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Disease lesion mimic (Les/les) mutants display disease-like spontaneous lesions in
the absence of pathogen infection, implying the constitutive activation of defense
responses. However, the genetic and biochemical bases underlying the activated
defense responses in those mutants remain largely unknown. Here, we performed
integrated transcriptomics and metabolomics analysis on three typical maize Les
mutants Les4, Les10, and Les17 with large, medium, and small lesion size,
respectively, thereby dissecting the activated defense responses at the transcriptional
and metabolomic level. A total of 1,714, 4,887, and 1,625 differentially expressed
genes (DEGs) were identified in Les4, Les10, and Les17, respectively. Among them,
570, 3,299, and 447 specific differentially expressed genes (SGs) were identified,
implying a specific function of each LES gene. In addition, 480 common differentially
expressed genes (CGs) and 42 common differentially accumulated metabolites (CMs)
were identified in all Les mutants, suggesting the robust activation of shared
signaling pathways. Intriguingly, substantial analysis of the CGs indicated that genes
involved in the programmed cell death, defense responses, and phenylpropanoid
and terpenoid biosynthesis were most commonly activated. Genes involved in
photosynthetic biosynthesis, however, were generally repressed. Consistently, the
dominant CMs identified were phenylpropanoids and flavonoids. In particular, lignin,
the phenylpropanoid-based polymer, was significantly increased in all three mutants.
These data collectively imply that transcriptional activation of defense-related gene
expression; increase of phenylpropanoid, lignin, flavonoid, and terpenoid biosynthesis;
and inhibition of photosynthesis are general natures associated with the lesion formation
and constitutively activated defense responses in those mutants. Further studies on the
identified SGs and CGs will shed new light on the function of each LES gene as well as
the regulatory network of defense responses in maize.

Keywords: maize, disease lesion mimics, defense responses, transcriptomics, metabolomics, phenylpropanoid,
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INTRODUCTION

Disease lesion mimics are a class of mutants that display disease-
like spontaneous lesions in the absence of pathogen infection.
A huge number of disease lesion mimic mutants have been
found in higher plants including Arabidopsis, rice, barley, wheat,
and maize (Johal et al., 1995; Lorrain et al., 2003; Rostoks
et al., 2003; Gou et al., 2009; Matin et al., 2010; Tang et al.,
2013). Apart from their close association with cell death in
plants (Johal et al., 1995; Bruggeman et al., 2015), most of them
confer enhanced resistance to diverse pathogens; disease lesion
mimic mutants have therefore become keys for deciphering cell
death and defense pathways in plants (Lorrain et al., 2003). In
Arabidopsis, studies using over a series of lesion mimic mutants
(also known as autoimmune mutants) have led to numerous
breakthrough findings unraveling the complexity of plant defense
responses (Lorrain et al., 2003; Van Wersch et al., 2016). For
instance, bon1 (bonzai1) and cpr1/cpr30 (constitutive expressor
of pathogenesis-related genes 1/30) mutants that show lesion
mimic phenotypes all have elevated resistance to the bacterial
pathogen Pseudomonas syringae. Further studies on related genes
indicated that they acted as negative regulators of defense
responses via modulating resistance (R) gene SNC1 (Suppressor
Of NPR1-1 Constitutive 1) at transcriptional and/or protein level
(Yang and Hua, 2004; Gou et al., 2009, 2012; Cheng et al., 2011;
Gou and Hua, 2012). In rice, the lesion mimic mutant oscul3a
(Oryza sativa cullin3a) is resistant to both Magnaporthe oryzae
and Xanthomonas oryzae pv oryzae, and OsCUL3a (Cullin-
3a) negatively regulates cell death and immunity by degrading
OsNPR1 (Non-Expresser Of PR Genes1) (Liu et al., 2017). In
barley, the mlo (mildew resistance locus O) mutant conferred race-
non-specific resistance to powdery mildew pathogens (Erysiphe
graminis f.sp. hordei) (Wolter et al., 1993). In wheat, the lesion
mimic line Ning7840 and lm3 (lesion mimic 3) have enhanced
resistance to leaf rust (Puccinia triticina) and powdery mildew
(Blumeria graminis f. sp. tritici), respectively (Li and Bai, 2009;
Wang et al., 2016).

As one of the most common classes of mutations in maize,
a series of dominant disease lesion mimic (Les) and recessive
disease lesion mimic (les) mutants have been found more than
half a century ago (Neuffer and Calvert, 1975; Walbot et al., 1983).
Although >200 Les/les loci likely exist in maize (Walbot, 1991),
only several genes have been cloned so far. For instance, lls1
(lethal leaf spot 1) is a les mutant showing elevated resistance to
both Cochliobolus heterostrophus and Puccinia sorghi infections at
the leaf epidermis (Simmons et al., 1998). Rp1-D21 (Resistance to
P sorghi-D21) mutant, a Les mutant resulting from an aberration
in the maize Rp1 disease resistance gene, confers a non-specific
resistance to all common rust biotypes tested (P. sorghi) (Hu
et al., 1996; Smith et al., 2010). These studies indicate that maize
Les mutants are invaluable tools to dissect the maize defense
responses conferring elevated disease resistance especially broad-
spectrum resistance. However, because limited genes have been
cloned, Les/les mutants are far from well-explored. In particular, it
remains to be determined the underlying bases of the commonly
activated defense responses that lead to the constitutive lesion
formation, stunted growth, and enhanced disease resistance.

Transcriptional and metabolic regulations are essential
for priming plant defense responses. Previous transcriptomic
analysis has identified thousands of genes being upregulated
under pathogen invasion (Thilmony et al., 2006; Kawahara
et al., 2012; Windram et al., 2012; Dobon et al., 2016; Kebede
et al., 2018), with a series of transcriptional factors being
involved in controlling plant defense responses (Buscaill and
Rivas, 2014). Metabolically, enhanced plant immunity largely
attributes to divergent antimicrobial secondary metabolites
called phytoanticipin and phytoalexin (Grayer and Harborne,
1994; Vanetten et al., 1994), for instance, the phenylpropanoids,
terpenoids, benzoxazinoids, saponins, glucosinolates, etc.
(Piasecka et al., 2015).

