through degradation), alter its localization, or even modulate its activity.
Hence, ubiquitination increases the plasticity of the plant proteome in response
to different environmental cues and can contribute to improve stress tolerance.
Although ubiquitination is mediated by different enzymes, in this review, we focus on
the importance of E3-ubiquitin ligases, which interact with the target proteins and
are, therefore, highly associated with the mechanism specificity. We discuss their
involvement in abiotic stress response and place them as putative candidates for
ubiquitination-based development of stress-tolerant crops. This review covers recent
developments in this field using rice as a reference for crops, highlighting the questions
still unanswered.
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INTRODUCTION

Plants, as sessile organisms, have evolved myriad complex and efficient molecular and
physiological mechanisms to cope with the various environmental constraints that affect
their growth and development (Ahmad and Prasad, 2012). One such mechanism is the
post-translational protein modification (PTM) ubiquitination. Ubiquitination is involved in
virtually all cellular processes in eukaryotes, and it allows a fast remodel of target protein
abundance. It is the core of the main pathway for degradation of proteins, the ubiquitin-
proteasome system (UPS) (Hershko and Ciechanover, 1998). This PTM refers to the covalent
attachment of the ubiquitously expressed 76 residues, 8 kDa protein, ubiquitin, to a lysine
residue of a substrate protein, modifying its abundance, activity, or localization (Lee and
Kim, 2011). Ubiquitination is also a reversible process. The fate of ubiquitin-targeted
proteins can be reversed by the action of deubiquitinating enzymes (deubiquitinases, DUBs).
These enzymes are ubiquitin-specific proteases, and their action is important not only to
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maintain the ubiquitin pool stability, but also to fine-tune
the ubiquitination of proteins associated with different cellular
processes (Nijman et al., 2005; March and Farrona, 2018).

In the most classical pathway, ubiquitination comprises a
multistep process involving three enzymes operating in an ATP-
dependent manner. First, the ubiquitin protein is activated by
the E1-activase, subsequently transferred to the E2-conjugase,
and finally the E3-ligase mediates the transfer of the ubiquitin
to the target protein forming a bond between the glycine of
the ubiquitin molecule and a lysine on the target protein (Yu
et al., 2016). There are different types of ubiquitination: a single
ubiquitin molecule can be attached to the target protein at a
single amino acid (a.a.) residue (monoubiquitination) or multiple
a.a. residues (multimonoubiquitination), modifying the protein’s
function or location. In addition, ubiquitin can be attached
to the target protein as a ubiquitin chain (polyubiquitination).
Polyubiquitination is the most frequent type of ubiquitin
modification, targeting a range of proteins, including abnormal
proteins, receptors, and short-life regulatory proteins (Stone
et al., 2005). These polyubiquitin chains can be assembled
using the different lysine (K) residues present in the ubiquitin
protein (K6, K11, K27, K29, K31, K48, and K63), thus driving
the targeted protein to different fates, including degradation
(mainly K48-linked chain) by the UPS (Lee and Kim, 2011;
Zhang et al., 2015). The different types of polyubiquitin
chains generate a ubiquitin code that increases the functional
plasticity of this system beyond the regulation of protein
degradation through the UPS. Among those, the K63-linked
chains are implicated in the degradation of proteins and cellular
compartments through endocytosis and selective autophagy
(Clague and Urbé, 2010; Romero-Barrios and Vert, 2018; Su et al.,
2020).

Among the ubiquitination enzymes, E3-ubiquitin ligases are
the most abundant. The Arabidopsis, rice, and maize genomes
are predicted to harbor more than 1100 genes encoding E3-
ubiquitin ligases (Smalle and Vierstra, 2004; Du et al., 2009).
Their abundance is thought to be related to their specificity
for the target proteins (Vierstra, 2012). The E3-ubiquitin
ligases can be divided into three main monomeric types:
really interesting new gene (RING) type, homology to E6-
associated carboxyl-terminus (HECT) type, and U-box type.
These are differentiated by their structure and ability to form
an intermediate during ubiquitination. The RING type is further
divided into monomeric E3s or multi-subunit E3s [also known
as Cullin-RING Ligases (CRLs)], depending on whether the
E2- and substrate-binding functions are found in the same or
different proteins, respectively (Deshaies and Joazeiro, 2009;
Lyzenga and Stone, 2012). The CRLs are composed of several
protein subunits, and the target protein specificity is given by
a group of substrate-binding proteins [F-box, DDB1 binding
WD40 (DWD) and broad complex tramtrack bric-a-brac (BTB)]
(Lyzenga and Stone, 2012). Interestingly, the CRL family is shown
to be involved in signaling regulation of the major classes of
phytohormones (auxins, jasmonates, gibberellins, etc.) (Kelley
and Estelle, 2012). Further insights into the mechanisms and
chemistry of ubiquitination in plant systems are extensively
reviewed elsewhere (Vierstra, 2009, 2012; Callis, 2014).

Over the last decade, ubiquitination has emerged as a target
for the improvement of crop stress tolerance (Dametto et al.,
2015; Xu and Xue, 2019). Most of the studies regarding the
ubiquitination pathway in plant responses to environmental
stresses have focused on monomeric E3-ubiquitin ligases, due to
their abundance and specificity, and their role in different biotic
and abiotic stresses (e.g.: drought, salinity, radiation, and nutrient
deprivation). In these studies, E3-ubiquitin ligases are associated
with the regulation of phytohormones, protein stability, and
levels of heavy metals to mention only a few (Dametto et al.,
2015). The large number of different E3-ubiquitin ligases (with
different structure, subcellular localization, and so on) suggest
a high level of versatility and a possible role in a multitude of
cellular processes (Stone et al., 2005). However, the regulation
of abiotic stress responses by E3-ubiquitin ligases remains largely
elusive as well as most of their target proteins.

