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In this study, the differential rankings of 36 groundnut genotypes under varying

environmental conditions were studied at various levels of phenotype. Locations that are

generally accepted by the crop- and soil-based research community to represent the

entire Guinea and Sudan Savanna agro-ecological zones in Ghana were characterized,

this time using a crop. The characterization was done based on four farmer-preferred

traits (early and late leaf spot disease ratings, and haulm and pod yields) using three

models (i.e., AMMI, GGE, and Finlay–Wilkinson regression). These models were used

to capture specific levels of phenotype, namely, genotype-by-environment interaction

(GE), genotype main effect plus GE (G+GE), and environment and genotype main effects

plus GE (E+G+GE), respectively. The effect of three major environmental covariables

was also determined using factorial regression. Location main effect was found to

be highly significant (p < 0.001), confirming its importance in cultivar placement.

However, unlike genotypes where the best is usually adjudged through statistical ranking,

locations are judged against a benchmark, particularly when phenotyping for disease

severity. It was also found that the locations represent one complex mega-environment,

justifying the need to test new technologies, including genotypes in all of them before

they can be approved for adoption nationally. Again, depending on the phenotypic

level considered, genotypic rankings may change, causing environmental groupings to

change. For instance, all locations clustered to form one group in 2017 for early and

late leaf spot diseases and pod yield when GE was considered, but the groupings

changed when G+GE was considered for the same traits in the same year. As a result,

assessing genotypic performance at the various levels to arrive at a consensus decision

is suggested. Genotypes ICGV-IS 141120 and ICGV-IS 13937 were found to be the

best performing.
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INTRODUCTION

Groundnut (Arachis hypogaea L.) is a leguminous oilseed crop
grown in the semi-arid and subtropical regions across 40◦ north
and south of the equator (Ajeigbe et al., 2015). In Ghana, it is the
most important grain legume largely cultivated under rain-fed
conditions (Oteng-Frimpong et al., 2017). The pods and haulms
are important sources of income for smallholder farmers (Ajeigbe
et al., 2015; Oteng-Frimpong et al., 2017). Although Africa
holds the maximum global area under groundnut cultivation
(i.e., 11.7m ha representing 47.56% of total area cultivated).
Meanwhile, its yield are very low (929 kg ha−1) compared with
that of the Americas (3,632 kg ha−1) (Ajeigbe et al., 2015) due to
a myriad of biotic and abiotic stresses (Oteng-Frimpong et al.,
2015). This has resulted in a series of interventions aimed at
improving pod yields on farmers’ fields.

In an attempt to identify genotypes that combine inherent
tolerance to biotic and abiotic stresses with high pod and
haulm yields across target environments, breeders conductmulti-
environment trials (METs). This has resulted in the identification
of superior genotypes that are better in specific locations
(specifically adapted genotypes and unstable) or across locations
in a range of crops including groundnuts (Padi, 2008; Asibuo
et al., 2018). Most studies, however, focus solely on the genetic
component of the breeders’ equation and its interaction with
the environment, with little or at times no consideration for the
non-genetic component.

Nonetheless, the major challenge of increasing food
production by about 50% by 2050 in a context of shrinking
and degraded arable land, nutrient deficiencies, increased water
scarcity, uncertainty due to predicted climatic changes (Vadez
et al., 2012), and under contrasting environments requires
that test locations are well-delineated for the various crops to
optimize crop improvement programs. For instance, a survey of
groundnut fields in southern Africa found pod borers (Elaterids,
Tenebrionids, doryline ants, and millipedes) to be present but
rarely at sufficient densities to warrant concern (Wightman and
Wightman, 1994), while doryline ants, white grubs, termites,
and millipedes were a major concern on CSIR-SARI research
fields in Ghana. Also, location is reported to be the key cause
of variation for pod yield (tha−1; plot−1), number of pods
(plot−1), hundred pod weight, and number of seeds (plot−1) in
groundnut (Asibuo et al., 2018). Environmental main effect has
been found to contribute the largest variation (68%) in sugar
content in groundnut as compared with genotype main effect
and genotype-by-environment interaction (GE), respectively
(Isleib et al., 2008). In comparing the effectiveness of Eberhart
and Russell joint regression method and GGE biplot analysis
for GE detection, environment main effects were found to
account for over 80% of all variation, compared with <20% for
genotype and GE in maize hybrids (Alwala et al., 2010). This
means that knowing and matching the non-genetic component
of the breeders’ equation (nurture) with the genetic component
(nature) are key in attaining crop potential yields.

In Ghana, selection of test locations for assessing genotypes
performance is largely based on agro-ecological zones. The
Ghana Meteorological Agency has grouped the country into

four agro-ecological zones based on the climate, namely,
Coast, Forest, Transition, and North (Amekudzi et al., 2015).
However, there are five, viz. tropical rain forest, semi-deciduous
forest, forest-savannah transition, Guinea savannah, and Sudan
savannah, in terms of vegetation. Within each ecological zone
is a wide range of soil types and fertility status, cropping
systems and history, diseases and pests, rainfall amount, duration
and distribution, temperature, and humidity (Siaw, 2001). The
interaction between these two classification scenarios (climate
and vegetation) and spatial factors creates a very complex system
of environments that confront groundnut cultivar development.

As a result, it is not enough to generalize and choose
test locations for all crops based on climate, vegetation, or
any economic consideration as has been happening in Ghana.
Rather, these should be determined using the crop in question’s
response in all possible locations within the target environment.
Representative locations can then be selected to constitute test
locations for successive years, although re-characterization will
be necessary after some years due to the dynamic nature of
environmental conditions. Thus, the objectives of this study were
to (i) categorize the target environment of CSIR-SARI groundnut
breeding program into test locations using models that capture
various components of the overall phenotype and (ii) determine
the effect of GE on trait associations at the various levels of
the phenotype.

MATERIALS AND METHODS

Plant Materials and the Design of
Experiments
Field experiments were conducted in two seasons (2017–2018)
under rain-fed conditions. In the 2017 season, the experiments
were conducted at Manga, Damongo, Nyankpala, and Silbele,
while in the 2018 season, Tanina was added as an additional
location (Supplementary File 1 Sheet 1). The locations used
represent testing sites for CSIR-SARI and have been used in other
studies (Marfo and Padi, 1999; Padi, 2008). The experiments
comprised 36 genotypes (Supplementary File 1 Sheet 2)
arranged in a lattice design and replicated twice, with six blocks
per replicate. Each block contained six plots with each plot
covering an area of 6.2 m2. Plants were spaced at 0.4m between
rows and 0.1m within rows.

In each experimental location, fields were prepared by plowing
followed by harrowing. Alligator 400 EC (pendimethalin,
400 g a.i. L−1) was applied immediately after planting to
suppress weeds followed by one-hand weeding before pegging.
Phosphorus in the form of triple super phosphate was applied as
a basal fertilizer at the rate of 125 kg ha−1 (100 g plot−1) just after
seedling emergence. The plants were further supplemented with
calcium by the application of 400 kg ha−1 OmyaCalciprill R© (38%
Ca and 0.6% Mg) between 20 and 25 days after sowing. All other
recommended agronomic practices in groundnut production
were adhered to. Data were collected on severity of early leaf
spot (ELS) and late leaf spot (LLS) diseases as well as pod yield
(PY, kg ha−1) in 2017. In 2018, data on above ground dry
matter (ADM, kg ha−1) were also recorded in addition to all the
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datasets recorded in 2017. The ELS and LLS severity were scored
on a scale of 1–9, with 1 representing complete resistance and
nine representing complete defoliation of plants (Subrahmanyam
et al., 1995). These scores were converted to quantitative variables
using area under disease progress curve (AUDPC) based on the
formula below:

AUDPC =

a
∑

i=1

[

{

Yi + Y(i+1)

2

}

∗
(

t(i+1) − ti
)

]

where Yi = disease level at time ti and t(i+1) – ti = time in
days between two sequential disease scores. High AUDPC value
represents high disease susceptibility.

