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Recent advances in unmanned aerial vehicle (UAV) remote sensing and image analysis
provide large amounts of plant canopy data, but there is no method to integrate the
large imagery datasets with the much smaller manually collected datasets. A simple
geographic information system (GIS)-based analysis for a UAV-supported field study
(GAUSS) analytical framework was developed to integrate these datasets. It has three
steps: developing a model for predicting sample values from UAV imagery, field gridding
and trait value prediction, and statistical testing of predicted values. A field cultivation
experiment was conducted to examine the effectiveness of the GAUSS framework,
using a soybean–wheat crop rotation as the model system Fourteen soybean cultivars
and subsequently a single wheat cultivar were grown in the same field. The crop rotation
benefits of the soybeans for wheat yield were examined using GAUSS. Combining
manually sampled data (n = 143) and pixel-based UAV imagery indices produced a
large amount of high-spatial-resolution predicted wheat yields (n = 8,756). Significant
differences were detected among soybean cultivars in their effects on wheat yield,
and soybean plant traits were associated with the increases. This is the first reported
study that links traits of legume plants with rotational benefits to the subsequent crop.
Although some limitations and challenges remain, the GAUSS approach can be applied
to many types of field-based plant experimentation, and has potential for extensive use
in future studies.

Keywords: crop rotation, drone, experimental design, legume, wheat, yield

INTRODUCTION

Since R. A. Fisher’s initial work on statistical principles of experimental design (Fisher, 1926),
field experimentation has played a pivotal role in variety of plant sciences, including ecology,
evolutionary biology, forestry, and crop science (Box, 1980; Edmondson, 2005). In field
experiments, measured values may vary among the experimental plots owing to the treatments,
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but there is always some degree of additional variation caused by
both systematic errors, e.g., spatial variation in topography and
soil fertility, and random errors, e.g., variations from sampling
procedure (Sokal and Rohlf, 1995). Although many studies have
addressed methods to minimize these errors, the results of field
experiments are still subject to large unwanted and uncontrolled
variability (Hurlbert, 1984; Legendre et al., 2004; Payne, 2006;
Yang, 2010). In addition, a key factor in field experimentation
is the time-consuming nature of sampling coupled with
limited availability of time, resulting in small numbers of
samples, i.e., small sample size (Hurlbert, 1984). Small sample
size can cause significant analysis problems by reducing the
statistical power and inferential confidence, especially for data
with large systematic and random errors (Nakagawa and
Cuthill, 2007). Therefore, the development of cost-effective,
high-throughput, and general-purpose measurements and their
analytical framework is needed to extend the effectiveness of field
experimentation studies (Edmondson, 2005).

It is well known that legume plants such as soybeans can
acquire nitrogen from the atmosphere through a mutualistic
symbiosis with rhizobia, thereby providing a crucial service to
the ecosystem. The use of legumes in crop rotations for their
nitrogen-fixing ability has a long history (Chorley, 1981; Stinner
et al., 1992); it is widely practiced in both industrialized and
developing countries (Giller and Cadisch, 1995; Becker and
Johnson, 1998; Biederbeck et al., 2005). Many research projects
have quantified this nitrogen contribution and its net effect on
subsequent crop yields (Herridge and Rose, 2000; van Kessel
and Hartley, 2000; Walley et al., 2007; Anglade et al., 2015; Duc
et al., 2015). Interestingly, those studies have found the effects of
legume cultivation to be quite variable. Although many studies
report positive effects of legume cultivation on subsequent crop
yield, others have found neutral or even negative effects (reviewed
in Walley et al., 2007; Anglade et al., 2015). Such variations can be
partially explained by the extreme variability in nitrogen fixation
among different legume crops and among the cultivars used for
experimentation. Importantly, however, the large systematic and
random errors associated with crop rotation experiments can
increase the variability within results, and thereby reduce the
statistical power of the data analyses. In addition, the requirement
for two different crops to be grown sequentially in the same
field in crop rotation trials can magnify the potential for errors
during experiments.

To predict the effects of legume cultivation on subsequent
crops, to maximize their benefit, and to develop innovative
genotypes that can enhance rotational benefits, it is necessary
to identify which legume traits are associated with the
rotational benefits (Herridge and Rose, 2000). Comparison of
rotational effects among cultivars of the same legume species
may be the best way to achieve this goal, but no studies
have verified differences in rotational benefits among cultivars
(Duc et al., 2015). One reason for this lack of research
may be the difficulty in detecting cultivar differences using
conventional field experiments and statistical methods (e.g.,
ANOVA), because differences among cultivars are relatively
small, whereas the variations in rotational experiments are large.
To overcome this challenge, a method is needed to examine

the differences in rotational benefits among legume cultivars,
and to determine which legume traits are associated with
rotational benefits.

