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The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient
availability into metabolism promoting growth in eukaryotes. The overall higher efficiency
on nutrient use translated into faster growth rates in C4 grass plants led to the
investigation of differential transcriptional and metabolic responses to short-term
chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition
to previously described responses to TORC inhibition (i.e., general growth arrest,
translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana
(C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient
use efficiency and C allocation and partitioning that promote biosynthetic growth.
Besides photosynthetic differences, S. viridis and A. thaliana present several specificities
that classify them into distinct lineages, which also contribute to the observed alterations
mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated
according to each cell wall type, as synthesis of non-pectic polysaccharides were
affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate
that the metabolic network needed to achieve faster growth seems to be less stringently
controlled by TORC in S. viridis.

Keywords: energy sensing, metabolism, biomass, nutrient sensing, C4 model, plant growth and development,
signaling, target of rapamycin pathway

INTRODUCTION

Adaptation and evolution have driven the generation of plants with different metabolism that
perform better in particular environments. Plant growth and development are dependent on tightly
regulated networks that fulfill the internal demands while responding to external stimuli. One key
player integrating nutrient and energy status to control biomass accumulation and metabolism is
the serine/threonine Target of Rapamycin (TOR) kinase signaling pathway (Xiong and Sheen, 2012;
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Dobrenel et al., 2013, 2016b; Saxton and Sabatini, 2017; Shi et al.,
2018; Liu and Sabatini, 2020). In most eukaryotes, TOR needs
to be assembled into two distinct protein complexes to enable
precise substrate recruitment (Schepetilnikov and Ryabova, 2018)
to perform particular physiological functions (De Virgilio and
Loewith, 2006; Wullschleger et al., 2006; Soulard et al., 2009).
In plants, only the TOR complex (TORC) 1 components TOR,
RAPTOR, and LST8 have been identified (Menand et al., 2002;
Mahfouz et al., 2006; Agredano-Moreno et al., 2007; Maegawa
et al., 2015). Despite the conservation of some direct TORC
targets from yeasts and animals to photosynthetic organisms (De
Virgilio and Loewith, 2006; Wullschleger et al., 2006; Soulard
et al., 2009; Dobrenel et al., 2016a), as p70 S6 Kinase (S6K/Sch9)
involved in protein translation, other targets are either missing or
new regulatory steps were aggregated according to the complexity
level of organisms for fine-tuning TOR activity (Henriques et al.,
2014; Xiong and Sheen, 2015; Shi et al., 2018). Thus, the sessile life
form of plants, besides their photoautotrophic nature, provides a
special niche for the discovery of unknown mechanisms under
the coordination of this pathway.

TOR is a two-fold controller regulating the production of
several building blocks (Saxton and Sabatini, 2017) at the same
time that mediates cell proliferation (Henriques et al., 2010;
Xiong and Sheen, 2012; Barrada et al., 2019) being crucial for
keeping the cellular homeostasis to sustain growth. In plants,
growth is defined by a permanent increase in size, involving
changes in dry weight (biomass), cell expansion (extension),
and division (proliferation). These processes are interdependent,
as metabolic activity drives biomass accumulation through the
acquisition of nutrients and photosynthetic fixation of carbon
dioxide (CO2). TOR senses carbon (C) availability to modulate
developmental programs, ensuring the balance between the
source supply and sink demand at different stages of plant growth
(e.g., Dobrenel et al., 2013; Xiong et al., 2013; Pfeiffer et al., 2016;
Zhang et al., 2016; Brunkard et al., 2020). TORC seems to perform
conserved functions in plants, particularly affecting the efficiency
of C assimilation, partitioning, and use for growth. For example,
TORC adjusts various primary metabolic routes and coordinates
C partitioning between growth and storage molecules in algae
and the eudicot Arabidopsis thaliana (C3) (Moreau et al., 2012;
Ren et al., 2012; Lee and Fiehn, 2013; Caldana et al., 2013; Jüppner
et al., 2018; Salem et al., 2018; Pancha et al., 2019). However, the
upstream and downstream players might have evolved differently
according to the C demands of the tissue type.