Statistical Analysis
Normality of data was checked using the Shapiro–Wilk test.
In situations where the data did not follow the Gaussian
distribution, data transformation using the Box–Cox procedure
(Box and Cox, 1964) with the MASS package (Ripley et al., 2019)
of R statistical software (version 3.6.2) (R Core Team, 2020)
was done. Data analyses were done using R statistical software
based on a two-stage strategy (Malosetti et al., 2013). In the first
stage, linear mixed effect model was fitted to the location specific
data with restricted maximum likelihood (REML) using the lme4
package (Bates et al., 2019) of R to include all terms for design
features. All model terms were regarded as random except the
genotype (Equation 1).

yijk = ri + bj(i) + gk + εijk (1)

where yijk is the performance of genotype k in block j nested
within replicate i, ri is the effect of replicate i, bj(i) is the
effect of block j nested within replicate i, gk is the effect of
genotype k, and εijk is the residual. Significance of the fixed
variables and effect estimates was tested and computed using
Wald test with car (Fox et al., 2018) and lemerTest (Kuznetsova
et al., 2019) packages, respectively. Estimated marginal means
were computed, and multiple comparisons with Tukey’s honestly
significant difference (HSD) test at 0.05 probability were
computed using the emmeans package (Lenth et al., 2019). The
degree of freedom for the marginal means was computed based
on Kenward–Roger’s method, and confidence intervals were
computed at 0.95.

To determine the AMMI and GGE family of models required
in the second stage, model diagnosis was done using replicated
data from the various locations based on signal–noise estimation
(Gauch, 2013). The model diagnosis was done with an in-
house algorithm designed to work in the R statistical software
(Supplementary Files 2 and 3) based on the fundamental
equations developed with descriptors from Gauch (2013), as
shown below:

GEN = ErrorMS × GEdf (2)

GES = GESS − GEN (3)

GGEN = ErrorMS × GGEdf (4)

GGES = GGESS − GGEN (5)

where GEN is the GE noise; GEdf, GE degree of freedom; GES,
GE signal; GESS, GE sum of squares; GGEN, G+GE noise; GGEdf,
G+GE degree of freedom; GGES, G+GE signal; GGESS, G+GE
sum of squares; and ErrorMS, error mean square.

In addition to the traditional model diagnosis, the functions
make the F-test component of the AMMI and GGE more robust
by separating the Pure Error from the Error [referred to as
Experimental Design in Gauch (2013)]. As a result, if blocks
within environment are not statistically significant (p > 0.05),
Error is used; otherwise, Pure Error is used in F-tests.

Relationship among traits at the various levels of phenotype
was determined based on Pearson’s correlation. The correlation
analysis was done and visualized using the agricolae and corrplot
(Wei et al., 2017) packages of R.

In the second stage of the analysis, the genotype-by-
environment table of means was subjected to the various
analytical procedures, viz. AMMI, GGE, and Finlay–Wilkinson
(FW) regression. AMMI and FW regression were done using
agricolae (Mendiburu, 2019) and FW (Lian, 2018) packages,
respectively. GGE analysis was carried out by modifying the
AMMI function (Supplementary File 3) to capture G+GE.
Location-specific genotype winners from the adjusted means
were used in environmental characterization (Gauch, 2013;
Gauch and Moran, 2019). A factorial regression model was also
fitted using the base functions in R, withmean daily precipitation,
temperature, and relative humidity (RH) per growing season
used as the explicit environmental covariables. The relevance of
the genotype and location main effects as against the genotype-
by-environment effect was determined using a linear model with
genotype-by-environment mean-squares. The best-performing
genotypes were selected based on results from the linear model.

RESULTS

Relevance of the Environment and
Genotype Main Effects Over the
Genotype-by-Environment Interaction
The main effect for location was significant (p < 0.001) for
all traits studied in 2017 and 2018 (Table 1), when compared
with the GE. Manga was the location with the highest (82.9)
ELS AUDPC in 2017, followed by Nyankpala (65.10) with
Silbele being the lowest (37.10) (Table 2). In 2018, Manga
recorded the highest AUDPC for ELS (86.90), but there was no
significant difference between this location and Damongo (85.60)
or Nyankpala (85.60). In contrast, Silbele and Tanina had lower
AUDPC with no significant difference in this variable between
these two locations. Also, Manga had the highest LLS in 2017
and 2018 (93.80 and 65.20, respectively). There was, however,
no significant difference between Silbele and Tanina in 2018
(Table 2). For haulm yield, Silbele had the highest in 2017 and
2018 (3,733.00, 4,700.52), and this was significantly (p < 0.001)
different from the other locations. Also, the haulm yield obtained
in Nyankpala differed from that of Manga in both years, with
Manga being among the lowest in both years. Damongo had the
highest (2,272.00) pod yield in 2017, while Silbele had the lowest
(Table 2). In 2018, Silbele had the highest pod yield, while Tanina
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had lowest (466.00). There was no significant difference between
this variable in Damongo and Nyankpala.

The genotype, ICGV-IS 141120, had the highest pod yield
(2,504 kg ha−1) across all locations in 2017 and differed from
that of 12CS-116, ICGV 86124, ICGV-IS 131091, ICGV-IS
14849, ICGV-IS 13871, and 12CS-098 (Table 3). There were no
significant differences among the remaining genotypes, in terms
of their pod yield (p ≥ 0.05). In contrast, genotype ICGV-IS
13937 had the highest pod yield (1,338 kg ha−1) but did not
differ from that of ICGV-IS 07947, ICGV-IS 141120, and ICGV-
IS 13842, while genotype ICGV-IS 131065 was the lowest in 2018
(Table 3). The lowest pod yield was recorded in ICGV-IS 131065
(690 kg ha−1), and there was no significant difference between
this genotype and ICGV-IS 14849, ICGV-IS 131091, ICGV-IS
131051, or ICGV-IS 13984.

TABLE 1 | Significance of location and genotype main effects over their

interaction.

LOC GEN Residuals (GE)

df Sum Sq df Sum Sq df Sum Sq

2017

ELS 3 40,041*** 35 2,487ns 105 7,158

LLS 3 84,536*** 35 929ns 105 3,042

HYLD 3 115,996,112*** 35 9,708,669ns 105 18,862,561

PYLD 3 44,757,936*** 35 12,076,729* 105 20,614,700

2018

ELS 4 46,903*** 35 4,138 ns 140 13,457

LLS 4 6,341.9*** 35 2,865.9 ns 140 8,598.1

HYLD 4 432,629,671*** 35 18,038,964 ns 140 1.17E+08

PYLD 4 46,143,292*** 35 3,544,934* 140 11,495,647

ELS, early leaf spot; LLS, late leaf spot; HYLD, haulm yield; PYLD, pod yield. *significant

at p < 0.05, ***significant at p < 0.001; ns, not significant.