Recent advances in technical devices and analytical methods
have made it possible to do cost-effective remote sensing of
field-cultivated plants (Houle et al., 2010; Furbank and Tester,
2011; Tardieu et al., 2017; Tripodi et al., 2018). Proximal sensing
through the use of unmanned aerial vehicles (UAVs) is among
the most promising and popular techniques, because it is rapid,
non-destructive, cost-effective, and information dense (Sankaran
et al., 2015; Yang et al., 2017; Guo et al., 2018; Maes and Steppe,
2019). UAV remote sensing enables the acquisition of a large
amount of image data accompanied by location information.
Recent studies have shown that UAV sensing and image analysis
can be used to estimate several traits of field-cultivated plants,
e.g., cover area, volume, height, and normalized difference
vegetation index (NDVI) (Guo et al., 2017, 2020; Watanabe et al.,
2017; Zhou et al., 2017; Hassan et al., 2019). These techniques
allow researchers to cost-effectively and non-destructively obtain
large amounts of pixel-level plant canopy data with location
information. However, despite these significant benefits, there is
no general methodology to integrate the large quantities of image
data from UAV remote sensing with the manually collected data
from conventional field experimentation.

To investigate these issues, we proposed a simple analytical
framework, i.e., geographic information system (GIS)-based
analysis for UAV supported field study (GAUSS), to integrate
remote sensing data into a conventional field experiment
(Figure 1). A field cultivation experiment was conducted to
examine the effectiveness of the GAUSS framework, using a
soybean–wheat [Glycine max (L.) Merr.; Triticum aestivum L.]
crop rotation as the model system. The differences among
soybean cultivars in their effect on wheat yield were examined,
and the following questions were addressed:

(1) Which type or combination of indices from the UAV
imagery best predicted wheat yields?

(2) How did the whole distribution of estimated yields in a
plot differ from the actual yield data from manual sample
collection at selected locations?

(3) Were there differences in wheat yields associated with
different soybean cultivars?

(4) What traits of the soybean cultivars were associated with
the wheat yields?

MATERIALS AND METHODS

Field Cultivation of Soybean and Wheat
The study was conducted from June 2018 to June 2019 at
the Institute of Sustainable Agro-ecosystem Services (ISAS), the
University of Tokyo, Japan (35◦43′N, 139◦32′E). Soybeans were
grown during the summer (June to October), followed by winter
wheat in the winter (November to June). The soil was derived
from a volcanic ash, classified as a Typic Melanudand (USDA Soil
Taxonomy). Climatic data during the soybean and wheat growing
seasons are summarized in Supplementary Table 1.
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FIGURE 1 | Steps in the GIS-based analysis for UAV-supported field study (GAUSS) framework.

Fourteen soybean cultivars (Supplementary Table 2) with
different plant types and yield potentials were used (Kaga et al.,
2011). Seeds of the GmWMC (Glycine max world mini core-
collection) line were obtained from the current Genetic Resource
Center, National Agriculture and Food Research Organization,
Tsukuba, Japan. There were 70 experimental plots: 56 plots
for soybean cultivar testing, 4 plots where the natural weed
community was allowed to develop (weedy), 4 plots where the
soil was covered with an anti-weed covering (sheet), and 6
plots for destructive sampling of soybean plants (Figure 2A and
Supplementary Table 3). Each plot was 10.08 m2 (2.4 m× 4.2 m).
The cultivars were assigned to the plots in a randomized design,
with 2–6 replicates (Supplementary Table 3). Three soybean
seeds were sown per hill, on 20 June or 20 July 2018, with a
row spacing of 60 cm and a hill spacing of 30 cm. Hills were

thinned to one seedling at 3 weeks after sowing. A basal fertilizer
(N:P:K, 3:10:10) was applied at a rate of 1,000 kg ha−1 for
soybean cultivation.