Photosynthesis represents the only source of C for the
generation of organic molecules used according to the rates of
cell division/expansion and developmental transitions (Smith
and Stitt, 2007; Siqueira et al., 2018; Wingler, 2018). Different
photosynthetic mechanisms exist in plants, in which enzymes
from distinct metabolic pathways can fix C into C3 or C4
acids. In most plant species, referred to as C3, ribulose-
1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyses C
fixation into 3-phosphoglycerate (3PGA) via the Calvin Benson
cycle. This reaction is limited by the activity of RubisCO as a
result of the slow catalytic turnover and its oxygenase reaction
that diverts the C flow through photorespiration (Stitt et al., 2010;
Raines, 2011). C4 plants have a biochemical CO2 concentrating

mechanism in which C is initially fixed by phosphoenolpyruvate
carboxylase into oxaloacetate (OAA) in the mesophyll cells.
OAA is then transported and decarboxylated into 3PGA in
bundle sheath cells increasing CO2 concentration for RubisCO
(Furbank, 2017). This complex set of biochemical and anatomical
specializations brought about improved C gain, nitrogen (N),
and water use efficiencies boosting the growth rates (Atkinson
et al., 2016; Furbank, 2017; Sage et al., 2018; Leakey et al., 2019).
Furthermore, due to their less dense tissues, C4 species optimize
their C allocation producing more leaves and roots than C3
(Atkinson et al., 2016).

The precise regulation of the partitioning of photosynthetic
products into different functional C pools (C allocation) is
one of the main determinants for controlling biosynthetic
growth, and therefore, biomass. Photoassimilates produced in
the source leaves during photosynthesis are translocated through
the phloem and imported into non-photosynthetic C-consuming
sinks (e.g., roots) for generating energy to fuel metabolism
(consumption) or growth (storage) (Chang and Zhu, 2017).
When sucrose production in source leaves exceeds sink demand,
sucrose accumulation leads to a feedback inhibitory effect
on photosynthesis switching photoassimilate partitioning into
C reserves such as starch (Heyneke and Fernie, 2018). This
mechanism coordinates photosynthesis and sink demand to
control growth in C3 plants. Recent work suggested that this
feedback regulation might operate differently in C4 plants (Henry
et al., 2020). Despite increased sugar levels in plants grown under
high light conditions, photosynthesis and transcriptome of the C4
grass Setaria viridis source leaves responded more dramatically
to low light (Henry et al., 2020). The authors found that TOR
was affected neither by light intensity nor by sugar content at the
transcriptional level in this organ. TOR transcript levels are quite
stable to environmental changes even in the C3 A. thaliana, the
plant species with most research on TOR.

In this work, we used S. viridis, the photosynthetic model
for high biomass panicoid crops (Martin et al., 2016; Mamidi
et al., 2020), to explore the consequences of TOR repression
and included A. thaliana only as a standard for comparison.
These species are not only contrasting in terms of photosynthetic
metabolic pathways, but they also belong to different lineages
presenting morphological specificities in their root (e.g., general
root and hair pattern) and leaf architecture (e.g., vasculature
pattern) (Hochholdinger and Zimmermann, 2008; Nelissen et al.,
2016; Conklin et al., 2019). S. viridis is closely related to
agronomically important C4 crops with the NADP-malic enzyme
(NADP-ME) subtype, such as sorghum, sugarcane, and maize
and it has been suggested as a convenient genetic model to study
C4 plants due to its short life cycle, sequenced genome, and
transformability (Brutnell et al., 2010; Petti et al., 2013; Huang
et al., 2016). Chemical inhibition of TOR by AZD8055 followed
fine-kinetic modifications on transcripts and primary metabolites
during the day, the period in which differential C assimilation
occurs. In addition, root growth and biomass accumulation were
evaluated in longer periods of drug exposure. Our results confirm
the role of TORC in controlling plant growth also in the faster-
growing grass S. viridis, however, the observed responses were
overall mildly impacted by this signaling pathway.
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MATERIALS AND METHODS