AMMI Model Diagnosis Based on
Genotype-by-Environment Interaction
Signal–Noise Estimation
GGE model diagnosis does not exist in any of the statistical
software currently available, while the AMMI model diagnosis
only exists in the AMMISOFT software (Gauch and Moran,
2019). However, a rearrangement of data is necessary if
AMMISOFT is to be used. An algorithm was therefore written
to capture the signal in the respective multiplicative terms of each
model from the total multiplicative terms leaving the noise signal.

The environment and genotype main effects as well as the GE
were statistically significant (p < 0.01) for all the studied traits in
2017 (Table 4). However, the AMMI model diagnosis based on
Gollob’s test showed AMMI3 as the appropriate model for ELS
disease, while AMMI2 was the appropriate model for haulm and
LLS disease, respectively, with AMMI1 being appropriate for pod
yield. On the other hand, model diagnosis based on signal–noise
estimation revealed AMMI1 as the appropriate model for the
ELS disease and haulm yield with AMMI0 being the appropriate
model for LLS disease and pod yield, respectively. The GE signal
present in the overall GE for ELS and LLS diseases and haulm and
pod yields data was 72.16, 53.80, 62.71, and 45.03%, respectively,
with the rest being noise (Table 4). The signal (GES) captured by
the interactive principal components (PCs) for ELS disease and
haulm yield were 71.15 and 95.79%, respectively.

In 2018, the environment main effect was significant for
all traits (Table 4). Also, that of the genotype main effect
was significant for all traits, except ELS. Similarly, the GE
was not significant (p > 0.05) for ELS, although the AMMI
model diagnosis based on Gollob’s test suggested AMMI1 as the
appropriate model for this trait. On the other hand, AMMI3, 1,
and 3 were suggested as appropriate models for haulm yield, LLS,
and pod yield, respectively. However, signal–noise estimation
showed AMMI0 as the appropriate model for ELS and LLS
diseases, with AMMI1 being appropriate for pod and haulm
yields (Table 4). Also, the total GE signal present was 15.13, 29.60,
80.63, and 54.70% for ELS and LLS diseases and haulm and pod

TABLE 2 | Overall genotypic performance in the various locations.

LOC ELS

AUDPC

.group LLS AUDPC .group HYLD (kg

ha−1)

.group PYLD (kg

ha−1)

.group

2017

Damongo 54.00 c 37.70 c 2,272.00 a

Manga 82.90 a 93.80 a 1,304.00 c 1,764.00 b

Nyankpala 65.10 b 53.40 b 1,878.00 b 1,453.00 c

Silbele 37.10 d 31.70 d 3,733.00 a 733.00 d

2018

Damongo 85.60 a 51.90 b 2,025.17 bc 867.00 b

Manga 86.90 a 65.20 a 1,401.91 d 735.00 b

Nyankpala 85.60 a 52.90 b 2,560.76 b 1,447.00 a

Silbele 55.30 b 64.60 a 4,700.52 a 1,577.00 a

Tanina 51.10 b 63.50 a 1,715.28 cd 466.00 c

ELS, early leaf spot; LLS, late leaf spot; HYLD, haulm yield; PYLD, pod yield; AUDPC, area under disease progress curve. Values followed by dissimilar letters in the next column are

significantly different (p < 0.05).
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TABLE 3 | Genotypic performance in pod yield (kg ha−1) across all locations.

2017 2018

Genotype Mean (kg

ha−1)

Minimum Maximum .group Mean (kg ha−1) Minimum Maximum .group

12CS-042 1,549 1,109 1,988 ab 784 577 990 ab

12CS-098 1,043 604 1,482 b 976 770 1,183 ab

12CS-116 1,256 817 1,695 b 896 689 1,102 ab

CHINESE 1,519 1,079 1,958 ab 869 663 1,076 ab

ICGV 86124 1,229 789 1,668 b 836 629 1,042 ab

ICGV-IS 141088 1,353 914 1,792 ab 950 743 1,156 ab

ICGV-IS 07947 2,260 1,820 2,699 ab 1,198 991 1,404 ab

ICGV-IS 09926 1,943 1,504 2,383 ab 967 761 1,174 ab

ICGV-IS 131051 1,269 830 1,708 ab 750 544 957 b

ICGV-IS 131065 1,504 1,065 1,944 ab 690 484 897 b

ICGV-IS 131090 1,406 967 1,845 ab 1,016 810 1,223 ab

ICGV-IS 131091 1,204 765 1,643 b 728 522 935 b

ICGV-IS 131096 1,638 1,198 2,077 ab 840 634 1,047 ab

ICGV-IS 13834 1,510 1,071 1,949 ab 821 614 1,027 ab

ICGV-IS 13842 1,740 1,301 2,180 ab 1,019 813 1,226 ab

ICGV-IS 13848 1,639 1,200 2,078 ab 942 735 1,148 ab

ICGV-IS 13851 1,534 1,095 1,973 ab 831 624 1,037 ab

ICGV-IS 13863 1,664 1,225 2,104 ab 889 683 1,096 ab

ICGV-IS 13864 1,680 1,241 2,119 ab 977 771 1,184 ab

ICGV-IS 13871 1,098 659 1,538 b 834 627 1,040 ab

ICGV-IS 13876 1,723 1,284 2,162 ab 927 720 1,133 ab

ICGV-IS 13910 1,426 987 1,866 ab 796 589 1,002 ab

ICGV-IS 13937 1,602 1,163 2,042 ab 1,338 1,132 1,545 a

ICGV-IS 13950 1,369 929 1,808 ab 925 719 1,132 ab

ICGV-IS 13979 1,661 1,222 2,100 ab 1,005 798 1,211 ab

ICGV-IS 13984 1,501 1,061 1,940 ab 757 550 963 b

ICGV-IS 13989 1,658 1,219 2,097 ab 893 686 1,099 ab

ICGV-IS 141120 2,504 2,065 2,943 a 1,092 885 1,298 ab

ICGV-IS 14849 1,161 721 1,600 b 722 515 928 b

ICGV-IS 14857 1,345 906 1,785 ab 930 723 1,136 ab

ICGV-IS 14876 1,821 1,381 2,260 ab 836 630 1,043 ab

ICGV-IS 14877 1,622 1,183 2,061 ab 973 766 1,179 ab

ICGV-IS 14880 1,649 1,209 2,088 ab 955 749 1,162 ab

ICGV-IS 14928 1,745 1,306 2,184 ab 909 703 1,116 ab

ICGV-IS 14943 1,702 1,263 2,141 ab 836 629 1,042 ab

YENYAWOSO 1,467 1,028 1,906 ab 914 708 1,121 ab

Values followed by dissimilar letters in the next column are significantly different (p < 0.05).

yields, respectively. The GES captured by the PCs for haulm and
pod yields were 95.71 and 78.83%, respectively.

For combined analysis of 2017 and 2018 years data, the
environment and the genotypemain effects as well as the GEwere
significant (p < 0.01) for all traits, with Gollob’s test diagnosing
AMMI3 for ELS and LLS diseases and AMMI6 and 4 for haulm
and pod yields, respectively (Table 4). However, signal–noise
estimation showed AMMI1 as the most appropriate model for
ELS and LLS diseases and pod yield with AMMI2 as the most
appropriate model for haulm yield. The GES captured by the
selected PCs for ELS disease, haulm yield, LLS disease, and pod
yield were 68.28, 95.44, 77.82, and 70.37%, respectively.