The above-ground parts of the soybean plants were manually
harvested at physiological maturity during October 2018 and
dried completely at 80◦C. The whole-plant above-ground dry
weight, stem dry weight, seed dry weight, and 100-seed
weight were measured. The below-ground parts were left in
the soil. The field was tilled twice to a depth of 15 cm
using a rotovator at 2 weeks after the soybean harvest. In
November 2018, wheat (“Satonosora”) was uniformly sown
over the entire area (40 m × 50 m), including both the
location of the 70 soybean plots and the adjacent field
area (Figure 2B), at 80 kg ha−1. No fertilizer was applied
for wheat cultivation. Standard crop protection practices for
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FIGURE 2 | Experimental field P1–70 used in the work reported here. (A) Soybean (Glycine max) cultivation plots; (B) subsequent wheat (Triticum aestivum)
cultivation, with locations of preceding soybean plots superimposed on the image; (C) the field divided into 25-cm × 25-cm cells, using the UAV aerial surveillance
data.

soybean (manual weeding, pesticide application, intertillage, and
molding) and wheat (herbicide application, manual weeding, and
fungicide application) were followed.

During 5 to 10 June 2019, the above-ground parts of the
wheat plants were manually harvested from 154 sampling points
(1 m × 1 m; Supplementary Figure 1) by cutting at the soil
surface and placed in a mesh bag. The 154 sampling points
comprised one each in the 70 soybean plots and 84 in the adjacent
area of the field. A local area RTK-GPS (Real-Time Kinematic
Global Positioning System) that was conducted with Hemisphere
GNSS devices (Hemisphere GNSS, Scottsdale, AZ, United States)

was used to determine the locations of the sampling points.
After drying completely at 80◦C, the harvested wheat samples
were weighed and sorted into immature ears, mature ears, and
straw. The dry weights of mature ears and straw were measured
separately. The number of mature ears was counted.

GAUSS: An Analytical Framework to
Estimate Data Values From UAV Imagery
The GAUSS general framework was used to integrate remote
sensing data into a conventional field experiment that
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investigated plant growth benefits in a soy–wheat crop rotation.
The three main steps of this framework (represented in Figure 1)
were:

1 Development of the model for predicting sample values,
using UAV imagery

2 Field gridding and trait value prediction
3 Statistical testing of the predicted values

Detailed GAUSS Methodologies
Development of the Model for Predicting Sample
Values, Using UAV Imagery
Acquisition of Image Data
UAV remote sensing was carried out on 15 February, 14 March,
and 12 April 2019, when the target wheat plants were in various
stages of growth (tillering, early growth, and lager growth stage).
A commercial-grade UAV (DJI Inspire 1, Shenzhen, China)
equipped with a multispectral camera was used. The UAV was
flown automatically over the field (Figure 3A) at an altitude of 30
m under the control of a commercially available flight application
(Litchi, VC Technology Ltd., London, England). Two cameras—
a Zenmuse X5 (DJI, Shenzhen, China) and a Micasense RedEdge
(Micasense, Seattle, WA, United States)—were mounted on the
UAV to ensure that RGB and multispectral images were captured
during the same flight (Figure 3B). Two sets of images of a
calibrated reflectance panel placed at about 1 m height were also
captured immediately before and after each flight to improve the
accuracy of the reflectance data for multi-spectral images. Also,
acrylic plates were placed at the four corners of the field and
three locations within the field as ground control points (GCPs),
and were measured using the Hemisphere RTK differential GNSS
device to improve the geolocation accuracy.

The captured images were processed using commercial
photogrammetry software (Pix4Dmapper Pro, Pix4D, Lausanne,
Switzerland). The pixel-by-pixel values over the entire wheat
field were determined by using orthomosaic and digital surface
modeling (DSM) that are generated from RGB images to calculate
the vegetation cover area and plant height, respectively, and

reflectance maps were generated from the multi-spectral images
to calculate the NDVI (Figure 3C).