The phenylalanine-derived phenylpropanoids including
lignin, flavonoids, coumarins, lignans, etc. all get involved
in plant defense (Naoumkina et al., 2010). When plants
suffered from pathogen infection, phenylpropanoid-related
gene expressions have a significant change. For instance,
Phenylalanine Ammonia Lyase (PAL) and Cinnamyl Alcohol
Dehydrogenase (CAD) gene expressions are upregulated after
infection of Cercospora zeina or Rhizoctonia solani in maize
(Meyer et al., 2017; Li et al., 2019). Consistently, phenylalanine-
derived lignin was found to be often increased after pathogen
infection (Southerton and Deverall, 1990; Tiburzy and Reisener,
1990; Mohr and Cahill, 2007; Zhang et al., 2007). After treatment
of lignin synthesis inhibitor, the resistance to Puccinia graminis
was decreased in wheat (Moerschbacher et al., 1990). Recently,
there have been increasing evidence supporting the idea that
lignin plays vital roles in disease resistance. For instance, in
maize, the lignin biosynthetic enzymes Caffeoyl-Coenzyme
A O-Methyltransferase (CCoAOMT) and Hydroxycinnamoyl
Coenzyme A:Shikimate Hydroxycinnamoyl Transferase (HCT)
regulated plant disease resistance by forming a complex with
the Nucleotide Binding Leucine-Rich Repeat (NLR) protein Rpl
(Wang et al., 2015; Wang and Balint-Kurti, 2016). A further
study indicated that ZmCCoAOMT2 is involved in the resistance
to multiple diseases including southern leaf blight, gray leaf
spot, and northern leaf blight (Yang et al., 2017). Besides,
a natural variation in the F-box gene (ZmFBL41) confers
banded leaf and sheath blight resistance in maize, resulting
from the accumulation of lignin and restriction of lesion
expansion via ZmCAD activation (Li et al., 2019). With the
discovery of new lignin biosynthetic components (Gou et al.,
2018, 2019), the role of lignin in plant defense remains to
be further elucidated. Other than lignin, flavonoids have
been well-documented for their resistance against multiple
pathogenic bacteria and fungi (Ferreyra et al., 2012; Mierziak
et al., 2014). For instance, 3-deoxyanthocyanidins, one of
flavonoid, accumulated in maize after Fusarium infection
(Sekhon et al., 2006).

Other than phenylpropanoids, terpenoids and benzoxazinoids
are the two most important antibiotic compound categories in
maize. Terpenoids including the kauralexins class of diterpenoids
and the zealexins class of sesquiterpenoids contribute largely
to defense against pathogenic fungi like Rhizopus, Fusarium,
Aspergillus, and Colletotrichum spp. in maize (Huffaker et al.,
2011; Schmelz et al., 2011; Meyer et al., 2017). The biosynthesis
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of kauralexins and zealexins requires multiple genes, and their
antiobiotic activities were strictly controlled (Ding et al., 2019,
2020). In addition, benzoxazinoids exhibits antibiotic activity
against pathogenic fungi like Helminthosporium turcicum,
Cephalosporium maydis, and P. graminis (Niemeyer, 2009). The
biosynthesis of benzoxazinoids also consists of multiple steps via
the actions of benzoxazinoneless 1 (BX1) to BX14 enzymes in
maize (Handrick et al., 2016).

With the development of high-throughput transcriptomic and
metabolomic techniques, the gene expression and metabolomic
changes can be monitored simultaneously in order to dissect
the underlying signaling and biochemical pathways in respect to
specific traits (Li et al., 2010; Chen et al., 2014; Tamiru et al.,
2016; Kaling et al., 2018; Mcloughlin et al., 2018; Wang et al.,
2018; Castro-Moretti et al., 2020). Although Les/les mutants are
considered invaluable models to dissect defense mechanisms,
there is a lack of systemic characterization of maize Les mutants
by multi-omics analysis. Therefore, in this work, we sought
to determine the bases of the activated defense responses by
transcriptomics and metabolomics analysis of three typical maize
Les mutants, thereby providing new insights into the gene
expression and metabolite changes associated with the lesion
formation and defense-related traits in Les mutants.

MATERIALS AND METHODS

Plant Material, Growth Condition, and
Sampling
The Les4 (227E Les4-N1375, maintained in W23/M14
background), Les10 (217I Les10-NA607, maintained in
W23/M14 background), and Les17 (312B Les17-N2345,
maintained in B73/A632 background) seeds were generously
provided by Maize Genetics Cooperation Stock Center. All
seeds were planted at the experimental station of Henan
Agricultural University in Xinxiang, Henan Province, China.
All Les mutant plants from the stock were self-pollinated for
two generations. A typical line showing 1:3 segregations of
wild type (WT) and mutant phenotypes in the third generation
of each Les stock was considered to be heterozygous, and the
plants with WT and mutant phenotypes were sampled separately
in this generation. Specifically, the putative homozygous
plants of Les4 and Les10 showed more intense lesions than
the putative heterozygous plants, while for Les17, the lesion
phenotype of putative homozygous and/or heterozygous plants
were similar (Supplementary Figure 1). For all segregating
populations, plants with uniquely intense lesion phenotype
were mixed respectively to be the mutant pool, while plants
with no lesion phenotype were mixed to be the WT pool. For
RNA extraction and chemical analysis, the third and fourth
above-ear leaves from four plants at 5 days after silking were
pooled as one sample, and three replicates of sample were
frozen in liquid nitrogen before use. For biomass quantification,
three fully matured whole plants (without ear) per replicate
were pooled as one sample and three replicates of samples
were harvested and dried at 65◦C to a constant weight
and then weighed.

Physiological and Biochemical Analyses
For diaminobenzidine (DAB) staining, the leaf sample harvested
above were cut into 3-cm-wide pieces, soaked in 1 mg ml−1 DAB
(pH = 3.8) solution for 8 h in the dark (Chintamanani et al., 2010).
After removal of DAB solution, 90% ethanol was used to remove
chlorophyll by incubating in a shaker. Images were taken using a
stereomicroscope (Olympus SZX7). Cell wall was extracted from
fresh leaves and lignin was quantified following Gou et al. (2019).
Chlorophyll was measured according to Mu et al. (2016). For
lignin and chlorophyll measurement, three replicates with four
plants per replicate of mutant and WT were used.

Pathogen Test of Curvularia
lunata (Wakker) Boed.
We performed the pathogen test of C. lunata (Wakker) Boed.
as previously described with some modifications (Huang et al.,
2009). The C. lunata (Wakker) Boed. strain CX-3 was cultivated
on Potato Dextrose Agar medium at 28◦C for 1 week in a growth
chamber. The spores were collected and suspended in distilled
water with 0.02% Tween-20 and diluted into 1 × 106 spores ml−1.
The above-ear leaves of maize plants at silking stage were sprayed
with the suspension and pictures taken for each leaf 7 days later.
The leaves of mock treatment were sprayed with distilled water
with 0.02% Tween-20. The leaf spots of the fungal colony from
three representative leaves were counted using Image J software
and the colony forming unit (cfu) (cm2 leaf area)−1 is presented.

RNA Library Construction and Illumina
Sequencing
Total RNA was extracted from sample using the Trizol reagent as
described by Gu et al. (2013). Sequencing libraries were generated
using NEBNext R© UltraTM RNA Library Prep Kit for Illumina R©

(NEB, United States) following the manufacturer’s manual and
index codes were added to attribute sequences to each sample
(Dong et al., 2019). The average insert size for the paired-end
libraries was 150 bp. Paired-end sequencing was performed on
an Illumina HiSeq platform (Illumina Hiseq X-ten).