GGE Model Diagnosis Based on Genotype
Main Effect Plus Genotype-by-Environment
Interaction Signal–Noise Estimation
The environmentmain effect of the GGEmodel was significant (p
< 0.01) for all traits studied in 2017 (Table 5). Also, the genotype
main effect plus GE (G+GE) was significant for all traits. Gollob’s

test showed GGE3 as the appropriate model for ELS and LLS

diseases, whereas GGE2 and 1 were shown as appropriate models

for haulm and pod yields, respectively. On the other hand, signal–

noise estimation suggested GGE2 for ELS disease, GGE1 for

haulm yield and LLS disease, and GGE0 for pod yield. The GGES
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TABLE 4 | F-test of main and interaction effects, Gollob’s test of multiplicative terms, and FR-test of the entire AMMI model.

ELS_E_1to9 HYLD_kgHa LLS_E_1to9 PY_Calc_kgha

df Sum Sq Pr(>F) Sum Sq Pr(>F) Sum Sq Pr(>F) Sum Sq Pr(>F)

2017

F-test

ENV 3 267,307 0.000*** 56.16 0.00** 21,002.00 0.000*** 369.07 0.000***

GEN 35 20,164 0.000*** 3.37 0.000*** 315.50 0.000*** 71.57 0.000***

GE 105 49,332 0.000*** 7.75 0.000*** 788.80 0.000*** 95.37 0.000***

PC1 37 25,328 (52.9%) 0.000*** 4.66 (60.6%) 0.000*** 430.80 (55.0%) 0.000*** 64.18 (67.3%) 0.000***

PC2 35 15,056 (31.4%) 0.000*** 3.03 (39.4%) 0.00** 277.10 (35.4%) 0.000*** 17.33 (18.2%) 0.43ns

PC3 33 7,502 (15.7%) 0.01* 75.40 (9.6%) 0.92ns 13.86 (14.5%) 0.66ns

Residuals 144 18,706 4.98 600.80 74.63

REP(ENV) 4 257 0.97ns 0.68 0.00** 118.40 0.000*** 7.52 0.00**

Pure Residuals 140 18,449 4.29 482.40 67.12

Model diagnosis

GE Signal 35,596.47 (72.16%) 4.86 (62.71%) 424.35 (53.80%) 45.03 (47.22%)

GE noise 13,735.09 (27.84%) 2.89 (37.29%) 364.43 (46.20%) 50.34 (52.78%)

Model family AMMI1 AMMI1 AMMI0 AMMI0

Signal captured 25,327.70 (71.15%) 4.66 (95.79%) 0 (0%) 0 (0%)

2018

F-test

ENV 4 10,848.00 0.000*** 1,050.30 0.000*** 420.79 0.01* 42,226 0.000***

GEN 35 911.90 0.051ns 96.75 0.000*** 183.84 0.00** 4,694 0.000***

GE 140 2,888.40 0.15ns 590.14 0.000*** 573.37 0.01* 13,773 0.000***

PC1 38 1,291.10 (45.0%) 0.00** 455.40 (77.2%) 0.000*** 242.31 (42.3%) 0.000*** 5,939 (43.1%) 0.000***

PC2 36 761.40 (26.50%) 0.21ns 58.90 (10.0%) 0.00** 131.98 (23.0%) 0.09ns 3,823 (27.8%) 0.000***

PC3 34 518.50 (18.1%) 0.68ns 52.88 (9.0%) 0.00** 115.39 (20.1%) 0.36ns 2,400 (17.4%) 0.03*

PC4 32 298.90 (10.4%) 0.98ns 22.95 (3.9%) 0.66ns 83.34 (14.5%) 0.56ns 1,610 (11.7%) 0.30ns

Residuals 179 3,457.20 170.87 552.66 7,933

REP(ENV) 5 427.90 0.000*** 28.78 0.000*** 51.00 0.00** 365 0.15ns

Pure Residuals 174 3,029.30 142.09 501.66 7,568

Model diagnosis

GE Signal 436.96 (15.13%) 475.82 (80.63%) 169.74 (29.60%) 7,533.74 (54.70%)

GE noise 2,451.48 (84.87%) 114.32 (19.37%) 403.64 (70.40%) 6,239.53 (45.30%)

Model family AMMI0 AMMI1 AMMI0 AMMI1

Signal captured 0 (0%) 455.40 (95.71%) 0 (0%) 5,939.15 (78.83%)

2017 and 2018

F-test

ENV 8 17,374.90 0.000*** 73.85 0.000*** 6,312.20 0.000*** 217.70 0.000***

GEN 35 684.10 0.000*** 3.55 0.000*** 143.00 0.00** 18.67 0.000***

GE 280 3,954.60 0.000*** 33.43 0.000*** 936.50 0.000*** 61.75 0.000***

PC1 42 1,047.00 (26.9%) 0.000*** 21.10 (63.1%) 0.000*** 282.80 (30.3%) 0.000*** 22.87 (37.1%) 0.000***

PC2 40 857.60 (22.0%) 0.000*** 3.19 (9.5%) 0.000*** 190.80 (20.5%) 0.000*** 13.21 (21.4%) 0.000***

PC3 38 545.80 (14.0%) 0.01* 2.81 (8.4%) 0.000*** 162.40 (17.4%) 0.000*** 7.94 (12.9%) 0.000***

PC4 36 420.10 (10.8%) 0.09ns 2.19 (6.5%) 0.00** 100.10 (10.7%) 0.09ns 6.67 (10.8%) 0.00**

Residuals 324 3,006.30 10.86 719.70 34.74

REP(ENV) 9 308.40 0.000*** 1.81 0.000*** 79.00 0.000*** 2.05 0.02*

Pure Residuals 315 2,697.90 9.05 640.70 32.67

Model diagnosis

GE Signal 1,533.46 (38.78%) 25.45 (76.13%) 363.37 (38.80%) 32.51 (52.64%)

GE noise 2,421.15 (61.22%) 7.98 (23.87%) 573.16 (61.20%) 29.24 (47.36%)

Model family AMMI1 AMMI2 AMMI1 AMMI1

Signal captured 1,047.03 (68.28%) 24.29 (95.44%) 282.77 (77.82%) 22.87 (70.37%)

*significant at p < 0.05, **significant at p < 0.01, ***significant at p < 0.001; ns, not significant.
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TABLE 5 | F-test of main and interaction effects, Gollob’s test of multiplicative terms, and FR-test of the entire GGE model.