Rice (Oryza sativa L.), the staple food for more than
half of the world’s population, is highly susceptible to abiotic
stresses, such as drought, salinity, cold, high temperatures,
nutrient deprivation, and toxicity (Lyzenga and Stone, 2012;
Sharma et al., 2019). Several studies show that ubiquitination
components and, in particular, monomeric E3-ubiquitin ligases
are highly involved in rice response to different abiotic stresses.
Therefore, in this review, we aim at describing and discussing
the advances made on this subject, focusing on rice monomeric
E3-ubiquitin ligases related to abiotic stress response (drought,
salinity, and temperature stress; see Table 1 for a list of recently
characterized rice E3-ubiquitin ligases, and Figure 1 for a
schematic representation of their targets and effect on stress
response) and prospects for their use in the development of
stress-tolerant crops.

E3-UBIQUITIN LIGASES IN DROUGHT
RESPONSES

It is estimated that more than 20 million hectares of rain-fed
lowland rice (12% of the total rice area worldwide and about
20% of world’s production) are affected by drought at some
point in the plant growth cycle (Zain et al., 2014; Ahmadikhah
and Marufinia, 2016; FAO, 2019) with yield losses up to 81%
(Ahmadikhah and Marufinia, 2016), and water scarcity events
are predicted to worsen as extreme climate events become more
frequent (Dixit et al., 2014). In rice, the effects of drought are
especially harmful at the seedling stage (2 to 3 weeks old) and at
the reproductive stage (pollen-development stage) (Dramé et al.,
2013; Almeida et al., 2016), affecting flowering time and yield
(Aroca, 2013). Overall, drought leads to poor water use efficiency,
stomatal closure, impaired photosynthesis, and deficient cell
division and expansion (Aroca, 2013). As a response strategy
to cope with water deficit, plants modulate different genetic
and metabolic mechanisms, such as cellular osmotic potential,
stomatal aperture, antioxidant defense, phytohormones, and
chlorophyll content, resulting in the adjustment and maintenance
of their physiological activity under drought conditions (Fang
and Xiong, 2015). Thus, it has become crucial to understand
the molecular mechanisms underlying rice response to drought,
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TABLE 1 | Selected reported rice E3-ubiquitin ligases and their roles in abiotic stress responses.

E3 ligase Type Target Stress tolerance References

OsPUB67 U-box OsRZFP34; OsDIS1 Drought (P) Qin et al., 2020

OsDIS1 RING OsNek6 Drought (N) Ning et al., 2011a

OsCTR1 RING OsBBTI4; OsMASP1; OsCP12; OsCYP450; OsDAHP1;
OsDAHP1; OsXYLA1; OsENO1; OsRP1

Drought (P) Lim et al., 2014

OsRDCP1 RING unknown Drought (P); Cold (I) Bae et al., 2011

OsDSG1 RING OsABI3 Drought (N); Salinity (N) Park et al., 2010

OsSDIR1 RING unknown Drought (P); Salinity (I) Gao et al., 2011

OsSIRP2 RING OsTKL1 Salinity (P); Osmotic (P); Drought (I) Chapagain et al., 2018

OsSADR1 RING OsSNAC2; OsGRAS44; OsPIRIN Salinity (N); Osmotic (N); Drought (I) Park et al., 2018a

OsMAR1 RING OsOCPI2 Salinity (N); Drought (I) Park et al., 2018a

OsRMT1 RING OsSalT; OsCPA1; OsbZIP60; OsFKBP12; OsEDA16;
OsDH1; OsPUB53; OsPB1

Salinity (P) Lim et al., 2015

OsSIRP1 RING unknown Salinity (N) Hwang et al., 2016

OsRINGC2-1 RING unknown Salinity (P) Jung et al., 2012

OsRINGC2-2 RING unknown Salinity (P) Jung et al., 2012

OsSIRH2-14 RING OsHKT2;1; OsSalT; OsPRF2 Salinity (P) Park et al., 2019

OsPUB15 U-box unknown Salinity (P); Drought (I) Park et al., 2011

OsPUB2 U-box unknown Cold (P) Byun et al., 2017

OsPUB3 U-box unknown Cold (P) Byun et al., 2017

OsHOS1 RING OsICE1; OsEREBP1; OsEREBP2 Cold (N) Lourenço et al., 2013, 2015

OsSRFP1 RING Unknown; predicted Cold (N); Salinity (N); Drought (I) Fang et al., 2016

OsHIRP1 RING OsAKR4; OsHKR1 Heat (P) Kim et al., 2019

OsHTAS RING OsS27a; Os40SRPS; OsE2s Heat (P) Liu et al., 2016

OsDHSRP1 RING OsGLYI-11.2; OsACP1 Heat (N); Drought (N); Salinity (N) Kim et al., 2020

OsHCI1 RING OsPGLU1; OsbHLH065; OsGRP1 Heat (P); Cold (I) Lim et al., 2013

P – positive regulation of stress response; N – negative regulation of stress response; I – induction by stress (see reference for further details).

namely the role played by ubiquitination, and to use this
knowledge to develop tolerant crop varieties. During the last two
decades, several rice E3-ubiquitin ligases and their interacting
proteins have been associated with drought response in plants.
Nonetheless, a more comprehensive analysis must be conducted
to gain a deeper view of their interactome and function.