Bioinformatics Analysis of RNA-Seq Data
Clean reads were derived after removal of low-quality regions
and adapter sequences from raw reads. Then, clean reads
were aligned to the maize reference genome (B73 RefGen_v4,
available online: https://www.maizegdb.org/assembly/) using
HISAT2 (Kim et al., 2015). Aligned reads from HISAT2
mapping were subjected to String Tie for DeNovo Transcript
assembly (Pertea et al., 2015). The expression of each gene
was normalized to fragments per kilobase of transcript per
million reads (FPKM) to compare among different samples.
The R package “DESeq2” was used to identify DEGs with fold
changes (FC) above 2 and false discovery rate (FDR) lower
than 0.05 (Love et al., 2014). The Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were accomplished in R using the packages “clusterProfiler”
and “pathview” (Yu et al., 2012). The significant GO terms
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in the biological process were further reduced with REVIGO1

(Supek et al., 2011) and visualized in Cytoscape (version 3.7.1)
(Shannon et al., 2003). Venn diagram was generated from the
web-based Venny2.12. The shared DEGs in Les4, Les10, and Les17
were defined as common genes (CGs). The subcellular location
analysis of CGs was performed with the SUBA43 (Hooper
et al., 2017). The heatmap was accomplished in R with the
package “pheatmap.” The transcription factors (TFs) in CGs
were identified based on the list obtained from PlantTFDB4

(Jin et al., 2017).

Validation of RNA−Seq by Quantitative
RT−PCR
Three biological replicates of the total RNA used in the RNA-
seq were treated with an RNase-free DNase Kit (Cat. # RR047A,
TAKARA) to remove DNA contamination (He et al., 2019)
and were verified by PCR amplification using the ZmACT1
intron primers. After being reverse transcribed into cDNA,
the quantitative PCR was performed using a SYBR Green
system. The primers used in the quantitative PCR analysis
are listed in Supplementary Table 1. The maize ZmACT1
gene was used as internal controls for normalizing gene
expression in maize.

Metabolomics Analysis
Metabolomics was performed at Wuhan Metware Biotechnology
Co., Ltd. (Wuhan, China). The metabolites were extracted using
the method of Chen et al. (2013). Briefly, using an ultrahigh-
performance liquid chromatography–electrospray ionization–
tandem mass spectrometry (UPLC-ESI-MS/MS) system (UPLC,
Shim-pack UFLC SHIMADZU CBM30A system5; MS, Applied
Biosystems 4500 Q TRAP6, the 4-µl sample extracts were
injected into a C18 column (1.8 µm, 2.1 mm × 100 mm),
which was set to 40◦C. The mobile phase was used as follows:
A: pure water with 0.04% acetic acid, B: acetonitrile with
0.04% acetic acid. Sample measurements were performed with
a gradient program as follows: 0–10 min, 5% B–95% B; 10–
11 min, 95% B; 11–11.1 min, 95% B–5% B; 11.1–14 min, 5%
B. The effluent was alternatively connected to an ESI-triple
quadrupole-linear ion trap (QTRAP)-MS. The conditions and
operation parameters were set as in previous studies (Zeng
et al., 2020). Metabolite quantification was performed using
multiple-reaction monitoring (MRM) mode (Shi et al., 2020).
Partial least squares discriminant analysis (PLS-DA) was used
to study the identified metabolites. Differentially accumulated
metabolites (DAMs) were set with thresholds of variable
importance in projection (VIP) ≥ 1 and log2(FC) ≥ 1 or ≤ -
1. The shared DAMs in Les4, Les10, and Les17 were defined as
common differentially accumulated metabolites (CMs). KEGG

1http://revigo.irb.hr/
2http://bioinfogp.cnb.csic.es/tools/venny/index.html
3http://suba.live/
4http://planttfdb.cbi.pku.edu.cn/index.php
5www.shimadzu.com.cn/
6www.appliedbiosystems.com.cn/

analysis of CMs was performed with the MBROLE 2.07

(Lopezibanez et al., 2016).

RESULTS

Phenotypic and Physiological
Characterization of the Les4, Les10, and
Les17 Mutants
To explore the molecular bases of lesion formation and defense-
related traits in Les mutants, we used three representative
Les mutants Les4, Les10, and Les17 that have been previously
mapped to distinct loci (Johal et al., 1995). Because the
three mutants are maintained as heterozygotes in different
background and the phenotype of Les mutants can be affected
largely by genetic background according to previous report
(Hoisington et al., 1982), all Les mutants from the original stock
were self-pollinated for two generations, and the segregation
population of the third generation was examined phenotypically
and physiologically. Compared with their relative WT, Les4,
Les10, and Les17 all showed spontaneous necrotic lesions
on the leaves (Figure 1A and Supplementary Figure 1). In
particular, Les4 mutant developed large necrotic lesion at later
growth stage, Les10 displayed medium lesion at early stage, and
Les17 showed small lesion at medium stage, consistent with
a previous report (Johal et al., 1995). The shoot biomass was
86 and 48% lower than WT in Les10 and Les17, respectively
(Figure 1B), while that of Les4 was only slightly but non-
significantly lower than WT. Because all mutants showed
yellowish phenotype, we measured their total chlorophyll
content. Compared with their relative WT plants, all Les mutants
have significantly reduced chlorophyll content (Figure 1C).
Consistent with the necrotic lesions being observed, increased
accumulation of H2O2 could be visualized in all three mutants
by DAB staining following a previously described method
(Chintamanani et al., 2010; Figure 1D).

We tested the disease resistance of Les4 using a C. lunata
(Wakker) Boed. strain that causes curvularia leaf spot because
the oval-shaped disease lesions are easily distinguishable from
that of the big irregularly shaped spontaneous lesions in
Les4. At 7 days after inoculation, the WT leaves displayed
many disease lesions, while disease lesions observed in
Les4 mutant were about 25% that of the WT, indicating
significantly enhanced resistance of Les4 to curvularia leaf spot
(Figures 1E,F).

Identification of the Differentially
Expressed Genes Between WT and
Mutant
We carried out transcriptomic analysis of Les mutants and their
respective WT by RNA sequencing based on Illumina HiSeq
platform. We used the third and fourth above-ear leaves at
5 days after silking because the lesion became easily visible
at this stage, and the leaves were still in highly vigorous

7http://csbg.cnb.csic.es/mbrole2/index.php
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FIGURE 1 | Phenotypic and physiological characterization of the Les4, Les10, and Les17. (A) Morphologies of Les4, Les10, and Les17 mutants and their respective
wild type (WT). Scale bars = 5 mm. (B) The shoot biomass and content of chlorophyll in Les4, Les10, and Les17 mutants and their respective WT. (C) The total
chlorophyll content in Les4, Les10, and Les17 mutants and their respective WT. (D) Images of DAB-stained leaves of in Les4, Les10, and Les17 mutants and their
respective WT. Scale bars = 2 mm. (E) Morphologies of Mock and Curvularia lunata-infected WT and Les4 plant leaves 7 days after inoculation. A typical
spontaneous lesion was indicated by a red square, and a typical curvularia-leaf spot-disease lesion was indicated by a red circle. Scale bars = 7.5 mm.
(F) Quantification of Curvularia lunata colonies in Mock and Curvularia lunata-infected WT and Les4 plant leaves 7 days after inoculation. For (B,C,F), asterisks
indicate significant differences compared with WT samples (Student’s t-test; *P < 0.05; **P < 0.01; ***P < 0.001). Error bars represent standard deviation.

state. To eliminate the effect of background, the leaves of
four plants were pooled as one sample, and three replicates
of sample were used for RNA extraction and sequencing.
After sequencing, 32,025, 33,031, and 32,035 expressed genes
were detected in Les4, Les10, and Les17, respectively. The
principal components analysis (PCA) plots clearly separated
the WT samples from the mutant samples and the replicates
of both WT and mutants were clustered into distinct patches
(Supplementary Figure 2A), suggesting good reliability of
our RNA-seq data.