ELS_E_1to9 HYLD_kgHa LLS_E_1to9 PY_Calc_kgha

df Sum Sq Pr(>F) Sum Sq Pr(>F) Sum Sq Pr(>F) Sum Sq Pr(>F)

2017

F-test

ENV 3 267,307.00 0.000*** 56.16 0.00** 21,002.00 0.000*** 369.07 0.00***

GGE 140 69,496.00 0.000*** 11.12 0.000*** 1,104.30 0.000*** 166.94 0.00***

PC1 37 34,409.00 (52.2%) 0.000*** 5.29 (47.7%) 0.000*** 458.50 (42.60%) 0.000*** 117.80 (70.6%) 0.00***

PC2 35 15,302.00 (23.2%) 0.000*** 3.19 (28.7%) 0.000*** 383.20 (35.6%) 0.000*** 21.43 (12.8%) 0.16ns

PC3 33 8,905.00 (13.5%) 0.00** 220.70 (20.5%) 0.00** 16.78 (10.1%) 0.39ns

Residuals 144 18,706.00 4.98 600.80 74.63

REP(ENV) 4 257.00 0.75ns 0.68 0.00** 118.40 0.000*** 7.52 0.00**

Pure Residuals 140 18,449.00 4.29 482.40 67.12

Model diagnosis

GGE Signal 51,182.48 (73.65%) 6.78 (61.02%) 618.42 (56.0%) 99.82 (59.80%)

GGE noise 183.13.45 (26.35%) 4.33 (38.98%) 485.91 (44.0%) 67.12 (40.2%)

Model family GGE2 GGE1 GGE1 GGE0

Signal captured 49,710.17 (97.12%) 5.29 (77.96%) 458.53 (74.15%) 0 (0%)

2018

F-test

ENV 4 10,848.00 0.000*** 1,050.30 0.000*** 420.79 0.01* 42,226 0.000***

GGE 175 3,800.30 0.08ns 686.90 0.000*** 757.21 0.00** 18,467 0.000***

PC1 38 1,455.60 (38.4%) 0.000*** 489.58 (71.3%) 0.000*** 297.54 (39.4%) 0.000*** 6,984 (37.8%) 0.000***

PC2 36 958.50 (25.3%) 0.04* 87.09 (12.7%) 0.000*** 187.94 (24.9%) 0.00** 4,515 (24.5%) 0.000***

PC3 34 758.30 (20.0%) 0.16ns 58.09 (8.5%) 0.00** 117.72 (15.6%) 0.22ns 3,774 (20.4%) 0.000***

PC4 32 345.90 (9.1%) 0.94ns 44.71 (6.5%) 0.02* 87.45 (11.6%) 0.55ns 2,043 (11.1%) 0.08ns

Residuals 179 3,457.20 170.87 552.66 7,933

REP(ENV) 5 427.90 0.000*** 28.78 0.000*** 51.00 0.00** 365 0.14ns

Pure Residuals 174 3,029.30 142.09 501.66 7,568

Model diagnosis

GxE Signal 735.95 (19.37%) 543.99 (79.2%) 252.67 (33.37%) 10,667.64 (57.77%)

GxE noise 3,064.35 (80.63%) 142.90 (20.8%) 504.55 (66.63%) 7,799.42 (42.23%)

Model family GGE0 GGE1 GGE0 GGE1

Signal captured 0 (0%) 489.58 (90.0%) 0 (0%) 6,983.23 (65.47%)

2017 and 2018

F-test

ENV 8 17,374.90 0.000*** 73.85 0.000*** 6,312.20 0.000*** 217.70 0.000***

GGE 315 4,638.70 0.000*** 36.98 0.000*** 1,079.50 0.000*** 80.41 0.000***

PC1 42 1,164.10 (25.8%) 0.000*** 22.16 (60.0%) 0.000*** 317.90 (29.8%) 0.000*** 33.11 (41.2%) 0.000***

PC2 40 860.50 (19.1%) 0.000*** 3.66 (9.9%) 0.000*** 204.00 (19.1%) 0.000*** 14.07 (17.5%) 0.000***

PC3 38 709.80 (15.7%) 0.000*** 3.18 (14.2%) 0.000*** 176.50 (16.5%) 0.000*** 12.35 (15.4%) 0.000***

PC4 36 540.80 (12.0%) 0.00** 2.78 (7.5%) 0.000*** 104.6 (9.8%) 0.06ns 6.74 (8.4%) 0.00**

Residuals 324 3,006.30 10.86 719.70 34.74

REP(ENV) 9 308.40 0.000*** 1.81 0.000*** 79.00 0.000*** 2.05 0.02*

Pure Residuals 315 2,697.90 9.05 640.70 32.69

Model diagnosis

GGE Signal 1,914.90 (41.28%) 27.86 (75.34%) 434.72 (40.27%) 47.52 (59.09%)

GGE noise 2,723.80 (58.72%) 9.12 (24.66%) 644.80 (59.73%) 32.90 (40.91%)

Model family GGE1 GGE2 GGE1 GGE1

Signal captured 1,164.14 (60.79%) 25.82 (92.68%) 317.90 (73.13%) 47.18 (99.30%)

*significant at p < 0.05, **significant at p < 0.01, ***significant at p < 0.001; ns, not significant.
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was 73.65, 61.02, 56.0, and 59.80% for ELS disease, haulm yield,
LLS disease, and pod yield, respectively, with the signal captured
by the PCs for ELS and LLS diseases, and haulm yield being 97.12
and 74.15%, and 77.96%, respectively (Table 5).

In 2018, the G+GE was not significant (p ≥ 0.05) for ELS
diseases but was significant for haulm yield, LLS disease, and pod
yield (Table 5). Gollob’s F-test suggested GGE2 for ELS and LLS
diseases, GGE4 for haulm yield and GG3 for pod yield, whereas
signal–noise estimation showed GGE0 as the appropriate model
for ELS and LLS diseases and GGE1 for haulm and pod yields.
The overall GGES was 19.37, 79.20, 33.37, and 57.77% for ELS
disease, haulm yield, LLS disease, and pod yield, respectively, with
the signal captured by the PCs for haulm and pod yields being
90.0 and 65.47%.

The environment main effect and the G+GE were significant
for all traits (p < 0.001) when the combined data from 2017
and 2018 were considered (Table 5). First four, six, three, and
four PCs of the interactive component were significant (p <

0.05) for ELS, haulm yield, LLS, and pod yield, respectively, from
the F-test. Hence, based on Gollob’s test, GGE4, 6, 3, and 4
were appropriate for these trait analyses, respectively. However,
signal–noise estimation diagnosed GGE1 for all the traits, except
haulm yield, which GGE2 was diagnosed for. The GGES was
41.28, 75.34, 40.27, and 59.09% with the captured signal being

60.79, 92.68, 73.13, and 99.30% for ELS disease, haulm yield, LLS
disease, and pod yield, respectively (Table 5).

Relationship Among Test Locations and
the Interaction With Genotypes Based on
the Genotype-by-Environment Interaction
Damongo, Manga, and Silbele locations grouped to form a
cluster of related locations with Nyankpala standing alone for
ELS when GE and the location means were considered in 2017
(Tables 6, 7). However, when haulm yield was considered, Manga
and Nyankpala had a common genotype winner for both GE
and location means. All the locations clustered into a single
group when LLS and pod yield were considered (Tables 6, 7).
Genotypes ICGV-IS 09926 and ICGV-IS 13937 had the highest
ELS disease severity scores (winners) in the various locations
in 2017 when GE was considered, with 12CS-042 having the
highest for LLS in all locations (Table 6). However, when the
location means were considered, genotype CHINESE, which is
always used as the susceptible check, had the highest ELS disease
severity scores in three of the four locations for ELS and in all
locations for LLS, respectively (Table 7). Also, genotypes ICGV
86124 and ICGV-IS 13851 were the winners for haulm yield,
while 12CS-042 was the sole for pod yield in all locations when

TABLE 6 | Environmental groups vs. genotype winners based on adjusted GE.