The U-box-domain containing E3-ubiquitin ligase OsPUB67
has recently been found to positively regulate drought tolerance
by promoting enhanced scavenging of reactive oxygen species
(ROS) and stomatal closure (Qin et al., 2020). OsPUB67 is
induced by different abiotic stresses (drought, salinity, and cold)
and phytohormones, such as jasmonic acid (JA) and abscisic
acid (ABA). At the seedling stage, OsPUB67-overexpressing
lines showed an improved drought tolerance, underpinned by
enhanced antioxidase activity, higher sensitivity to ABA, and
decreased transpiration rate, leading to increased survival rates.
In contrast, knockout lines showed higher sensitivity to drought
and decreased survival rates under drought (Qin et al., 2020).
It is known that drought triggers ABA accumulation leading
to stomatal closure as a way of minimizing water loss (Aroca,
2013). In OsPUB67-overexpressing plants, a higher ratio of closed
stomata under drought compared with the control condition was
observed. This effect on stomatal control might be associated with
OsPUB67 interaction with two targets (OsRZP34 and OsDIS1)
identified by direct yeast-two hybrid (Y2H). OsRZFP34, which
is localized in the membrane of guard cells of open stomata,

was previously reported to play a negative role in stomatal
closure and, consequently, decreasing drought tolerance. Indeed,
overexpression of OsRZFP34 in rice and Arabidopsis plants
lead to an increased ratio of open stomata, even under ABA
treatment (Hsu et al., 2014). Therefore, it can be hypothesized
that, under drought conditions, OsPUB67 ubiquitinates and
targets OsRZFP34 for proteolysis-mediated degradation, leading
to the enhancement of stomatal closure. This hypothesis is
further supported by the fact that the OsPUB67–OsRZFP34
interaction observed in the membrane of guard cells is weak
under control conditions but becomes strong under drought
when stomata closure is induced (Qin et al., 2020). OsPUB67
also interacts with Oryza sativa drought-induced SINA protein
1 (OsDIS1), another negative regulator of drought response
in rice (Ning et al., 2011a). The OsPUB67–OsDIS1 interaction
shows a pattern opposite to OsPUB67–OsRZP34’s, being weak
in the membrane of closed stomatal guard cells and strong in
the membrane of open stomata (Qin et al., 2020). Interestingly,
OsRZP34 and OsDIS1 are also E3-ubiquitin ligases, which may
account for another layer of complexity in the regulation of
the response. Because the technique used to identify interactors
(Y2H) was directed to a small number of proteins, it is possible
that OsPUB67 targets other players important for the observed
phenotype, but these were not yet identified.

OsDIS1 may play its negative role in drought stress response
via the ubiquitination of a multitude of stress-related proteins
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FIGURE 1 | Selected E3-ubiquitin ligases involved in abiotic stress response in rice. Illustration of rice E3-ubiquitin ligases involved in plant response to drought, salt,
heat, and cold stress. The illustration displays selected E3 ligases and their target proteins when available. Dashed lines denote known interaction but unknown
effect over the target protein, namely whether it is targeted for degradation (blunt arrow) or translocation (pointy arrow).

(Ning et al., 2011a,b). Overexpression of OsDIS1 in rice results
in decreased drought tolerance, whereas the silencing of OsDIS1
results in increased drought tolerance and survival rates (Ning
et al., 2011a). OsDIS1 is predominantly localized in the nucleus
but possibly translocates to the cytoplasm upon drought.
Interestingly, one of its putative targets, O. sativa NIMA-
related kinase (OsNEK6), is a microtubule (MT)-associated
serine/threonine protein kinase, which is targeted for proteolysis
via the proteasome. However, OsNEK6 has no known function
in the rice response to stress. Given that MT are highly associated
with stomatal movement (Qu et al., 2018) and OsPUB67–OsDIS1
interact in stomata guard cells, one may hypothesize that this
module is important for the regulation of stomatal aperture under
stress conditions. Further research is required to understand their
mode of action. The rice homolog of human Ski-interacting
protein (OsSKIPa), a positive regulator of drought and salt stress
response in rice (Hou et al., 2009), is also shown to interact
with OsDIS1 (2011b), and its accumulation seems to be regulated

by the ubiquitin/26S proteasome system (UPS). Elsewhere, it is
shown that OsSKIPa expression is induced by abiotic stresses,
such as drought, salt, mannitol, and ABA, and its overexpression
in rice leads to improved growth performance under the
aforementioned stresses and ABA treatment. Conversely, the
knockout of OsSKIPa in rice plants resulted in growth arrest and
reduced cell viability (Hou et al., 2009). However, whether this
degradation is promoted by OsDIS1-mediated ubiquitination or
not remains to be solved.

Oryza sativa chloroplast targeting 1 (OsCTR1) is another RING
E3 ligase shown to be involved in water-deficit responses. Its gene
expression is induced by dehydration and ABA treatment and,
when overexpressed in Arabidopsis, confers drought tolerance
(Lim et al., 2014). The Arabidopsis overexpression plants show
ABA hypersensitivity, which can explain the observed enhanced
tolerance and higher survival rates under severe water deficits.
In control conditions, OsCTR1 localizes in both cytoplasm and
chloroplast; however, under ABA treatment, OsCTR1 localizes

Frontiers in Plant Science | www.frontiersin.org 4 March 2021 | Volume 12 | Article 640193

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640193 March 17, 2021 Time: 16:40 # 5

Melo et al. E3-Ubiquitin Ligases in Rice Abiotic-Stress Responses

mainly in the cytoplasm, where it interacts with several proteins
although many of them are predicted to be chloroplast-based
and related to photosynthesis (Lim et al., 2014). One of these
interactors is the Calvin cycle protein CP12 (OsCP12), which
is ubiquitinated by OsCTR1 in the cytoplasm and targeted
for proteasome-mediated degradation (Lim et al., 2014). The
Calvin cycle protein CP12 is involved in the regulation of the
Calvin cycle and, hence, of sugar production (Wedel et al.,
1997; Sugiura et al., 2019). In an oxidizing environment rich
in H2O2, as, for instance, drought, CP12 is oxidized leading
to a strong hampering of photosynthetic enzymatic activity
(Yu J. et al., 2020). The ubiquitination-mediated degradation of
OsCP12 could be a mechanism for guaranteeing the continuous
production of energy supply even under drought. The results
of this study indicate that OsCTR1 confers drought-tolerance
possibly via an ABA-dependent pathway. It is essential to
investigate the physiological role of OsCTR1 in rice as well
as the mechanisms underlying drought tolerance. Do rice
plants overexpressing OsCTR1 show an improved performance
under drought? If yes, what are the molecular mechanisms
underpinning this phenotype?