Developing the Model for Predicting Wheat Yield
To determine which of the image indices best predicted
actual wheat yield, the model selection based on the Akaike’s
information criteria (AIC) (Akaike, 1974) for results of
generalized linear models (GLMs) was used. Accurate
geolocation information for both the UAV imagery and the
manual sampling points made it possible to map the manually
sampled data (actual ground data) into the UAV imagery indices.
In the GLM analysis, the dry weight of the harvested wheat ears
from each manual sampling location was the response variable.
The means of vegetation cover area, plant height, and NDVI at
each of the sampling locations, estimated from the UAV images
recorded in February, March, and April, were the explanatory
variables. Plant height from February was excluded from the
analysis owing to low plant height (<10 cm) and consequent low
estimation accuracy. The error distribution was Gaussian with an
identity link function. The statistical model with the lowest AIC
score was selected as the best model (f ) for estimating the values
of the manually sampled wheat yield data (yp) at a sampling
point p from the UAV images, where:

ŷp = f
(
x1,p, x2,p, · · · , xm,p

)
+ ε (1)

and ŷp is the estimate of yp, xi,p represents i-th index (vegetation
cover area, plant height, or NDVI in this study) at a sampling
point p derived from the UAV images, m is the total number of
indices, and ε is measurement error, respectively. The best model
was then used in all subsequent steps.

Field Gridding and Trait Value Prediction
With the best model, the wheat yield over the entire field
was calculated in ArcGIS Spatial Analyst v. 10.6 software
(Esri, Redlands, California, United States) to map the aerial
photographs. The field was divided into 25 × 25 cm cells
(c1, c2, · · · , cnc , where nc is the total number of cells) using GIS.
With the model (f ), the pixel-by-pixel predicted values of the
target traits, including wheat yield, were calculated for the entire

FIGURE 3 | Representation of the image capture and data processing in the GAUSS system. (A) UAV overflight to capture image data; (B) types of image data
collected; (C) results of image processing.
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field (ŷp1 , ŷp2 , · · · , ŷpnp , where pi is the i-th pixel in the UAV
image of the field, and np is the total number of pixels in the
image). Then the average yield of wheat in each cell (ci) was
calculated from the pixel-by-pixel values:

ŷci =
∑
p in ci

ŷp/nci (2)

where nci is the total number of pixel in each cell.
Cells that contained two plots during soybean cultivation and

cells containing both corridor and experimental plot areas during
wheat cultivation were eliminated (Figure 2C). This resulted in
8756 cells of predicted wheat yield values (mean of 125 cells per
soybean plot). To assess the relationship between predicted yield
and manually sampled yield, the overall distributions of these
values for each plot were compared.

Statistical Testing of the Predicted Values
The experimental factors affecting the predicted wheat yields of
each cell were analyzed in two ways. The first set of analyses
examined whether the spatial variation of wheat yield was affected
by the previously grown soybean cultivar, using a generalized
linear mixed model (GLMM) with Gaussian distribution and
identity link. In this model, predicted wheat yields in each cell
were treated as the response variable, and sowing date and
cultivar were treated as the explanatory variables. To account
for systematic error due to spatial variations in the field and
to avoid pseudo-replication caused by repeated observations
from the same plots, the sowing row and plot identity (nested
within sowing row) were treated as random effects. A significant
difference among cultivars was found, so pairwise comparisons
between the cultivars that produced the lowest wheat yield and
other cultivars were carried out.

The second set of analyses investigated which soybean traits
affected the yield of the subsequently grown wheat, again
using the GLMM with Gaussian distribution and identity
link methodology. Predicted wheat yields of each cell were
treated as the response variable, and soybean stem dry weight,
seed dry weight, above-ground dry weight, 100-seed weight,
and their first-order interactions were treated as explanatory
variables. These are typical soybean traits that are measured

(Cui et al., 2001; Kaga et al., 2011; Qiu et al., 2013). The sowing
row and plot identity (nested within sowing row) were treated
as random effects.

The “lme4” package and the “lmer” function in the R software
environment for GLMM analyses (R Development Core Team,
2010; Bates et al., 2014) were used. The likelihood ratio test
was used to test the significance of the GLMM results. Graphs
of GLMM predictions were drawn in the sjPLot package for R
(Lüdecke, 2018).

RESULTS

Model Selection for Wheat Yield
AIC showed that the best model included four UAV-based indices
(i.e., vegetation cover area on 14 March and 12 April, height on
14 March, and NDVI on 12 April; Table 1). There was a high
correlation (R2 = 0.8061) between the values predicted by this
model and the observed manually measured yield (Figure 4A).
Among the models that were explored, all of the top 20 included
both cover area on 14 March and NDVI on 12 April (e.g.,
Table 1).

Comparison Between Manually Sampled
and Predicted Values
The set of predicted yields in each plot (excluding the 6 plots used
for destructive sampling of soybean plants) was determined by
using the GAUSS framework. The manually collected wheat yield
of a plot often differed from the set of predicted values for that
plot (Figure 4B). The manually collected values fell outside the
quartiles of the predicted values in 54.7% of the plots (35 of 64
plots) and most of these (25) were less than the 25% quartile of
the overall distribution of predicted values for the plot.