ELS HYLD LLS PYLD

Environment GE winner GE winner GE winner GE winner

2017

Damongo ICGV-IS 09926 12CS-042 12CS-042

Manga ICGV-IS 09926 ICGV 86124 12CS-042 12CS-042

Nyankpala ICGV-IS 13937 ICGV 86124 12CS-042 12CS-042

Silbele ICGV-IS 09926 ICGV-IS 13851 12CS-042 12CS-042

2018

Damongo 12CS-042 ICGV-IS 13989 12CS-042 YENYAWOSO

Manga 12CS-042 ICGV-IS 13989 12CS-042 YENYAWOSO

Nyankpala 12CS-042 ICGV-IS 14943 12CS-042 ICGV-IS 14849

Silbele 12CS-042 ICGV-IS 13989 12CS-042 ICGV-IS 14849

Tanina 12CS-042 ICGV-IS 13989 12CS-042 ICGV-IS 14849

2017 and 2018

Damongo 2017 ICGV-IS 13834 ICGV-IS 141120 12CS-116

Damongo 2018 ICGV-IS 14849 ICGV-IS 141120 ICGV-IS 141120 ICGV-IS 07947

Manga 2017 ICGV-IS 14849 ICGV-IS 14857 ICGV-IS 141120 ICGV-IS 07947

Manga 2018 ICGV-IS 13834 ICGV-IS 14857 ICGV-IS 13834 ICGV-IS 07947

Nyankpala 2017 ICGV-IS 13834 ICGV 86124 ICGV-IS 13834 12CS-116

Nyankpala 2018 ICGV-IS 14849 ICGV-IS 14943 ICGV-IS 141120 12CS-116

Silbele 2017 ICGV-IS 14849 ICGV-IS 13979 ICGV-IS 141120 ICGV-IS 07947

Silbele 2018 ICGV-IS 13834 ICGV-IS 14877 ICGV-IS 13834 12CS-116

Tanina 2018 ICGV-IS 14849 ICGV-IS 13989 ICGV-IS 13834 12CS-116

ELS, early leaf spot; HYLD, haulm yield; LLS, late leaf spot; PYLD, pod yield.
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TABLE 7 | Environmental groups vs. genotype winners based on mean performance from adjusted GE.

ELS HYLD LLS PYLD

Environment Overall winner Overall winner Overall winner Overall winner

2017

Damongo CHINESE CHINESE ICGV-IS 141120

Manga CHINESE ICGV-IS 131090 CHINESE ICGV-IS 141120

Nyankpala ICGV-IS 13937 ICGV-IS 131090 CHINESE ICGV-IS 141120

Silbele CHINESE ICGV-IS 13871 CHINESE ICGV-IS 141120

2018

Damongo CHINESE ICGV-IS 14877 ICGV-IS 13834 ICGV-IS 141120

Manga CHINESE ICGV-IS 07947 ICGV-IS 13834 ICGV-IS 13937

Nyankpala CHINESE ICGV-IS 14943 ICGV-IS 13834 ICGV-IS 13937

Silbele CHINESE ICGV-IS 07947 ICGV-IS 13834 ICGV-IS 13937

Tanina CHINESE ICGV-IS 07947 ICGV-IS 13834 ICGV-IS 13937

2017 and 2018

Damongo 2017 CHINESE CHINESE ICGV-IS 13937

Damongo 2018 CHINESE ICGV-IS 07947 ICGV-IS 141120 ICGV-IS 07947

Manga 2017 CHINESE ICGV-IS 131090 CHINESE ICGV-IS 07947

Manga 2018 ICGV-IS 13834 ICGV-IS 14857 CHINESE ICGV-IS 141120

Nyankpala 2017 CHINESE ICGV-IS 13848 CHINESE ICGV-IS 141120

Nyankpala 2018 CHINESE ICGV-IS 14943 ICGV-IS 141120 ICGV-IS 13937

Silbele 2017 ICGV-IS 131065 ICGV-IS 07947 ICGV-IS 141120 ICGV-IS 141120

Silbele 2018 CHINESE ICGV-IS 131090 ICGV-IS 13834 ICGV-IS 13937

Tanina 2018 ICGV-IS 131065 ICGV-IS 131090 CHINESE 12CS-116

ELS, early leaf spot; HYLD, haulm yield; LLS, late leaf spot; PYLD, pod yield.

GE was considered (Table 6). On the other hand, when location
means were considered, ICGV-IS 131090 and ICGV-IS 13871
had the highest haulm yield, whereas ICGV-IS 141120 won in all
locations for pod yield.

In 2018, all the locations clustered into a single group when
GE and overall location means were considered for both ELS and
LLS severity scores (Tables 6, 7). However, location Nyankpala
stood out when haulm yield was considered. Damongo and
Manga separated from the other locations for the GE of pod
yield with Manga clustering with them when the overall location
means were considered (Tables 6, 7). Genotype 12CS-042 had
the highest ELS and LLS disease severity in all locations in 2018
when GE alone was considered. However, CHINESE and ICGV-
IS 13834 were the most susceptible for ELS and LLS diseases,
respectively, in all locations when the locations means were
considered. Also, genotype ICGV-IS 13989 had the highest haulm
yield in four of the five locations when GE was considered, while
ICGV-IS 14849 had the highest pod yield in three of the five
locations (Table 6). When the location means were considered,
genotypes ICGV-IS 14877, ICGV-IS 07947, and ICGV-IS 14943
had the highest haulm yield in the locations, with ICGV-IS
141120 and ICGV-IS 13937 having the highest pod yield.

For combined analysis of 2017 and 2018 years’ data,
repeatable patterns were observed when the location means were

considered for ELS disease severity with CHINESE being the
most susceptible in Damongo and Nyankpala for both years,
respectively (Table 7).

Relationship Among Test Locations and
the Interaction With Genotypes Based on
the Genotype Main Effect Plus
Genotype-by-Environment Interaction
Locations Manga and Nyankpala formed a group of common
environments, with genotype ICGV-IS 13842 being the most
susceptible in these locations when ELS severity was considered
in 2017 (Table 8). On the other hand, Nyankpala and Silbele had
a common winner for haulm yield, with Damongo, Nyankpala,
and Silbele also forming a cluster of similar locations when
LLS disease was considered. When pod yield was considered, all
locations formed a single cluster, with 12CS-042 being the winner
(Table 8).

In 2018, all the locations considered clustered to form
one group of related locations, with genotype 12CS-042 being
the most susceptible when ELS and LLS disease severities
were considered (Table 8). However, when haulm yield was
considered, Nyankpala did not cluster with the other locations,
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TABLE 8 | Environmental groups vs. genotype winners based on adjusted G+GE and mean performance from adjusted G+GE.

ELS HYLD LLS PYLD

Environment G+GE winner G+GE winner G+GE winner G+GE winner

2017

Damongo ICGV-IS 131096 YENYAWOSO 12CS-042

Manga ICGV-IS 13842 ICGV 86124 ICGV-IS 07947 12CS-042

Nyankpala ICGV-IS 13842 ICGV-IS 13871 YENYAWOSO 12CS-042

Silbele ICGV-IS 141088 ICGV-IS 13871 YENYAWOSO 12CS-042

2018

Damongo 12CS-042 ICGV-IS 13989 12CS-042 ICGV-IS 07947

Manga 12CS-042 ICGV-IS 13989 12CS-042 ICGV-IS 07947

Nyankpala 12CS-042 ICGV-IS 14943 12CS-042 ICGV-IS 14849

Silbele 12CS-042 ICGV-IS 13989 12CS-042 ICGV-IS 07947

Tanina 12CS-042 ICGV-IS 13989 12CS-042 ICGV-IS 14849

2017 and 2018

Damongo 2017 ICGV-IS 13834 ICGV-IS 13834 ICGV-IS 141120

Damongo 2018 ICGV-IS 13834 ICGV-IS 14877 ICGV-IS 141120 ICGV-IS 07947

Manga 2017 ICGV-IS 13834 ICGV-IS 14943 ICGV-IS 141120 ICGV-IS 07947

Manga 2018 ICGV-IS 13834 ICGV-IS 131090 ICGV-IS 13834 ICGV-IS 09926

Nyankpala 2017 ICGV-IS 13834 ICGV-IS 14943 ICGV-IS 13834 ICGV-IS 07947

Nyankpala 2018 ICGV-IS 13834 ICGV-IS 14943 ICGV-IS 141120 ICGV-IS 14849

Silbele 2017 ICGV-IS 14849 ICGV-IS 131090 ICGV-IS 141120 ICGV-IS 07947

Silbele 2018 ICGV-IS 13834 ICGV-IS 131090 ICGV-IS 13834 ICGV-IS 141120

Tanina 2018 ICGV-IS 14849 ICGV-IS 141120 ICGV-IS 13834 ICGV-IS 13937

ELS, early leaf spot; HYLD, haulm yield; LLS, late leaf spot; PYLD, pod yield.