Oryza sativa RING domain-containing protein 1 (OsRDCP1)
is a RING E3-ubiquitin ligase upregulated by drought at
a transcriptional level and whose overexpression enhances
tolerance to severe water deficit in rice (Bae et al., 2011).
Interestingly, loss-of-function plants showed a response to
drought similar to WT. This phenotype may be due to
a compensation effect by any of the other five OsRDCP
paralogs present in rice. Interestingly, an OsRDCP1 homolog
from Capsicum annuum, CaRma1H1, when overexpressed in
Arabidopsis, also enhances drought tolerance (Lee et al., 2009).
It is shown that CaRma1H1 interacts with and inhibits the
trafficking of the aquaporin PIP2;1 from endoplasmic reticulum
(ER) to the plasma membrane by targeting it for degradation via
the UPS. This indicates that the function on drought tolerance
might be associated with the control of aquaporin levels in
the plasma membrane. However, it is still necessary to fully
characterize its physiological role in rice and identify its targets.
It is important to produce knockout mutants (CRISPR/Cas9) for
the five rice paralogs, including different combinations.

E3-UBIQUITIN LIGASES IN SALINITY
RESPONSES

Similarly to drought, salinity is one of the top environmental
factors affecting plant development and hindering crop yield
(Hoang et al., 2016). It is estimated that 20% of the total global
cultivated agricultural land is affected by high salinity with the
affected area increasing every year (Shrivastava and Kumar,
2015). Rice is very sensitive to salt with most of its varieties having
a salt electrical conductivity (EC) threshold as low as 3 dS m−1;
subjecting rice to an EC of 6 dS m−1 would result in more than
50% reduction in rice grain yield (Lekklar et al., 2019). Therefore,
it is imperative to better understand the molecular mechanisms
underlying rice responses to high salinity and to identify new
varieties capable of coping with the saline environment. During

recent years, it has been shown that rice salt stress responses can
be mediated by E3-ubiquitin ligases.

Oryza sativa salt-induced RING finger protein 2 (OsSIRP2)
is induced by high salinity, drought, and ABA and encodes a
RING-type E3-ubiquitin ligase that localizes to the nucleus of
rice protoplasts under both control and high-salinity conditions.
OsSIRP2, when overexpressed in Arabidopsis, is shown to confer
tolerance to salinity and osmotic stresses (Chapagain et al.,
2018). It is also shown that OsSIRP2 is able to interact with the
rice transketolase 1 (OsTKL1) in the cytoplasm, targeting it for
degradation via the UPS. OsTKL1 belongs to the transketolase
family involved in the oxidative pentose phosphate pathway of
the Calvin cycle. It is essential for the regeneration of ribulose
1,5-bisphosphate (Murphy and Walker, 1982; Khozaei et al.,
2015) and is localized in the chloroplast. The reduction of TKL1
activity leads to the inhibition of photosynthesis in tobacco
(Henkes et al., 2001). Transketolase’s enzymatic activity is also
crucial for the stress-induced production of cytosolic NADPH,
a major component combating ROS-induced damage in a plant
under stress (Tunc-Ozdemir et al., 2009). To better understand
the function of OsSIRP2 and the physiological meaning of
the OsSIRP2–OsTKL1 interaction in salt (and drought) stress
responses, including photosynthesis performance, it is important
to perform a functional characterization of these two proteins
in rice. It is fundamental to understand if and how the negative
regulation of OsTKL1 by OsSIRP2 promotes tolerance to stress.
Finally, the translocation of OsSIRP2 from the nucleus to the
cytoplasm to ubiquitinate OsTKL1 raises the question of the
underlying mechanism driving this export because OsSIRP2 did
not change localization under salt stress.

The RING-type E3-ubiquitin ligase encoded by the gene
Oryza sativa salt-, ABA-, and drought-induced RING finger
protein 1 (OsSADR1) is highly induced by salt, drought, and
ABA treatments at the transcriptional level (Park et al., 2018a).
Under non-stress conditions, OsSADR1 localizes in the cytosol
and the nucleus, but upon salt stress, OsSADR1 accumulates
in the nucleus. In addition, Arabidopsis plants overexpressing
OsSADR1 show increased sensitivity to salt, drought, and
mannitol stresses, indicating that OsSADR1 acts as a negative
regulator of abiotic stresses. This low tolerance to stress might
be due to the ABA hyposensitive phenotype shown by these
plants. OsSADR1 is shown to interact with the nuclear-localized
stress-induced proteins OsSNAC2 and OsGRAS44 (GRAS family
transcription factor domain-containing protein 44). OsSNAC2,
a member of the stress-responsive NAM, ATAF, and CUC
transcription factors family, is a positive regulator of salinity
stress in rice and its overexpression in rice results in ABA
hypersensitivity (Hu et al., 2008). The degradation of the
OsSNAC2 Arabidopsis homolog mediated by OsSADR1 may
be one of the reasons for the increased sensitivity to salt and
other stresses. Further analysis of the molecular mechanisms
underlying the OsSADR1 function should clarify its interaction
with the ABA signaling pathway and the role of the interaction
with the two targets, particularly OsGRAS44, in the response to
abiotic stresses.