Differences Among Soybean Cultivars
The measured traits of the soybeans showed considerable
variability among cultivars (Supplementary Table 2).
Interestingly, conventional statistical analysis of the actual
wheat yield data did not identify significant variations among
the soybean cultivars in their effect on subsequent wheat yield

TABLE 1 | The results of model selection, ranked by Akaike information criteria (AIC), in the search to identify the best model for predicting ear dry weight of wheat
(Triticum aestivum) from UAV imagery data.

Model No. Explanatory variables included in the models R2 DF AIC 1AIC Weight

1 C_Mar.14 H_Mar.14 C_Apr.12 N_Apr.12 0.8061 6 2375.4 0 0.082

2 C_Mar.14 C_Apr.12 N_Apr.12 0.8035 5 2375.5 0.03 0.081

3 C_Mar.14 H_Mar.14 C_Apr.12 H_Apr.12 N_Apr.12 0.8083 7 2375.6 0.21 0.074

4 C_Mar.14 C_Apr.12 H_Apr.12 N_Apr.12 0.8058 6 2375.7 0.23 0.073

5 C_Feb.15 C_Mar.14 H_Mar.14 C_Apr.12 N_Apr.12 0.808 7 2375.9 0.47 0.065

16 C_Mar.14 H_Mar.14 N_Mar.14 C_Apr.12 H_Apr.12 N_Apr.12 0.809 8 2377.1 1.66 0.036

17 C_Feb.15 C_Mar.14 H_Mar.14 H_Apr.12 N_Apr.12 0.8045 7 2378.6 3.21 0.016

18 C_Mar.14 H_Mar.14 H_Apr.12 N_Apr.12 0.8016 6 2378.9 3.5 0.014

19 C_Mar.14 H_Apr.12 N_Apr.12 0.7983 5 2379.4 4.01 0.011

20 C_Feb.15 C_Mar.14 H_Apr.12 N_Apr.12 0.8 6 2380.2 4.74 0.008

C, vegetation cover area; H, averaged height; N, averaged normalized difference vegetation index (NDVI) of the sampling points.
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FIGURE 4 | Relationships between predicted and observed values. (A) Yields (wheat ear dry weight) predicted by the best model vs. observed values. (B) Boxplots
and scatter plots of the distribution of predicted wheat yields in each experimental plot (black bar within a box indicates median predicted yield; box bottom and top,
25 and 75% quartiles, respectively, whiskers, 1.5× the interquartile range; open circles outside the box, outliers) and manually sampled yield values (red bar). Note
that the 6 field plots (P31–33, P66–68) used for destructive sampling of soybean (Glycine max) plants are not included here. A total of 64 box plots are shown,
therefore the numbering of the x-axis is discontinuous. (C) Effects of the different soybean cultivars grown before the wheat crop on the predicted wheat ear dry
weights. Boxplot features are as described in (B). Asterisks indicate significant differences (∗P < 0.05; ∗∗P < 0.01) between the predicted values for cultivar v5
(which produced the lowest wheat yield) and each other soybean cultivar or weed management method.
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(ANOVA, F = 0.928, p = 0.536, Supplementary Figure 2).
However, the GAUSS analysis identified significant differences
among cultivars in the predicted wheat yields (Figure 4C and
Supplementary Table 4), after the effects of spatial variations
were removed statistically. Cultivar v5 was associated with
the lowest yield in the subsequent wheat crop, and v11 was
associated with the highest yield (Figure 4C). There was no
significant difference in wheat yields between soybean sowing
dates (Supplementary Table 4).

Soybean Traits Associated With Wheat
Yield
The interaction of soybean stem dry weight × above-ground dry
weight had a significant effect on wheat yield (ear dry weight;
P < 0.05; Supplementary Table 5). Increased above-ground dry
weight of whole soybean plants apparently reduced subsequent
wheat yield, but as the stem weight of soybean increased, the
wheat yields also increased (Figure 5A). Interestingly, where
the above-ground weight of soybean plants was low, the wheat
yield was high, regardless of the stem weight of soybean
(Figure 5A). In fact, the soybean cultivars associated with low
yields in wheat were usually those that had relatively large above-
ground weight and relatively small stem weight, and vice versa
(Figures 4C, 5B). The 100-seed weight of soybean seeds also