A total of 1,714, 4,887, and 1,625 differentially expressed genes
(DEGs) were identified in Les4, Les10, and Les17, compared to
their respective WT, respectively (Figure 2A and Supplementary
Tables 2, 3). Of these genes, 1,334, 2,861, and 1,134 were
upregulated while 380, 2,026, and 491 were downregulated.
More DEGs were identified in Les10 than in Les4 and Les17
(Supplementary Table 3). Furthermore, well-matched qRT-PCR
results to the expression data of RNA-seq indicated reliability
of our RNA-seq analysis (Supplementary Table 4). GO term
enrichment analysis was performed to elucidate the functional
enrichment of DEGs in each mutant. There were 187 biological
processes (BPs), 17 cellular components (CCs), and 2 molecular
functions (MFs) in GO analysis of DEGs of Les4. DEGs of Les4
were mainly related to “isoprenoid metabolic process,” “cellular
aldehyde metabolic process,” “glyceraldehyde-3-phosphate
metabolic process,” “isoprenoid biosynthetic process,” and

“isopentenyl diphosphate biosynthetic process” (Figure 2C and
Supplementary Table 5) in BP-GO terms. There were 270 BPs,
11 CCs, and 63 MFs in GO analysis of DEGs of Les10. DEGs of
Les10 were mainly related to “response to wounding,” “response
to drug,” “response to chitin,” “response to hormone levels,” and
“hormone metabolic process” in BP-GO terms (Figure 2C and
Supplementary Table 5). There were 129 BPs and 52 MFs in GO
analysis of DEGs of Les17. DEGs of Les17 were mainly related to
“defense response to bacterium,” “response to drug,” “response
to wounding,” “defense response to oomycetes,” and “response
to oomycetes” in BP-GO terms (Figure 2C and Supplementary
Table 5). In general, the DEGs were mostly related to defense
response and metabolic process.

Identification of the Specific
Differentially Expressed Genes in
Different Les Mutants
A total of 570, 3,299, and 447 DEGs were specifically expressed
in Les4, Les10, and Les17 mutants and were defined as specific
genes (SGs) (Figure 2B). To look into the specificity of each Les
mutant, GO enrichment analysis was also performed for SGs in
each mutant. SGs of Les4 were mainly related to “lipid catabolic
process,” “cellular response to iron ion,” “anthocyanin-containing
compound,” and “flavonoid glucuronidation” (Figure 2D and
Supplementary Table 5). SGs of Les10 were mainly related
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FIGURE 2 | Transcriptomic analysis of Les4, Les10, and Le17. (A) Heatmap showing the differentially expressed genes (DEGs) in Les4, Les10, and Les17. (B) Venn
diagram displaying DEGs unique and common in mutant vs. wild type in Les4, Les10, and Les17. (C) The top 5 GO terms of GO analysis of all DEGs in Les4,
Les10, and Les17. (D) The top 5 GO terms of GO analysis of specific DEGs in Les4, Les10, and Les17.
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TABLE 1 | Representative common differentially expressed genes involved in plant defense response.

ID Log2FC

Les4 Les10 Les17 NR_annotation/Gene symbol References

Zm00001d052992 1.37 1.48 2.05 Disease resistance protein RPM1 Cheng et al., 2012

Zm00001d014649 1.55 2.67 2.68 Disease resistance protein RPM1 Cheng et al., 2012; Song et al., 2015

Zm00001d021492 1.91 1.31 3.25 Putative disease resistance protein RGA3 Cheng et al., 2012

Zm00001d053424 2.65 1.52 2.86 Receptor-like protein kinase 5 Song et al., 2015

Zm00001d024210 1.23 2.32 3.15 TPS11/ZX3 Ding et al., 2020

Zm00001d024208 2.19 7.59 8.19 TPS12/Zx2 Ding et al., 2020

Zm00001d024211 4.36 6.73 6.45 TPS13/Zx4 Ding et al., 2020

Zm00001d014121 2.55 4.40 4.76 ZX5/CYP71Z19 Ding et al., 2020

Zm00001d034097 3.17 5.11 1.43 CYP81A39/ZX10 Ding et al., 2020

Zm00001d014134 1.46 3.83 3.14 ZX6/CYP71Z18 Ding et al., 2020

Zm00001d041082 2.00 3.91 3.55 KSL2 Ding et al., 2019

Zm00001d046342 1.62 3.87 2.28 KO2 Ding et al., 2019

Zm00001d032858 1.24 3.51 −1.25 KSL4 Ding et al., 2019

Zm00001d029648 1.71 3.43 2.63 CPPS2/AN2 Christensen et al., 2018; Mafu et al., 2018

Zm00001d034365 1.29 3.25 1.55 PEN1 Wu et al., 2015

Zm00001d003023 2.13 1.56 2.15 RFO1 Wu et al., 2015

Zm00001d043238 1.96 1.84 2.54 PR9 Wu et al., 2015

Zm00001d017152 1.48 1.99 2.67 PR4 Wu et al., 2015

Zm00001d048021 1.22 4.53 2.96 AOS Zuo et al., 2015

Zm00001d003379 4.26 −2.06 −4.81 Pathogenesis−related protein Yu et al., 2018

Zm00001d034460 3.03 −6.54 −1.70 IGL1 Ahmad et al., 2011; Zhou et al., 2018

Zm00001d029359 2.04 5.28 1.70 BX10 Zhou et al., 2018

Zm00001d007718 4.64 −2.10 1.52 BX13 Zhou et al., 2018

Zm00001d004921 2.45 3.80 1.74 BX14 Zhou et al., 2018

to “response to wounding,” “response to chitin,” “response to
organonitrogen compound,” and “response to jasmonic acid”
(Figure 2D and Supplementary Table 5). SGs of Les17, however,
were mainly related to “systemic acquired resistance,” “cellular
response to salicylic acid stimulus,” “cellular response to organic
cyclic compound,” and “plant-type hypersensitive response”
(Figure 2D and Supplementary Table 5). We searched for all
SGs in the Pathogen Receptor Genes (PRGs) database8, a database
of plant resistance genes, and found 31, 167, and 58 genes for
Les4, Les10, and Les17, respectively (Supplementary Table 6),
suggesting that those PRGs were specifically regulated in different
Les mutants.