Park et al. (2018b) report that rice RING E3-ubiquitin
ligase MT associated RING finger protein 1 (OsMAR1) is
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highly upregulated by salinity and water deficit. However, the
overexpression of OsMAR1 in Arabidopsis results in lower
tolerance to salt stress, indicating that OsMAR1 acts as a
negative regulator of salt stress. In rice, OsMAR1 localizes to
the MT but translocates to the cytosol, where it interacts with
the cytosol-localized subtilisin-chymotrypsin protease inhibitor
2 (OsOCPI2) and targets it for degradation. OCPI2 is also
induced by salt stress (Huang et al., 2007; Singh et al., 2009),
but when overexpressed in Arabidopsis plants, improves salt
tolerance (Tiwari et al., 2015). These results indicate that the
interaction between the negative regulator OsMAR1 and the
positive regulator OsOCPI2 play an important role in modulating
salt stress response in rice. However, this hypothesis needs to
be tested as the interaction between OsMAR1 and OsOCPI2 is
so far only studied under control conditions. Furthermore, the
functional role of OsMAR1 and OsOCPI2 remains to be validated
in rice, and the localization of OsMAR1 to the MT should also be
a subject of further study.

Oryza sativa RING finger protein with MT-targeting domain 1
(OsRMT1) is another MT-associated E3-ubiquitin ligase shown
to play a role in rice response to salinity stress (Lim et al., 2015).
OsRMT1 overexpression in Arabidopsis leads to an increased
salt stress tolerance. Interestingly, under control conditions,
OsRMT1 levels are tightly regulated by its own homodimer’s self-
ubiquitination and degradation via UPS. However, under salinity,
OsRMT1 is stabilized. The homodimeric OsRMT1 localizes to
MT, where it also exerts its E3-ubiquitin ligase activity over
most of its identified targets. Interestingly, all the target proteins
identified (OsSalT, OsCPA1, OsbZIP60, OsFKBP12, OsEDA16,
OsDH1, OsPUB53, and OsPB1) had their transcripts highly
upregulated in salt imposition and were reported to be salt-
or osmotic stress-responsive (Claes et al., 1990; Ahn et al.,
2010; Zhang et al., 2012; Chung et al., 2018; Pandey et al.,
2018; Liu et al., 2020). OsRMT1, which is also found in the
nucleus, translocates the target proteins to the MT. This mode
of action of an MT-localized E3-ubiquitin ligase is different
from that of the abovementioned E3-ubiquitin ligase OsMAR1,
which translocates to the cytosol to exert its ubiquitin ligase
activity (Park et al., 2018b). However, the physiological function
of OsRMT1 in rice remains to be investigated.

OsRMT1 and OsMAR1 studies shed new light on the
regulation of E3-ubiquitin ligases and raises the question about
the mode of action of different types of E3-ubiquitin ligases
associated with the cytoskeleton. A subsequent step in the
analysis of these E3-ubiquitin ligases might be the possible
effect of the target proteins in the reorganization of the
cytoskeleton upon stress.

E3-UBIQUITIN LIGASES IN
TEMPERATURE STRESS RESPONSES

Temperature stress, such as cold and heat, hinder plant
development and growth by affecting water potential, ROS,
phytohormones, photosynthesis performance, fertility, and crop
yield and quality (da Cruz et al., 2013; Kilasi et al., 2018; Liu
et al., 2018). Rice is a very sensitive crop to both cold and

heat stresses (Kilasi et al., 2018; De Freitas et al., 2019). Indeed,
it has been reported that the critical temperature for spikelet
fertility in rice is a maximum of 35◦C (Wang et al., 2019).
Moreover, sustained high temperatures for more than a week
cause severe heat injury (Wang et al., 2019). Similarly, sustained
low temperatures cause cold injury and sterility (Liu et al., 2013).
Therefore, it is of paramount importance to better understand
the molecular mechanisms underlying rice responses to low and
high temperatures.

Response to Low Temperature
The homologous U-box type E3-ubiquitin ligase proteins
OsPUB2 and OsPUB3 were recently characterized as positive
regulators of cold stress response in rice (Byun et al., 2017).
OsPUB2 is upregulated by low temperature, drought, and high
salinity, and OsPUB3 expression does not respond to any of
the aforementioned stresses. However, overexpression of either
OsPUB2 or OsPUB3 in rice plants confers a cold-tolerance
phenotype, including enhanced survival rates, increased
chlorophyll content, and reduced ion leakage. Furthermore,
gene expression analysis shows that the overexpression of
the two OsPUB genes is associated with the upregulation of
cold stress inducible genes, such as glutamate decarboxylase
(GAD), WRKY77, and multidrug resistance protein 4 (MRP4),
under both control and cold conditions, and trehalose-6-
phosphatephosphatase 2 (TPP2) and MYBS3 were induced only
under drought conditions, and DREB1B/CBF1 decreased under
cold stress compared with wild-type plants. RNAi knockdown
rice plants show a phenotype similar to WT; however, these
results may be due to the redundant function of OsPUB2
and OsPUB3. This hypothesis could be tested by performing
a simultaneous full knockout of both genes. However, the
mode of function of these proteins may provide a clue for the
knockout mutant phenotype. The two E3-ubiquitin ligases,
which share a high degree of sequence identity (75%), exert their
ubiquitin ligase activity by forming homodimer and heterodimer
complexes, with the latter being more stable. Moreover, both
had their stability enhanced by cold. The subcellular localization
in Nicotiana benthamiana leaf protoplasts shows both E3-
ligases in small cytosolic punctate bodies. Because OsPUB2
was also observed in the nucleus, it raises the possibility of
being involved in an additional process, different from its
homolog. It remains, however, to be shown whether those
two homologous E3-ubiquitin ligases work together to confer
cold tolerance to rice plants and by means of what target
protein(s) this tolerance is achieved. Moreover, the OsPUB2
mutants should be analyzed under multiple stresses for further
phenotypic analysis.