Protein Sequences, Alignment, and
Domain Prediction
Protein sequences of TOR or FKBP12 were retrieved from
National Center for Biotechnology Information (NCBI)1 and
Phytozome12 (Phytozome, RRID:SCR_006507) databases
(Supplementary Tables 1–3). A. thaliana sequences were
defined as a query for all analyses. Alignments were generated
by Clustal Omega 2.12 (Clustal Omega, RRID:SCR_001591),
whereas domain- and motif-like patterns were predicted with
Motif3 and InterProScan4 (InterProScan, RRID:SCR_005829)
softwares, respectively.

Yeast Complementation Assays
The FKBP12 sequences from S. viridis and A. thaliana
(Supplementary Table 2) were amplified by PCR with primers
listed in Supplementary Table 3 and checked by sequencing.
The resulting PCR products were cloned by homologous-
end recombination (Oldenburg et al., 1997) into the yeast
PWS28 vector (Mokry et al., 2009). Saccharomyces cerevisiae
wild-type BY4741 or the mutant strain lacking FKBP12 (fpr1,
Euroscarf) were transformed (Elble, 1992) with the empty
PWS28 vector or with the different versions of PWS28-FKPB12
constructs and plated onto synthetic dextrose solid media lacking
uracil (SD-Ura) (Sherman, 2002). Complementation assays were
performed by serial dilution (1:10) of yeast cultures with an
OD600 of 0.6 spotted (2.5 µl) onto SD-Ura media supplemented
with the final concentrations of rapamycin. The plates were
incubated for 2 days at 30◦C. For determination of doubling
times, yeasts were grown in SD-Ura liquid media supplemented
with 1 µM rapamycin in 96-well plates at 30◦C and OD600
was measured every 15 min. Growth curves were plotted as
log10OD600 in the function of time, and the slope values were
obtained from the linear regression of the log phase for each
strain. Peak doubling times for the cultures were determined by
the equation Td = log2/a, where Td is the time of duplication, and
“a” is the slope value. ANOVA-test (P < 0.05) was used to assess
statistical significance in the growth of the different yeast strains.

Plant Material and Growth Conditions
Seeds from S. viridis [L.] Beauv (accession A10.1) and A. thaliana
[L.] Heynh. (accession Columbia-0) were surface sterilized and,
unless otherwise stated, cultivated on a hydroponic system using
tip boxes (Monte-Bello et al., 2018) in half-strength MS medium
with vitamins (Murashige and Skoog, 1962) in 12 h photoperiod.
Seeds were germinated in controlled growth chambers (fitotron R©

models HGC 1514 and SGC 120, Weiss Technik) under 75%
of humidity, 300 µmol m−2 s−1 of irradiance and temperature
of 28◦C (day)/25◦C (night) for S. viridis or 150 µmol m−2 s−1

of irradiance and temperature of 21◦C (day)/19◦C (night) for
A. thaliana. After reaching stages 11 (S. viridis) and 1.04

1https://www.ncbi.nlm.nih.gov/
2https://www.ebi.ac.uk/Tools/msa/clustalo/
3https://www.genome.jp/tools/motif/
4https://www.ebi.ac.uk/interpro/search/sequence/

(A. thaliana) from the BBCH scale (Boyes et al., 2001; Rahbari
et al., 2012; Hodge and Doust, 2017), the hydroponic tanks
were replaced with a fresh medium containing 0.05% DMSO
(control), 10 (S. viridis) or 2 µM (A. thaliana) AZD8055
(LC Laboratories) 30 min before the beginning of the light
period. This DMSO concentration is within the ideal range of
most of the experiments evaluating TORC function in plants
(Montané and Menand, 2013, 2019; Ouibrahim et al., 2015;
Prioretti et al., 2017; Van Leene et al., 2019). An overview of
all experiments is provided in Figure 1. For molecular and
metabolic profiling analysis, whole seedlings were harvested at
each time point/condition, immediately frozen in liquid nitrogen,
and stored at−80◦C until use.