Identification of the Common
Differentially Expressed Genes in
Different Les Mutants
Since the three Les mutants are in different backgrounds, it is
less likely that we could identify many common DEGs. However,
480 DEGs were commonly shared by the Les4, Les10, and
Les17 mutants and were designated as CGs (Figure 2B). GO
enrichment analysis was also performed for CGs. There were
114 BPs and 13 MFs in GO analysis of CGs (Supplementary
Table 5). The 114 BP-GO terms were subjected to REVIGO
software based on their relationship and then reassigned to 60

8http://prgdb.org/prgdb/

terms (Figure 3A). The top GO terms with high significance
include “regulation of programmed cell death,” “regulation of
immune system process,” “plant-type hypersensitive response,”
“respiratory burst involved in defense response,” and “host
programmed cell death induced by symbiont.” Interestingly,
all these GO terms are related to plant defense responses.
Many previously published defense-related genes in maize
were upregulated in the Les mutants (Table 1) including the
NLR genes, the receptor like kinase genes, the zealexins and
kauralexins biosynthetic genes, and the pathogenesis-related (PR)
genes. We specifically searched for the 480 CGs in the PRGs
database and identified 58 putative PRGs upregulated in all three
Les mutants (Supplementary Table 7). In addition, through a
comparison of the 480 CG genes to the published transcriptomics
data using Plant Regulomics online software9 (Ran et al.,
2020), up to 384 out of 475 (∼81%) listed genes are shared
with the published genes being induced by pathogen infection
(Supplementary Table 8). Those data further indicate that the
expression of defense-related genes was generally induced in all
Les mutants, and substantial characterization of those genes may
lead to interesting discovery dissecting the general nature of the
lesion formation and constitutively activated defense responses
in those mutants.

In the GO category of metabolism of CGs, flavonoid, salicylic
acid (SA), jasmonic acid (JA), and phenylpropanoid were

9http://bioinfo.sibs.ac.cn/plant-regulomics/
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FIGURE 3 | Transcriptomic analysis of common differentially expressed genes (CGs) in mutant vs. wild type in Les4, Les10, and Les17. (A) Biological process of
gene ontology (GO) term analysis of CGs. The GO term analysis was conducted in R with packages “clusterProfiler.” The full list of significant GO terms
(Supplementary Table 5) assigned into biological process were subjected into REViGO (http://revigo.irb.hr/) to redundant GO terms, and visualized in Cytoscape.
The color indicated the significance [−Log2(p-value)] of GO terms. Only significant GO terms were shown. (B) The proportion of cellular location of proteins encoded
by common genes (CGs) in Les4, Les10, and Les17. The asterisk behind each item indicates that the p-value of the hypergeometric distribution test was lower than
0.05. (C) The gene numbers of each transcription factor family in CGs.
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TABLE 2 | Common differentially expressed genes involved in generation of
reactive oxygen species.

ID Log2(FC) Annotation

Les4 Les10 Les17

Zm00001d016182 −1.24 −1.40 −1.83 Peroxidase 52

Zm00001d042022 1.16 3.61 1.92 Peroxidase 12

Zm00001d037550 1.43 2.15 2.44 Peroxidase 5

Zm00001d007301 1.68 2.14 1.76 Protein disulfide isomerase 2

Zm00001d040705 1.87 4.25 2.86 Peroxidase 64

Zm00001d043238 1.96 1.84 2.54 Peroxidase 56

Zm00001d037547 2.01 5.47 4.17 Peroxidase 5

Zm00001d002901 2.09 1.46 3.52 Peroxidase 12 precursor

Zm00001d002899 3.15 2.45 3.12 Peroxidase 12

significantly enriched (Figure 3A). Consistently, KEGG analysis
also indicates that CGs were mainly enriched in pathways related
to phenylpropanoid and flavonoid biosynthesis (Supplementary
Table 9), and thiamine and diterpenoid biosynthesis were also
enriched (Supplementary Table 9). In addition, almost all
genes involved in regulating reactive oxygen species (ROS)
production were upregulated in all Les mutants vs. their
relative WT (Table 2), which is consistent with the increased
H2O2 accumulation as shown by DAB staining in those Les
mutants (Figure 1C).

Based on SUBA4 analysis, most proteins encoded by those
CGs were estimated to localize in plasma membrane and nucleus
(Figure 3B). Consistent with their dominant nucleus localization,
40 TFs were found, as predicted by PlantTFDB software (Jin
et al., 2017). These TFs belong to 12 gene families, among which,
WRKY, MYB, and bHLH rank the top three most enriched TF
families (Figure 3C and Supplementary Table 10).

Identification of Differentially
Accumulated Metabolites Between WT
and Mutant
We carried out widely targeted metabolomics assay of Les
mutants and their relative WT by UPLC-ESI-MS/MS. In this
assay, 455 metabolites were collectively identified, including
∼30% flavonoids, 13% phenolic acids, 12% lipid, 11% alkaloids,
11% amino acids and derivatives, 6% organic acids, 5%
nucleotides and derivatives, 2% lignans and coumarins, and
10% others (Supplementary Figure 3 and Supplementary
Table 11). PCA showed that all biological replicates for each
group were clustered closely (Supplementary Figure 2B),
suggesting high reproducibility and reliability. We found
97, 184, and 91 differentially accumulated metabolites
(DAMs) in Les4, Les10, and Les17, respectively. Of these
metabolites, 94, 134, and 66 were upregulated while 3,
50, and 25 were downregulated in Les4, Les10, and Les17,
respectively (Supplementary Tables 2, 11). Venn diagram
indicates that 42 DAMs were commonly shared by all three
Les mutants and were defined as common metabolites (CMs)
(Figure 4A and Supplementary Table 12). In those CMs,
only 3 DAMs were downregulated while 39 were upregulated

(Figure 4B and Supplementary Table 12). Interestingly,
the fold change of metabolites in Les10 was larger than in
Les4 and Les17. This is consistent with the larger amount
of DEGs in Les10 (Figure 2A). Among all CMs, flavonoids,
phenolic acids, and organic acids ranked the top 3 most
represented metabolites (Figure 4C). While for KEEG pathway
enrichment analysis, pathways including phenylpropanoid
biosynthesis and flavonoid biosynthesis were significantly
enriched (Figure 4D).

Integrated Transcriptomics and
Metabolomics Analysis of Lignin and
Flavonoid Biosynthesis
Based on KEGG and GO enrichment analysis of CGs
and CMs, we found that terms of phenylpropanoids and
flavonoids were most highly enriched (Figure 4D and
Supplementary Tables 5, 9). Therefore, an integrated
transcriptomics and metabolomics analysis specifically on
phenylpropanoid, lignin, and flavonoid biosynthesis was
applied in this study.

Most of the genes encoding the key enzymes in
phenylpropanoid and lignin biosynthesis, including PAL,
Cinnamate 4-Hydroxylase (C4H), 4-4-Coumarate: Coenzyme
A Ligase (4CL), HCT, CAD, Laccase (LAC), etc., displayed
increased expression in Les4, Les10, and Les17 mutant compared
to their respective WT (Figure 5A and Supplementary
Table 13). Most of the phenylpropanoid compounds, e.g.,
p-coumaric acid, caffeic acid, and coniferyl alcohol, were
increased in all Les mutants compared with WT (Figure 5A
and Supplementary Table 14). p-coumaric acid, for instance,
was increased 2.72, 9.09, and 5.89 times in Les4, Les10, and
Les17 mutants, respectively. Besides, we performed acetyl
bromide lignin measurement of all Les mutants and their
respective WT. The lignin content was 33, 85, and 31% higher
in mutant vs. WT in Les4, Les10, and Les17, respectively
(Figure 6). Taken together, these data indicate that all three
Les mutants have altered phenylpropanoid biosynthetic
gene expression as well as higher phenylpropanoid and
lignin accumulation.