Another E3-ubiquitin ligase functioning as a modulator of
plant response to cold stress in rice is the RING-type high
expression of osmotically responsive gene 1 (OsHOS1) (Lourenço
et al., 2013). OsHOS1 interacts with Inducer of CBF expression
1 (OsICE1) in the nucleus and targets it for degradation via
the UPS. OsHOS1-silenced (RNAi) lines show higher transcript
levels of the stress-responsive transcription factor dehydration-
responsive element (DRE)-binding protein 1A (OsDREB1A) and
protein levels of OsICE1, a master integrator of cold stress
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signaling regulating the expression of cold-responsive genes
(Lourenço et al., 2013). However, the higher levels of OsDREB1A
are transient and do not confer cold tolerance or enhanced
survival rates to the RNAi lines. This role is also observed
for the OsHOS1 ortholog in Arabidopsis (HOS1) in response
to cold stress (Dong et al., 2006). OsICE1, also known as
OsbHLH002, is a positive regulator of cold stress response
in rice. It is shown that, when cold stress is applied only
in roots, the overexpression of OsICE1 confers cold tolerance
to the plant (Zhang et al., 2017). Conversely, knockout of
OsICE1 results in cold hypersensitivity. Furthermore, it was
found that, under cold stress, mitogen-activated protein kinase 3
(OsMAPK3) phosphorylates OsICE1, leading to its accumulation
and protection against ubiquitination by OsHOS1 (Zhang et al.,
2017). Interestingly, but not surprisingly, phosphorylation of
OsICE1 by OsMAPK3 takes place in the nucleus, where OsICE1
ubiquitination also occurs. Evidence suggests that, in warmer
temperatures, OsICE1 levels are maintained via the UPS system,
whereas under cold, this regulation is disrupted by OsMAPK3,
leading to OsICE1 stabilization and activity enhancement (Zhang
et al., 2017). However, further studies are needed to unveil
how this state change takes place and the effect on the full
plant life cycle. Interestingly, OsHOS1 is also found to be
involved in rice root mechano-sensing through JA signaling
by targeting two rice EREBP TFs for degradation (Lourenço
et al., 2015). Whether these targets and JA are involved
in OsHOS1-mediated cold response in this species remains
to be elucidated.

The Oryza sativa stress-related RING finger protein 1
(OsSRFP1) is an unusual E3-ubiquitin ligase that shows
both transcriptional and post-translational activity in plant
response to cold stress (Fang et al., 2015, 2016). The OsSRFP1
expression level is induced by cold, PEG-simulated drought,
salt, H2O2, and ABA, and its overexpression in rice results
in a hypersensitive phenotype and yield penalty although the
opposite is observed for RNAi silencing lines under cold stress
conditions. The silencing lines show increased levels of proline,
higher activity of antioxidant enzymes, and increased growth
and survival rates. On the other hand, overexpression plants
show decreased levels of proline and lower activity of the
antioxidant enzymes. Interestingly, the transcript profile of
the OsSRFP1 overexpression plants reveals that many genes
involved in ROS homeostasis are downregulated under cold
stress, suggesting that the negative effect of OsSRFP1 under
cold stress is achieved by modulating the expression of such
genes. OsSRFP1 shows a dual localization, being partitioned
between the nucleus (predominantly) and the cytoplasm.
OsSRFP1 exhibits transcriptional activity in both yeast and
rice protoplasts, assessed by the ability of the (BD)-OsSRFP1
fusion protein to activate the transcription of the GAL4 gene
with the RING domain being essential for this activity (Fang
et al., 2015). In silico prediction of the cis-acting elements
for OsSRFP1 includes ABRE, NACF, EPFF, and MYBS, and
putative interactors are several members of the MYB family of
transcription factors. However, all lack experimental validation.
The OsSRFP1 homolog in apple, Malus domestica MYB30-
Interacting E3 Ligase 1 (MdMIEL1), is also shown to respond

to and/or regulate several stresses and auxin accumulation (An
et al., 2017, 2020). MdMIEL1 overexpression in Arabidopsis
results in lower cold tolerance, and similar to rice, the antisense
transgenic plants showed an enhanced performance under cold
stress. MdMIEL1 exerts its negative role in plant response to
cold stress by interacting with and targeting for degradation
the positive regulator of cold stress MdMYB308L, an MYB-
type transcription factor (An et al., 2020). Given this evidence,
and to better characterize the cold-stress response mechanism
exerted by OsSRFP1, further studies are needed to unveil the
targets of OsSRFP1.

Response to Heat Stress
Oryza sativa heat-induced RING finger protein 1 (OsHIRP1)
is a RING-type E3-ubiquitin ligase shown to act as a positive
regulator of heat stress in Arabidopsis (Kim et al., 2019).
The overexpression of OsHIRP1 in Arabidopsis leads to a
high germination and survival rates under heat stress. In rice
protoplasts under control conditions, OsHIRP1 localizes to both
cytosol and nucleus; however, upon heat stress (45◦C) treatment,
the enzyme is located predominantly in the nucleus. OsHIRP1
interacts directly with the putative aldo/keto reductase family
protein 4 (OsAKR4) in the nucleus and with the OsHIRP1-
regulated Kinase 1 (OsHRK1) in the cytosol. OsHIRP1 directly
targets OsAKR4 and OsHRK1 for degradation via the UPS under
heat stress (45◦C) but not at control or low temperatures (4◦C),
indicating that degradation of those target proteins via UPS
is temperature dependent. The OsAKR4 Arabidopsis ortholog,
potassium channel beta subunit 1 (KAB1), also possesses
an aldo/keto reductase motif and is a voltage-gated protein
involved in the inward transport of potassium in the guard
cells, thus contributing to stomatal opening (Sharma et al.,
2013). It is, therefore, possible that OsAKR4 degradation is
a means of avoiding water loss (Ilan et al., 1995). However,
the overexpression of OsAKR4 in rice is shown to enhance
tolerance to high temperatures (Kim et al., 2019). It is likely
that, under high temperatures, OsAKR4’s effect on stomatal
opening is important for leaf cooling, but at a certain point,
it is also important to balance this to avoid exaggerated water
loss. Its protein abundance may vary along heat stress, and its
regulation by OsHIRP1 might play an important role regulating
stomatal aperture. It is essential to further investigate this to
decipher the mechanism governing the location of OsHIRP1
interaction with its targets as well as unveil the biological
meaning of OsHRK1.