with genotype ICGV-IS 14943 being the winner, while ICGV-
IS 13989 was the winner in the other locations. Also,
Nyankpala and Tanina clustered to form common environment
with ICGV-IS 14849 as the winner for pod yield. ICGV-IS
07947 was the winner for the other three locations (Table 8).
For combined analysis of 2017 and 2018 years’ data, all
environments, except Silbele in 2017 and Tanina in 2018,
clustered, with ICGV-IS 13834 being the common susceptible
genotype (Table 8).

Relationship Among Test Locations and
the Interaction With Genotypes Based on
the Genotype and Environment Main
Effects Plus Genotype-by-Environment
Interaction
Locations Damongo and Silbele clustered to form a common
environment, with genotype ICGV-IS 13848 being the
most susceptible when ELS disease was considered in 2017
(Table 9). Again, these locations formed a cluster, with genotype
YENYAWOSO as themost susceptible when LLS was considered.
In both scenarios, locations Manga and Nyankpala stood out,
with genotype-specific susceptibilities (Table 9). For haulm
yield, Manga and Nyankpala clustered, whereas all the locations

evaluated in 2017 clustered for pod yield and had genotype
ICGV-IS 141120 as the winner.

In 2018, locations Damongo, Manga, and Nyankpala had
a common most susceptible genotype (ICGV-IS 13834), with
CHINESE being the most susceptible for Silbele and Tanina
for ELS disease (Table 9). On the other hand, Manga, Silbele,
and Tanina all had genotype ICGV-IS 13834 as the most
susceptible for LLS disease. With regard to haulm yield, genotype
ICGV-IS 13848 was the common winner for Damongo and
Tanina, while genotype ICGV-IS 13937 won in four of the five
locations (Damongo, Manga, Nyankpala, and Silbele) for pod
yield (Table 9).

When 2017 and 2018 data were jointly considered, the most
consistent environmental grouping was observed for pod yield,
with genotype ICGV-IS 141120 winning in eight of the nine
environments (Table 9).

Influence of Environmental Covariables on
Genotypic Performance and the
Relationship Among Traits at Various
Levels of Phenotype
Based on the factorial regression model, the environmental
(locations and years combined) main effect was significant (p <
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TABLE 9 | Environmental groups vs. genotype winners based on adjusted E+G+GE and mean performance from adjusted E+G+GE.

ELS HYLD LLS PYLD

Environment E+G+GE winner E+G+GE winner E+G+GE winner E+G+GE winner

2017

Damongo ICGV-IS 13848 YENYAWOSO ICGV-IS 141120

Manga ICGV-IS 13842 ICGV-IS 141120 ICGV-IS 13937 ICGV-IS 141120

Nyankpala CHINESE ICGV-IS 141120 12CS-116 ICGV-IS 141120

Silbele ICGV-IS 13848 ICGV-IS 13871 YENYAWOSO ICGV-IS 141120

2018

Damongo ICGV-IS 13834 ICGV-IS 13848 ICGV-IS 14943 ICGV-IS 13937

Manga ICGV-IS 13834 ICGV-IS 14943 ICGV-IS 13834 ICGV-IS 13937

Nyankpala ICGV-IS 13834 ICGV-IS 09926 ICGV-IS 14928 ICGV-IS 13937

Silbele CHINESE ICGV-IS 13876 ICGV-IS 13834 ICGV-IS 13937

Tanina CHINESE ICGV-IS 13848 ICGV-IS 13834 ICGV-IS 131090

2017 and 2018

Damongo 2017 CHINESE ICGV-IS 14943 ICGV-IS 141120

Damongo 2018 ICGV-IS 13834 ICGV-IS 14880 CHINESE ICGV-IS 141120

Manga 2017 ICGV-IS 13834 ICGV-IS 13876 ICGV-IS 13937 ICGV-IS 141120

Manga 2018 ICGV-IS 13834 ICGV-IS 13848 CHINESE ICGV-IS 141120

Nyankpala 2017 CHINESE ICGV-IS 13876 CHINESE ICGV-IS 141120

Nyankpala 2018 ICGV-IS 13834 ICGV-IS 13876 CHINESE ICGV-IS 141120

Silbele 2017 ICGV-IS 131065 ICGV-IS 14943 ICGV-IS 14849 ICGV-IS 141120

Silbele 2018 CHINESE ICGV-IS 14880 CHINESE ICGV-IS 141120

Tanina 2018 CHINESE ICGV-IS 13876 CHINESE ICGV-IS 131090

ELS, early leaf spot; HYLD, haulm yield; LLS, late leaf spot; PYLD, pod yield.

0.001) for all studied traits (Supplementary File 4). However, the
genotype main effect was only significant for pod yield.

ELS and LLS diseases had a significant (p < 0.05) positive
correlation at all levels of phenotype (i.e., GE, G+GE,
and E+G+GE) in all years except for E+G+GE in 2018
(Figure 1). Also, haulm in 2017 correlated positively with haulm
yield in 2018 at G+GE and E+G+GE levels of phenotype.
However, pod yield in 2017 correlated negatively with pod
yield in 2018 at E+G+GE but positively at G+GE level of
phenotype (Figure 1).

DISCUSSION

The present study sought to delineate locations using a crop
(groundnut) with farmer-preferred traits. In this work, a high
statistical significance of the location main effect for all traits in
both years shows the important contribution of the non-genetic
component of phenotype to overall crop performance. It also
confirms the most common scenario in multi-environmental
trials where the location main effect captures the largest of
the total variation (Gauch, 2006). Although this component
is unimportant to breeders (Gauch, 2013), it highlights the
significance of putting a genotype in an optimal environment
(cultivar placement) for enhanced performance. Generally,

locations that ranked first in ELS and LLS disease severity
(highest disease pressure) were again ranked first in pod and/or
haulm yields too. This suggests that the disease condition was
not too severe to affect yield. For instance, per the scale used
in scoring, the highest disease severity in AUDPC that can be
scored for ELS and LLS is 180 and 135, respectively. Therefore,
unlike genotypes where ranking of means is required to select
the best material for advancement, locations should be judged
against a benchmark. This will deepen our understanding as to
the amount of investment required in a location to enable a
genotype perform to its maximum. Also, the genotypemain effect
was only significant for pod yield in both years. However, this
is not surprising, because the yield obtained from pod is the
end product of all the conditions and physiological processes
the groundnut crop underwent during growth. It therefore
highlights the importance of developing a cultivar with high
genetic potential for pod yield under the set of conditions it will
grow. Genotypes ICGV-IS 141120 and ICGV-IS 13937 were the
best in terms of pod yield in 2017 and 2018, with average yields
of 1,798 and 1,470 across years, respectively.