Most flavonoid biosynthetic genes, including Chalcone
Synthase (CHS), Chalcone Isomerase (CHI), Flavonol Synthase
(FLS), UDP-Glucose:Phloretin 2’-O-Glucosyltransferase (P2’GT),
Flavanone 3-Hydroxylase (F3H), Flavonoid 3’-Hydroxylase
(F3’H), and Dihydroflavonol 4-Reductase (DFR), were greatly
increased in Les mutants (Figure 5B and Supplementary
Table 15). The levels of associated metabolites including
dihydroquercetin, naringenin, apigenin, eriodictyol, luteolin,
etc. were increased dramatically in the Les mutants (Figure 5B
and Supplementary Table 16). For example, eriodictyol was
increased 6. 30-, 13. 05-, and 2.84-fold in Les4, Les10, and Les17
mutants compared with their respective WT (Supplementary
Table 16), and this is consistent with the substantial rises in
the F3H expression level. Besides, the isoflavone compounds,
glycitin, and pratensein, also accumulated significantly in
Les4 and Les10 mutants (Figure 5B and Supplementary
Table 11).
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FIGURE 4 | Metabolomics analysis of Les4, Les10, and le17. (A) Venn diagram displaying differentially accumulated metabolites unique and common in mutant vs.
wild type in Les4, Les10, and Les17. (B) Heatmap showing the differentially accumulated common metabolites in Les4, Les10, and Les17. (C) The number of
common differentially accumulated metabolites (CMs) in different metabolite categories. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of CMs.
The dash line represents a cutoff of p = 0.05.

Terpenoid and Benzoxazinoid
Biosynthesis in Les Mutants
We specifically looked into the biosynthesis of terpenoids
(zealexins and kauralexins) and benzoxazinoid since both are
very important antibiotic compounds in maize. Because zealexins
and kauralexins were not detected due to technical issue in
this study, we specifically checked the transcriptional changes
of zealexins and kauralexins biosynthetic genes. Surprisingly, all
of the zealexins biosynthetic genes, Zealexin (ZX) 1-10 (ZX1-
ZX10), were upregulated in all Les mutants (Figure 7 and

Supplementary Table 17). Similarly, all kauralexins biosynthetic
genes including Anther Ear 2 (AN2), Kaurene Synthase-
Like (KSL2), Cytochrome P450 (CYP) Z16/18 (CYP71Z16/18),
Kauralexin Reductase 2 (KR2), and Kauralexin Oxidase 2
(KO2) were also upregulated in Les mutants (Figure 7 and
Supplementary Table 17). These data collectively indicate that
biosynthesis of zealexins and kauralexins are generally activated
in Les mutants. In addition, according to the metabolomics
data, there was a common decrease of DIMBOA-Glucoside
(Supplementary Figure 4 and Supplementary Table 11),
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FIGURE 5 | Integrated transcriptomics and metabolomics analysis of lignin and flavonoid biosynthesis. (A) Genes and metabolites involved in lignin biosynthetic
pathway in the comparisons of Le4, Les10, and Les17 mutants and their respective wild type (WT). (B) Genes and metabolites involved in flavonoid biosynthetic
pathway in the comparisons of Le4, Les10, and Les17 mutants and their respective WT. For (A,B), the different rows of each heatmap represent the different

(Continued)
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FIGURE 5 | Continued
homolog genes for each enzyme, with each column representing different genotypes and different colors indicating different gene expression levels. The number
below each metabolite is the log2 (fold change) value of it. Red text highlights the compounds belonging to isoflavone. The detailed information of genes and
metabolites involved in lignin and flavonoid biosynthesis are available in Supplementary Tables 13–16, respectively. Double arrows in sequence represent omitted
metabolites and genes. nd, not detected. CAD, Cinnamyl Alcohol Dehydrogenase; CCR, Cinnamoyl-Coenzyme A Reductase; C3H, Cinnamate 3-Hydroxylase; C4H,
Cinnamate 4-Hydroxylase; CHS, Chalcone Synthase; CHI, Chalcone Isomerase; 4CL, 4-Coumarate:Coenzyme A Ligase; CCoAOMT, Caffeoyl-Coenzyme A
O-Methyltransferase; COMT, Caffeic Acid O-Methyltransferase; CSE, Caffeoyl Shikimate Esterase; DFR, Dihydroflavonol 4-Reductase; DH, Dehydrogenase; FLS,
Flavonol Synthase; FNS, Flavone Synthase; F3H, Flavanone 3-Hydroxylase; F3’H, Flavanoid 3’-Hydroxylase; F4’OMT, Flavonoid 4’-O-Methyltransferase; F5H,
Ferulate 5-Hydroxylase; HCT, Hydroxycinnamoyl Coenzyme A:Shikimate Hydroxycinnamoyl Transferase; LAC, Laccase; PAL, Phenylalanine Ammonia Lyase; P2’GT,
UDP-Glucose:Phloretin 2’-O-Glucosyltransferase.

FIGURE 6 | Total lignin content in Les4, Les10, and Les17 mutants and their
respective wild type. CWR, cell wall residues. Asterisks indicate significant
differences compared with wild type (WT) samples (Student’s t-test;
*P < 0.05). Error bars represent standard deviation.

the dominant benzoxazinoid compound with strong antifungal
activity, in all three Les mutants. Interestingly, the upstream
benzoxazinoid biosynthetic genes Benzoxazinless (BX) 1–6 (BX1–
BX6) were mostly downregulated in almost all three Les mutants
(Supplementary Figure 4 and Supplementary Table 18). In
contrast, the downstream benzoxazinoid biosynthetic genes
BX10, BX11, BX12, and BX14 genes were mostly upregulated in
those Les mutants (Supplementary Figure 4 and Supplementary
Table 18). These data indicate that while the biosynthesis of
DIMBOA-Glucoside was repressed, the processing of DIMBOA-
Glucoside into HDMBOA-Glucoside was generally activated in
Les mutants.

DISCUSSION

Plant Les/les mutants show spontaneous lesion and enhanced
disease resistance that are often accompanied by stunted
plant growth, implying the constitutive activation of defense
responses in those mutants. To make better use of the maize
Les/les mutants, it is crucial to systematically understand
the molecular bases of commonly and specifically activated
defenses leading to those traits. In this study, high-throughput
transcriptomics and metabolomics analysis were utilized

to explore the specific and common transcriptional and
metabolic changes associated with the Les-related traits
including necrotic lesions, stunted plant growth, and enhanced
disease resistance.