The E3-ubiquitin ligase Oryza sativa drought-, heat-, and
salt-induced RING finger protein 1 (OsDHSRP1) is shown
to be highly induced by salinity, heat, and drought at the
transcript level. In addition, it is shown in Arabidopsis to
act as a negative regulator of various stresses, especially heat
stress (45◦C), modulating the abundance of stress-responsive
proteins via the UPS (Kim et al., 2020). The overexpression
of OsDHSRP1 in Arabidopsis leads to hypersensitivity to heat
stress. OsDHSRP1 is shown to be associated with MT; however,
it interacts with, ubiquitinates, and targets for degradation
a glyoxalase (OsGLYI-11.2) and the abiotic stress-induced
cysteine proteinase 1 (OsACP1) elsewhere in the cytoplasm.
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FIGURE 2 | Illustration summarizing the different abiotic stress responses of rice E3-ubiquitin ligases described in this review.

This raises the question about the molecular mechanism behind
the difference in the localization of OsDHSRP1 as well as
that of its interaction. OsDHSRP1 is also shown to act in
the same way with the rice target Arabidopsis homologs
(AtGLYI-11.2 and AtACP1, respectively). OsGLYI-11.2 is a
member of the glyoxalase system, which is responsible for the
detoxification of methylglyoxal (MG), a cytotoxic byproduct
of metabolism. Levels of MG are shown to increase under
abiotic stress, leading to adverse effects in plants (Mustafiz
et al., 2014). In addition, it is known that overexpression
of glyoxalases in plants confers tolerance to multiple abiotic
stresses (Belavadi et al., 2017). Nevertheless, the role of
OsGLYI-11.2 in rice response to heat stress needs to be more
deeply investigated. OsACP1 belongs to the cysteine proteinase
group, which represents the majority of proteolytic activity
in plants. OsACP1 is induced by methyl jasmonate, salicylic
acid, salt, and heat stress but not by drought. Furthermore,
OsACP1 overexpression appears to confer salt tolerance in rice
(Niño et al., 2020). Still, further characterization of OsACP1’s
role in rice response to heat is required to understand the
underlying mechanism. It would also be important to carry
out a detailed functional characterization of OsDHSRP1 in rice
and identify new interactors specifically involved in the heat
stress responses.

Oryza sativa heat- and cold-induced 1 (OsHCI1) is a RING
E3-ubiquitin ligase highly induced under extreme temperatures
(4 and 45◦C) but not by salinity or dehydration stresses and,
when overexpressed in Arabidopsis, confers high tolerance to
heat stress (Lim et al., 2013). Under control conditions, OsHCI1
localizes mostly in the cytoplasm, being partitioned between
the cytoplasm and the nucleus during heat stress. Under heat
stress, OsHCI1 moves from the Golgi complex, where it is
mainly localized, to the nucleus via the cytoskeleton (Lim et al.,
2013). In the nucleus, OsHCI1 monoubiquitinates and promotes
the nuclear export of its nuclear-localized target proteins to
the cytoplasm; these include a periplasmic beta-glucosidase

(OsPGLU1), a bHLH transcription factor (OsbHLH065), and
a glycine-rich cell-wall structural protein (OsGRP1), which are
nuclear-localized under control conditions (Lim et al., 2013).
OsPGLU1 belongs to the class of beta-glucosidases enzymes
that catalyze the hydrolysis of oligosaccharides from the plant
cell wall into glucose. Beta-glucosidases have been associated
with several biotic and abiotic stress responses, including cold
(Thorlby et al., 2004; Cairns and Esen, 2010). However, a role
for OsPGLU1 in plant response to abiotic stress has not yet been
reported. Nevertheless, the maintenance of its transcripts at a
high level throughout the heat treatment (Lim et al., 2013) may
indicate that such action is an adaptive mechanism to heat stress,
namely via the alteration of sugar metabolism as an alternative
source of energy to the diminishing photosynthesis (Rouyi et al.,
2014). OsGRP1, also known as glycine-rich RNA-binding protein
(Osgr-rbp4), is an mRNA regulator and is reported as conferring
tolerance to heat stress in yeast and to be translocated from the
nucleus to the cytoplasm upon heat shock (Sahi et al., 2007).
Under current evidence, the translocation of OsPGLU1 and
OsGRP1 from the nucleus to the cytoplasm promoted by OsHCI1
via monoubiquitination represents a non-proteolytic function of
this enzyme on an abiotic stress condition. Whether OsHCI1
overexpression in rice also improves heat tolerance and, if so,
whether this phenotype is associated with its interaction with the
proteins identified, remains to be investigated.

CONCLUDING REMARKS

Ubiquitination is considered to be a major form of post-
translational modification, modulating plant growth and
development, and a key component of the plant response to
abiotic stresses (Vierstra, 2009, 2012; Callis, 2014). The E3-
ubiquitin ligase has been singled out as the major determinant of
target protein fate and, ultimately, the physiological effect thereof
(Shu and Yang, 2017). As shown in this review, the E3-ubiquitin
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ligases act either as positive or negative regulators of abiotic
stress responses. Furthermore, the positive or negative role of
E3-ubiquitin ligases in response to abiotic stresses depend on the
protein being targeted and the result of the modification thereof,
namely UPS-mediated degradation, modulation of activity, or
translocation. Therefore, the identification and characterization
of ubiquitin ligase targets should constitute a central point in any
stress response study.