FIGURE 5 | Relationships between selected crop characteristics. (A) The
marginal effects of the above-ground dry weight and the stem dry weight of
soybeans (Glycine max) on the predicted ear dry weight of the subsequently
grown wheat (Triticum aestivum) crop. (B) The relationship between
above-ground dry weight and stem dry weight of the 14 soybean cultivars.

significantly affected the wheat yield (P < 0.05, Supplementary
Table 5 and Supplementary Figure 3). The interactions of
aboveground dry weight × seed dry weight and of stem dry
weight × seed dry weight did not significantly affect wheat yield
(Supplementary Table 5).

DISCUSSION

This study used a simple analytical framework, identified as
GAUSS, to analyze UAV-supported data from field experiments.
The performance of this framework was assessed by analyzing
data from a crop rotation trial of soybean and wheat. This
framework acquired a large amount of high-spatial-resolution
data for predicted wheat yield. Analysis of this data showed
significant differences among the soybean cultivars in the yield
of the wheat grown after them, and identified the soybean
traits associated with increased yield. Despite the long history
of legume plants in crop rotations (Chorley, 1981; Stinner et al.,
1992), to the best of our knowledge this is the first field study
that has identified which traits were associated with the benefits of
rotation. Although the conventional analysis of manual sampling
data did not identify significant differences among soybean
cultivars in their effect on wheat yield (Supplementary Figure 2),
the GAUSS approach did detect such differences. The large
quantity of predicted values with location information generated
by this methodology enabled the statistical analysis to include the
intra- and inter-plot variations. This suggests that GAUSS has the
potential to considerably enhance field experimentation, thereby
improving its usefulness.

Soybean cultivars with relatively small above-ground weight,
large stem weight, and low 100-seed weight were associated
with increased yield in the subsequently grown wheat crop. This
suggests several implications for studies of legume-based crop
rotations. First, the negative effect of increased above-ground
weight of soybean on wheat yield may be attributable to the
removal of the above-ground parts of soybean from the field at
harvest. Soybean cultivars with large above-ground weight likely
absorbed more soil nutrients from the soil than the cultivars
that produced small above-ground parts. This removal would
have decreased the available nutrient pool for subsequent wheat
growth. Second, a study comparing 383 soybean cultivars shows
a high correlation between stem and root weight (r2 = 0.81–
0.90; Nakamura and Sawahata, 1988). Therefore the soybean
cultivars with large stem weights likely produced large amounts
of roots, which may have affected the soil physical and chemical
conditions; for example, aggregate structure, release of nitrogen
compounds, and biological activities (decomposition) may have
been enhanced, increasing the yield of the subsequent wheat crop.
However, it should be noted that this experiment was conducted
in a single location and a single growing season. Multi-year trials
at various locations would be necessary for a more convincing
conclusion and a cost-effective GAUSS approach would be useful.

This study did not measure any below-ground soybean traits,
such as root biomass or number of nodules. Variations among
soybean cultivars in the symbiotic performance of rhizobia are
known to occur (Appunu et al., 2008). The variations in the effect
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of soybean cultivars on wheat yield observed in this experiment
may reflect these differences in rhizobial activity. However,
preliminary assessments found that the number of rhizobium
nodules on the roots of soybeans grown in this field was low.
There were no clear differences among the cultivars (data not
shown), likely owing to the relatively high soil nutrient content in
this field. Future studies are needed to clarify how soybean root
residues change soil biophysical properties and increase the yield
of subsequent crops. It remains unclear why the 100-seed weight
reduced the wheat yield. Chromosome segment substitution lines
for 100-seed weight (Liu et al., 2018) may be useful for exploring
the causal relationship, but that is beyond the scope of the work
reported here. The differences in total seed weight among the
soybean cultivars were not associated with differences in wheat
yield. This suggests that it may be possible to select soybean
cultivars that provide both sufficient soybean yields and crop
rotation benefits for the subsequent crop.

In this study, we did not measure the soil nitrate concentration
for each rotational treatment. In crop rotations with legumes, the
effect of soil nitrogen accumulation on subsequent crops has been
reported to be highly variable (Walley et al., 2007; Anglade et al.,
2015). One reason for the variation is that non-nitrogen (non-N)
factors (such as the bio-physical change in soil properties due to
legume residues, other plant nutrients, disease suppression, and
weed control) contribute significantly to crop rotational benefits
(Stevenson and Van Kessel, 1996; Arcand et al., 2014; Uzoh et al.,
2017). In order to verify how the soybean varieties affect the yield
of subsequent crops, it will be necessary not only to quantify the
change in the soil nitrogen accumulation, but to also examine
other bio-physical factors.