Traditionally, the visualization of AMMI and GGE is done
using the first and second PCs (PC1 and PC2), i.e., AMMI2 and
GGE2, respectively (Gauch, 2006). With the implementation of a
triplot function in the agricolae package of R statistical software
(Mendiburu, 2019; R Core Team, 2020), researchers now have the
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FIGURE 1 | Relationship among traits at the various levels of phenotype.

option of visualizing AMMI plots with three PCs on a 2D plane.
However, relying on p-values fromGollob F-test to select a model
family of AMMI and GGE can be misleading (Gauch, 2013;
Gauch andMoran, 2019). For instance, the GE and G+GE of ELS
disease in 2018 were not significant. This suggests that AMMI
and GGE analyses were not justified, respectively. Meanwhile, the
PC1 of the AMMI model, and PC1 and 2 of the GGE model
were highly significant. Proper model diagnosis is therefore
necessary in order to capture the real patterns in the data. The
FR-test (Piepho, 1995) and signal–noise comparison (Gauch,
2013) are by far the most robust procedures currently available
for diagnosing the AMMI models. However, the FR-test, which
relies on Gollob’s procedure for estimating degree of freedom (df)
(Piepho, 1995; Gauch, 2013), underestimates GGE df, although
its effect may be offset by declaring significance at 1 or 0.1%
instead of the usual 5%. AMMI and GGE models, which were
used to model phenotype at GE and G+GE levels, respectively,
in the present study focused on signal–noise estimation and
comparison as a means of model diagnosis, because it is highly
conservative and under no circumstance does it allow some
amount of noise to be captured. The downside is that it can lead
to model underfitting when attention is not paid to the signal
captured as seen when the suggested model captured 65.47 and
60.79% of G+GE signal in pod yield and ELS disease in 2018
and across years, respectively. However, unlike other diagnostic
procedures that solely depend on statistical significance, its
sensitivity is not dependent on the size of the dataset. The highest
member of the AMMI model family required for any trait in this
study was AMMI2, while that of GGE model was GGE2.

The use of different models (AMMI, GGE, FW regression,
and factorial regression) in this study was not to determine their
robustness in revealing patterns in a MET dataset. That has
been discussed extensively in the literature already (Yan et al.,

2000, 2001; Yan and Rajcan, 2002; Gauch, 2006, 2013; Malosetti
et al., 2013; Yan, 2014). The different models were used to
understand the relationship among test locations and genotypic
performance at various levels of phenotype (i.e., GE, G+GE,
and E+G+GE) as well as the role of explicit environmental
covariables (rainfall, temperature, and RH). When the GE
component was considered, patterns (similar location groupings)
were repeatable across traits and across years for the same
trait, although a complex scenario largely existed for across
environments (location and year combined). For instance, the
location groupings were the same for LLS disease and pod yield
in 2017 and ELS and LLS diseases in 2018 (Tables 6, 7). The
G+GE component also showed repeatable patterns across traits,
across years for the same trait. In fact, across environments,
GE and G+GE components of the phenotype gave similar
environmental patterns and genotype winners for ELS disease
severity. When the main and interactive effects (E+G+GE)
were jointly considered, location groupings were again similar
between ELS and LLS disease severities in 2017 and between ELS
disease and pod yield in 2018, although the genotype winners
were entirely different. The clustering of almost all locations
(within years) and environments (across years) to form a single
mega-environment among consistent patterns suggests that the
locations represent one mega-environment. However, the mega-
environment is a complex one (complex mega-environment)
since such consistency did not cut across all traits. As a result,
although these locations are testing sites and together represent
two agro-ecological zones (Guinea and Sudan Savanna) (Marfo
and Padi, 1999), testing in these sites approximates the entire
target region. Although these locations were historically selected
for trials not necessarily based on any crop’s performance, their
use over the years has been justified particularly for groundnut.
On the other hand, the recharacterization of the entire target
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region may be necessary to ascertain whether these current
locations will continue to be the representative environments
for the respective mega-environments. However, considering the
financial investment required, it will be prudent to use the on-
farm approach.

Environmental components that contribute to genotype
by environment in general can be categorized into two
groups, i.e., those that result in predictable and those that
result in unpredictable GE. An example of the predictable
and unpredictable includes soil and weather parameters,
respectively. Precipitation is the main source of water for
groundnut cultivation in Sub-Saharan Africa, while humidity and
temperature affect leaf spot disease development (Danful et al.,
2019; Oteng-Frimpong and Dakora, 2019) and growth stages
(Rao et al., 1992; Oteng-Frimpong et al., 2019), respectively.
Hence, the lack of significance for the interactive components
of the factorial regression model suggests that the predictable
components of the environments were driving the genotypes
by environment. It is, therefore, not surprising that clusters
of location groupings were repeatable across traits and years.
Also, the fact that this study yielded findings that agree to
the historical characterization, which was carried out primarily
based on vegetation type and other indices other than a crop
performance, confirms this assertion. However, when the data
from the year 2017 and 2018 were combined and analyzed,
environments from the same locations (e.g., Damongo 2017
and Damongo 2018) were largely having different genotype
winners resulting in them falling into different environmental
groups. This scenario was observed at all levels of phenotype
and indicates the present effect of latent seasonal variation,
which could not be detected statistically through the factorial
regression modeling. Since this has the tendency of complicating
the breeder’s ability to identify useful environmental patterns,
it is suggested that when data from multiple years/seasons
experiment are available, the analysis should be done year-wise,
unless the confounding effect of the yearly variation can be
properly accounted for.

Relationships among traits were consistent across the
phenotypic levels of GE and G+GE for the disease-related
traits. However, when the “E” component was added, the
patterns changed. And since breeders are more interested
in the genotype, such associations should be estimated
devoid of the “E.” On the other hand, the changes in trait
associations when “E” was added (i.e., E+G+GE) mean
breeders ought not to ignore the environment in which
cultivars are to be placed. Therefore, collaborative cultivar
development that will see disciplines such as soil scientists
and agronomists actively involved in the breeding process
is encouraged.

CONCLUSION

This study uses a comprehensive approach in test location
characterization and genotype performance to examine four

farmer-preferred traits with model diagnosis and at the various
levels of phenotype. The study justified the use of the current
test locations (Damongo,Manga, Nyankpala, Silbele, and Tanina)
to represent the entire Guinea and Sudan Savanna zones in
Ghana during METs. GE was driven by the predictable scenario,
although latent yearly/seasonal effect exists.

Depending on the phenotypic level (i.e., GE, G+GE, or
E+G+GE) at which genotypes performance are assessed,
the best-performing genotype may change. Although different
statistical models are used to approximate these phenotypic levels
in general, comprehensively assessing genotypic performance
and arriving at a decision using this approach will likely
result in the identification of the most superior cultivar
among a set genotypes evaluated. Considering the MET data
from the 2 years independently and at the various levels of
phenotype, genotypes ICGV-IS 141120 and ICGV-IS 13937
were selected and recommended for on-farm study due to
their superior and consistent performance across the traits
considered. Genotype CHINESE will continue to be used as
a susceptible check for ELS and LLS disease studies, while
ICGV-IS 13834 will be the new additional susceptible check to
be added.
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