In this study, we identified 1,714, 4,887, and 1,625 DEGs
in Les4, Les10, and Les17, respectively. According to GO
enrichment analysis, most of those DEGs were related to defense
response and metabolic process (Figure 2C and Supplementary
Table 5). To dissect the specificity of each Les mutant and
the potential function of each LES gene, we looked into those
SGs in each mutant (570, 3,299, and 447 are SGs for Les4,
Les10, and Les17, respectively). GO enrichment analysis of SGs
indicate that LES4’s function may be more directly related to
secondary metabolism regulation since lipid, anthocyanin, and
flavonoid metabolic processes were most significantly changed
in Les4. LES10 is probably involved in the regulation of
defense responses to necrotrophic pathogen since wounding and
JA-related processes were most significantly changed. LES17,
however, is likely involved in the regulation of SA-mediated
systemic acquired resistance and hypersensitive responses since
representative genes were captured. Using PRG database, we
identified 31, 167, and 58 PRGs for Les4, Les10, and Les17,
respectively (Supplementary Table 6), which also support the
specific regulation of defense responses in different Les mutants.
Further studies on those SGs will provide more clues to the
biological function of each LES gene.

We found that the total DEGs and DAMs in Les10 are
generally more abundant than Les4 and Les17, likely due to
more intense lesion observed in Les10 since its lesion formed
at earlier stage. While designing the experiments, two aspects
may affect the results in general. Firstly, different timing of
sampling will surely affect the intensity of lesion and thus the gene
expression change and metabolite accumulation. We sampled
the third and fourth above-ear leaves at 5 days after silking,
although the leaves of all mutants are still in good vigor, the
relatively “matured” state may lead to substantial changes of
gene expression and metabolite levels. Secondly, because of the
non-uniform nature of the genetic backgrounds of the three
mutants, there is lack of common reference for changes in
gene expression levels and metabolite levels. Both aspects argue
against the joint analysis of the three mutants; however, we
did identify a significantly large amount of CGs (480) for all
three Les mutants. More interestingly, ∼81% of CGs are shared
with the published genes being induced by pathogen infection
(Supplementary Table 8), representing robust changes of general
defense-related gene expression. Although it is possible that
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FIGURE 7 | The transcriptomics analysis of zealexins and kauralexins biosynthesis. (A) Transcriptional changes of zealexins biosynthetic genes in Le4, Les10, and
Les17 mutants compared to their respective wild type (WT). (B) Transcriptional changes of kauralexins biosynthetic genes in Le4, Les10, and Les17 mutants
compared to their respective WT. For (A,B), different rows represent the different homolog genes encoding the related enzyme, with each column representing
different genotypes and different colors indicating different gene expression levels. The number below each metabolite is the log2 (fold change) value. The detailed
information of genes involved in zealexins and kauralexins biosynthesis is available in Supplementary Table 17. Double arrows in sequence represent omitted
metabolites and genes. ZX, Zealexin; TPS, Terpene Synthase; AN2, Anther Ear 2; KSL, Kaurene Synthase-Like, CYP, Cytochrome P450, KO2, Kaurene Oxidase 2;
KR2, Kauralexin Reductase 2.

those robust changes of general defense-related gene expression
are largely due to general responses accompanying the lesion
formation, those changes allow us to digest the shared regulatory
network controlling the generally activated defense responses in
Les mutants. Based on further in-depth analysis, we found that
the transcriptional and metabolic changes are closely associated
with each common trait of the Les mutants, which are organized
and discussed below.

Transcriptional and Physiological
Changes Associated With Necrotic
Lesion Formation and Stunted Plant
Growth
Necrotic lesion is caused by programmed cell death, a process
including cytoplasmic shrinkage, chromatin condensation,
mitochondrial swelling, vacuolization, and chloroplast
disruption (Coll et al., 2011). Indeed, our transcriptomic
analysis indicates that many DEGs in Les mutants are cell death
related. Specially, genes involved in ROS accumulation including
several peroxidase coding genes are mostly upregulated in all
tested Les mutants (Table 2). Consistently, all tested Les mutants
have higher H2O2 accumulation and lower chlorophyll content
(Figures 1C,D). Previous studies indicate that chlorophyll
perturbation can also lead to ROS production and consequently
plant cell death. For instance, LES22 encodes a key enzyme in
the biosynthetic pathway of chlorophyll, and accumulation of
photo-excitable uroporphyrin leads to minute necrotic spots
in Les22 (Hu et al., 1998). Similarly, the light-dependent cell
death of the les mutant lls1 is caused by failure of chlorophyll

breakdown (Gray et al., 1997, 2004). The reduced shoot biomass
may be partly due to the lower photosynthesis accompanied by
lower chlorophyll content since chlorophyll plays a vital role
in photosynthesis (Mu et al., 2016). We found 57 differentially
regulated photosynthesis-related genes, including light reaction,
Calvin cycle, and carbon concentration, while 3, 42, and 7 of
them were downregulated in Les4, Les10, and Les17, respectively
(Supplementary Table 19). These data support the tight
correlation between lower photosynthesis and compromised
plant growth since Les4, Les10, and Les17 show mild, intense,
and medium reduction of biomass, respectively. In summary, the
upregulation of cell death-related genes and the accumulation of
ROS is associated with the necrotic lesion formation while the
lower photosynthesis rate likely contributes to the reduced plant
growth in Les mutants.

Transcriptional Changes Associated
With Enhanced Disease Resistance in
Les Mutants
In this study, we found that Les4, Les10, and Les 17 mutants
showed constitutively activated defense responses. For instance,
Les4 was highly resistant to curvularia leaf spot (Figures 1E,F).
Consistently, GO enrichment analysis of CGs indicates that most
terms were related to plant defense (Supplementary Table 5).
Besides, most CGs are shared with genes differentially expressed
after pathogen infection according to the Plant Regulomics
database (Supplementary Table 8), and PRGs were enriched
in both CGs and SGs (Supplementary Tables 6, 7). Although
relatively less defense-related genes have been verified in maize,
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we did find a few previous reported maize defense genes
in CGs, including NLR genes, the receptor-like kinase genes,
the zealextins and kauralexins biosynthetic genes, and PR
genes (Table 1).

Of course, we should always be cautious about the identified
DEGs considering that many genes could be consequences of
general metabolic changes due to the lesion formation of Les
mutants. We therefore tried to look at the whole regulatory
network by checking TFs that likely control downstream defense
gene expression and metabolic changes. Among the 480 CGs,
there are 40 TFs mainly belonging to WRKY, bHLH, and MYB
families (Figure 3C and Supplementary Table 10). WRKY and
MYB TFs have previously been found to play broad and pivotal
roles in regulating plant disease resistance (Eulgem and Somssich,
2007; Pandey and Somssich, 2009; Liu et al., 2013). In our
research, 18 WRKY and 5 MYB TFs were upregulated in all
three Les mutants (Supplementary Table 10), implying their
contributions to the enhanced resistance. Interestingly, WRKY79
(Zm00001d020137), which was previously shown to positively
regulate zealexins and kauralexins biosynthesis (Fu et al., 2018),
was upregulated in all Les mutants (Supplementary Table 10),
consistent with the upregulation of the terpenoid biosynthetic
genes (Figure 7 and Supplementary Table 17). Previous studies
also indicated that a series of MYB TFs were involved in the
transcriptional regulation of lignin and flavonoid biosynthesis
(Zhao and Dixon, 2011; Geng et al., 2020; Wang et al., 2020);
some of the MYB TFs identified in this study may be potentially
involved in lignin and flavonoid biosynthesis in maize. Taken
together, we propose that the upregulation of defense-related
genes and secondary metabolite biosynthetic genes potentially
mediated by WRKY and MYB TFs is closely associated with the
enhanced disease resistance in Les mutants.