E3-ubiquitin ligases often appear to be associated with
MT. The E3-ubiquitin ligase role in MT regulation seems to
be transversal to cellular processes and to species, such as
hypocotyl elongation (Lian et al., 2017), formation of mammalian
spermatozoa (Iyengar et al., 2011), cell migration (Courtheoux
et al., 2016), cell division (Maerki et al., 2009; Venuto and Merla,
2019), and viral infection (Liu et al., 2010). The MT role in stress
response is not surprising given that MT play a sensory role in the
perception and response of mechanical stress and other abiotic
stresses, such as cold, heat, and osmotic stress (Nick, 2013). In
Arabidopsis, salt stress leads to the UPS-dependent degradation
of MT-associated protein SPIRAL1 (SPR1), which is responsible
for maintaining MT stability. Degradation of SPR1 results in the
depolymerization of MTs followed by the formation of new MTs
better adapted to osmotic stress (Wang et al., 2011). Another
example is the E3-ubiquitin ligase JAV1-associated ubiquitin
ligase 1 (JUL1), which, in Arabidopsis, localizes to the MTs
and is thought to be crucial for ABA-mediated regulation of
stomatal closure under drought stress conditions by means of
depolymerization of MTs in the guard cells (Yu S. G. et al.,
2020). The MT-associated rice E3-ubiquitin ligases mentioned
in this review, OsMAR1, OsRMT1, and OsDHSRP1, are shown
to be involved in salinity, heat, and drought. However, these
rice E3-ubiquitin ligases have not yet been investigated for their
potential role in MT dynamics. Therefore, it can be hypothesized
that some MT-associated E3-ubiquitin ligases may function to
mediate MT remodeling in response to internal or external
environmental stimuli.

Many of the studied E3-ubiquitin ligases respond to a
multitude of stresses and may mediate the crosstalk between
stresses (Figure 2), such as drought, salinity, pathogens, nutrient
deprivation, and toxicity (Stone, 2014; Shu and Yang, 2017). It
is reported that the combination of stresses has different and
unique effects on plant physiology and cannot be deduced from
individual stresses (Suzuki et al., 2016). Therefore, it is crucial
that more studies on the ubiquitination pathway tap into the
nature of ubiquitination-mediated plant response to combined
abiotic stresses.

It is extensively reported that transgenic plants achieve a
stress-tolerant phenotype, either by overexpressing or knocking
down/out stress-responsive E3-ubiquitin ligases. This opens up
the prospect of the use of genetic modification tools, such as
CRISPR/Cas9, for the production of E3 ligase transgenic crops
better suited for stress-prone environments. However, the study
of the ubiquitination pathway still faces many challenges that
may be addressed in future studies to move forward in this
field. For instance, the study of membrane E3-ubiquitin ligases
poses a particular challenge. The study of interactomes through
standard techniques, such as Y2H or bimolecular fluorescence

complementation (BiFC), cannot be readily achieved. This is
especially because, in Y2H, the protein must be shuttled to
the nucleus, which does not happen with membrane proteins,
and in BiFC, the fluorescence fusion tag may hinder its
structure and, therefore, limit binding. Nevertheless, alternative
and complementary methods, such as the split-ubiquitin system
(Johnsson and Varshavsky, 1994), proximity labeling (Roux et al.,
2012), and ratiometric BiFC (rBiFC) (Grefen and Blatt, 2012)
have been develop and prove very useful to address the challenge
of uncovering E3-ubiquitin ligase interactomes.

An additional challenge relates to the understanding of the
formation of the ubiquitin chain. As mentioned, the type of
ubiquitination results in different fates for the target protein. The
number of ubiquitination sites in the target protein combined
with the type and length of the ubiquitin chain, result in an
enormous number of possibilities regarding the fate of the
modified target proteins. However, the study of this ubiquitin
system versatility is restricted by the available tools. Techniques
such as mass spectrometry enable mapping of ubiquitination
modifications; however, only recently the development of the Ub-
clipping methodology has allowed for an in-depth look at the
polyubiquitin chain signals and architecture, as well as coexisting
ubiquitin modifications (Swatek et al., 2019). Besides the type
of ubiquitin chain added to a target protein, the removal of
ubiquitin or a ubiquitin chain by DUBs is also a promising,
underexplored field of research. Previous work in Arabidopsis
shows that DUBs are involved in several developmental processes
as well as phytohormone and stress responses (Zhou et al.,
2013; Zhao et al., 2016; Jeong et al., 2017; March and Farrona,
2018). In rice, so far, very few DUBs have been functionally
characterized, and none directly involved, in abiotic stress
responses (Moon et al., 2009; Wang et al., 2017). A brief in silico
analysis of putative rice DUBs have shown consistent gene
expression changes in response to abiotic stress (data not shown).
Therefore, it will be extremely interesting to follow the DUB
counterparts of E3-ubiquitin ligases to have a comprehensive
understanding of the ubiquitin pathway function in abiotic
stress responses.

The recent finding that the variation of a single a.a. in
an E3-ubiquitin ligase target protein may have contributed
to the geographic variation in heading date among japonica
rice accessions, i.e., differential rice adaptation to different
environments, opens up new prospects for the search for natural
variability either in E3-ubiquitin ligases or in the target proteins
(Zhu et al., 2018) in rice and other crops. In rice, although
more than 3000 genomes are available (Sun et al., 2016) and
SNPs identified, the phenotypic characterization under stress is
still very scarce. This is, however, a very promising source of
information that must be exploited to identify natural variability
of the rice E3 ligases and, thus, unveil new tools for crop
improvement through traditional or new breeding technologies.

The study of ubiquitin ligases in crops, compared with other
plants such as Arabidopsis, remain subpar; however, the prospect
of development of ubiquitination-based stress-tolerant crops
has been steadily increasing during the past decade. With an
increasing interest in this field and the new technologies available,
we may soon see results in crop agronomic performance.
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