The present study applied the GAUSS approach to a crop
rotation experiment, but the approach is applicable to a wide
range of field experiments. For example, it could be used to
study the effects of environmental conditions (water, fertilizer,
pesticide, etc.) on yield, with high spatial resolution. GAUSS may
also be useful for field experiments in ecology and environmental
science. It could be used to measure any plant traits that can
be estimated from UAV (or potentially satellite) imagery. For
example, UAV imaging and image analysis may enable estimation
of important functional traits of complex plant communities,
such as biomass, volume, plant height, and photosynthetic
activity. The relationship between these functional traits and
plant diversity has been examined in grassland field experiments
all over the world (Tilman et al., 2006; Cardinale et al., 2007;
Zavaleta et al., 2010; Sasaki et al., 2017), but the GAUSS approach
has potential to greatly enhance these experiments.

GAUSS also has potential to markedly reduce the time needed
for yield surveys, which could facilitate greater numbers of
experimental treatments and replicates. For example, in the study
reported here, manual collection and measurement of 157 one-
square-meter wheat samples required more than 450 person-
hours, whereas the UAV drone surveillance, data processing, and
GIS analysis took approximately 20 person-hours for GAUSS
to estimate the yield of 8,756 cells (total 547.25 m2) in the
same experiment.

The GAUSS approach worked well here, but there are
many limitations and challenges that remain to be addressed

to facilitate its extensive adoption for field experimentation.
First, although the predictive model based on the UAV imagery
was relatively accurate (r2 = 0.8061), this model was based
on a relatively small number of UAV imagery datasets on 3
days (a total of seven variables: two height values, two NDVI
values, and three cover area values). Increasing the frequency
of UAV sensing and adding more explanatory variables could
produce an even better predictive model. The method used
here to identify the best model was limited by the number
of UAV surveys and the number of explanatory variables.
If the frequency of UAV sensing is increased and a large
number of explanatory variables is included, more flexible
analytical methods, such as machine learning, may be useful for
estimating models.

Second, the size of grid cells needs to be optimized. In this
study, the GIS grid size (25 cm × 25 cm) was based on the size
of an individual wheat plant. However, the grid can be any size,
depending on the size and scale of the target species.

Third, the appropriate size for experimental plots needs to be
determined. Here, the plot shape and size (2.4 m × 4.2 m) was
similar to those in typical field experiments. However, GAUSS can
detect differences using smaller plot sizes, which could improve
the efficiency of field experiments. Future studies will be needed
to identify and validate appropriate plot sizes for UAV-supported
field experiments.

Fourth, although it is more than 100 times more efficient
per unit area than manual measurement, the GAUSS method
always needs manually sampled data from which to develop its
predictive models.

Fifth, the GAUSS approach is somewhat expensive because it
requires a UAV (drone) with a multispectral camera and RTK-
GPS. However, these costs are likely to decrease substantially as
the technology develops further and becomes more widely used.

Sixth, although development of relatively good predictive
models may help overcome the inherent large variations among
manually collected samples, examinations of diverse plant species
under various field conditions (e.g., rice, potato, and maize, in
uniform vs. non-uniform fields) are needed to investigate the
variability of GAUSS data within field experiments.

Seventh, in step 1 of GAUSS, we used commercial
photogrammetric software (Pix4Dmapper Pro, Pix4D, Lausanne,
Switzerland) to run the 3D reconstruction of the field. In step
2 and 3, we also run the separated scripts to sample the field
and calculate phenotypic traits, those require several manual
operations, which are time-consuming. In the future, building
an automated pipeline (e.g., CIAT Pheno-i, Selvaraj et al., 2020)
will allow us to build predictive models more cost-effectively,
easily-to-sue, and quickly.

In conclusion, a new analytical framework for UAV-
supported field experimentation was proposed. This framework
may be applicable to a wide range of field experimentation
in crops and wild plants. It could improve the way field
experiments are conducted, which has not changed much
since Fisher’s era. Wider usage and resolution of the
limitations and challenges will likely enable the proposed
GAUSS framework to be used consistently in future
field experiments.
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