Metabolic Changes Associated With
Enhanced Disease Resistance in Les
Mutants
Genes involved in secondary metabolite biosynthesis are
also highly enriched in CGs by KEGG pathway analysis
(Supplementary Table 9). For instance, the large families
of phenylpropanoid biosynthetic genes like PAL, HCT,
CAD, and Caffeic Acid O-Methyltransferase (COMT) and
the flavonoid biosynthetic genes like CHS, DFR, F3’H, and
FLS were upregulated in all three Les mutants (Figure 5
and Supplementary Tables 13, 15). Besides, genes encoding
laccases, which promote the oxidative coupling of monolignols
to form lignin (Zhao et al., 2013), are mostly co-upregulated
(Figure 5A and Supplementary Table 13). In addition,
almost all genes involved in the biosynthesis of kauralexins
and zealexins were upregulated in all three Les mutants
(Figure 7 and Supplementary Table 17). Interestingly,
for those benzoxazinoid biosynthetic genes, BX1–BX6 are
generally downregulated, while BX10, BX11, BX12, and BX14
were generally upregulated (Supplementary Figure 4 and
Supplementary Table 18), suggesting the differential regulation
of DIMBOA-Glucoside and HDMBOA-Glucoside biosynthesis

in Les mutants. It is possible that the upregulation of BX11–
BX14 may lead to the accumulation of HDMBOA-Glucoside,
which was previously known to dominantly accumulate
upon insect herbivory or fungal infestation (Handrick et al.,
2016). Although the absence of early BX genes in the CGs
was not expected, it represents a truly negative control
supporting the relative importance of phenopropanoids
and terpenoids in Les-conferred disease resistance. It will be
also interesting to determine the mechanism of differential
regulation of upstream and downstream BX genes in Les
mutants in the future.

Consistent with the transcriptomic data, we detected a
large amount of CMs potentially involved in plant defense
response (Figure 5). For instance, significantly increased
accumulation of phenylpropanoid compounds, e.g., p-coumaric
acid, caffeic acid, and coniferyl alcohol, were detected in all Les
mutants compared with WT (Figure 5A and Supplementary
Table 14), most of those compounds have antifungal activities
according to previous reports (Konig et al., 2014; Riaz et al.,
2018; Yuan et al., 2019). Additionally, we also detected
dramatic increases of the phenylpropanoid-based lignin
accumulation in all three les mutants (Figure 6). It has
long been proposed that lignin is involved in plant disease
resistance because of its enhancement of cell wall rigidity, thus
providing barriers against pathogen infection and restricting
the infiltration of fungal enzymes and toxins into plant cells
(Vance et al., 1980); this concept has been manifested by a
recent finding that a lignin-deposited structure functions as
a physical barrier similar to the Casparian strip, trapping
pathogens and thereby terminating their growth (Lee et al.,
2019), while MYB15 is a key TF that controls the defense-
induced lignification in Arabidopsis (Chezem et al., 2017;
Kim et al., 2020).

As branch products of the phenylpropanoid biosynthesis
pathway, many flavonoids act as defensive compounds in
response to pathogen (Middleton, 1996; Treutter, 2005,
2006). In this study, accumulation of flavonoids including
dihydroquercetin, naringenin, apigenin, eriodictyol, luteolin,
etc. has been dramatically increased in Les4, Les10, and Les17
mutants (Figure 5B). Two isoflavone compounds, glycitin and
pratensein, which were not reported in maize previously, were
also found significantly accumulated in Les4 and Les10 mutant
(Figure 5B and Supplementary Table 11). We were unable to
directly detect kauralexins and zealexins due to technical limit,
although all the biosynthetic genes appeared to be upregulated.
Interestingly, the amount of DIMBOA-Glucoside was reduced in
all Les mutants (Supplementary Figure 4 and Supplementary
Table 11), consistent with the commonly downregulation of
BX1–BX6 genes in Les mutants (Supplementary Figure 4 and
Supplementary Table 18). Besides, although less represented,
some other potential defense-related secondary metabolites
like lignans and coumarins were also detected in Les mutants
(Supplementary Table 11). Taken together, our metabolomics
study suggests that the secondary metabolites, including the
phenylpropanoids, lignin, flavonoids, kauralexins, zealexins, etc.,
are closely associated with the enhanced disease resistance of
Les mutants.
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In this study, while the identification of SGs in each Les mutant
gave clues to the function of each Les gene, the detailed analysis of
the overlapped robust changes of defense-related gene expression
and metabolite levels in all three Les mutants led to the interesting
discovery of a regulatory and metabolic network associated
with Les-related traits including spontaneous lesion formation,
stunted growth, and enhanced disease resistance. Since both
genetic background and timing of sampling those Les mutants
could affect the general gene expression and metabolite changes,
the regulation is not likely direct and straightforward, instead,
the feedback regulation likely plays a pivotal role in amplifying
the signaling, resulting in the constitutive activation of defense
responses and cell death, and finally exhausting the plants.
The above hypothesis is worthy of testing using some better-
characterized Les mutant in pure background and sampling of Les
mutants at different stages of lesion formation while introducing
“days after lesion formation” as a parameter.

Based on our study, a working model is proposed
(Supplementary Figure 5). Firstly, as consequences of LES
gene mutations, a series of WRKY and MYB TFs were
activated in yet unknown mechanisms. Those TFs could then
regulate the expression of cell death and defense-related genes
including immune receptors, defense signaling components,
PR genes, ROS production genes, and secondary metabolite
biosynthetic genes, leading to lesion formation and enhanced
disease resistance. Secondly, the activation of secondary
metabolite biosynthetic gene expression would result in high
accumulations of metabolites including phenylpropanoids,
lignin, flavonoids, kauralexins, zealexins, etc., and the metabolite
change accompanied by lesion formation likely also causes
amplified gene expression changes in a feedback manner. Thirdly,
the stunted plant growth of Les mutants is probably caused by the
reduced expression of photosynthetic genes followed by lower
photosynthesis rate in Les mutants, which is also likely related
to the cell death and metabolite changes. However, the proposed
regulatory network is preliminary and remains to be validated
and fixed in the future when the more LES genes are cloned and
more direct evidence including the protein–protein (or DNA)
interaction and genetic analysis is provided. In addition, further
studies on the identified SGs and CGs will shed new light on
the function of each LES gene as well as the general regulatory
network of defense responses in maize.
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