Total fresh weight (FW) and dry weight (DW) of seedlings
were determined on an analytical balance (accuracy 0.0001) along
4 days of treatment with DMSO 0.05% (control), 10 or 2 µM
AZD8055 (S. viridis and A. thaliana, respectively). To avoid
errors in estimating the weights of single plantlets, pools of 5
and 15 seedlings of S. viridis and A. thaliana, respectively, were
weighed as a single replicate in a total n of 5 or 4 pools. The
values of each pool were divided by the number of plants in
the respective pool and the averages ± standard error were
calculated. This was done to reduce the bias toward the number
of seedlings for each species. Significant differences along time
within the same treatment were evaluated using ANOVA and are
indicated by letters (P < 0.05). Significant differences between
treatments (DMSO or AZD8055) were analyzed by Student’s
t-test and are indicated by asterisks (P < 0.05).

Root Phenotyping
For assessing the effect of TOR inhibitors on S. viridis root
growth, surface-sterilized seeds were germinated on vertical
plates containing solid half-strength MS medium with vitamins
in the same conditions described in the previous section.
After reaching the developmental stages described in plant
material and growth conditions, seedlings were transferred to
plates containing the same media supplemented with DMSO
0.05% (control), AZD8055 or rapamycin (10 µM). Root length
(n = 40 S. viridis roots) was measured for 7 days of cultivation
and the average was calculated. Significant differences between
the treatments were analyzed by ANOVA and are indicated
by letters (P < 0.05). The same conditions were used to
evaluate the effect of different AZD8055 concentrations, ranging
from 0 to 10 µM, on S. viridis and A. thaliana. Root growth
(n = 15 seedlings for S. viridis or A. thaliana) was evaluated
for 7 days by calculating the root inhibitory dose according to
(Montané and Menand, 2013).

Root tips of seedlings (n = 4 and 5 seedlings for S. viridis
and A. thaliana, respectively) treated for 10 days with DMSO
0.05% (control), 10 or 2 µM AZD8055 (S. viridis and
A. thaliana, respectively) were fixed in 12.5% acetic acid in
ethanol for 1 h and sequentially washed with 100% ethanol,
50% ethanol, and demineralized water. Roots were maintained
in 1 mM KOH at 4◦C, mounted in demineralized water, and
imaged using a conventional light microscope coupled with a
differential interference contrast system (BX51 and Olympus)
at magnification x40. Measurements in epidermal cells of root
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FIGURE 1 | Overview of the experiments performed in this study. Created with BioRender.com.

surface were performed with ImageJ software taking into account
the distance of cells from the quiescent center (QC). Only a
single line of cells was measured along the root toward the
maturation zone, and the position of each cell was defined by its
endpoint. Meristematic and elongation zone sizes were defined
by the distance between QC and the first elongated cell, and the
distance between the first and last elongated cells, respectively. To
estimate the number of cells in the meristematic zone, the length
of the zone was divided by the average meristematic cell length.
Significant differences between the treatments were assessed by
Student’s t-test and are indicated by asterisks (P < 0.05).

Metabolite Profiling Analysis
Primary metabolites were extracted from 20 mg of plant
material (n = 5 replicates composed by pools of 15 or
35 S. viridis or A. thaliana seedlings, respectively) using
methyl-tert-butyl-ether extraction (MTBE) buffer (Giavalisco
et al., 2011). Polar fractions were concentrated, derivatized
with N-methyl-N-trimethylsilyltrifluoroacetamide, and analyzed
by gas chromatography (GC) (7890N and Agilent) coupled
to time-of-flight (TOF) mass spectrometry (MS) (Pegasus HT
and Leco) (Lisec et al., 2006). Peak detection, retention time
alignment based on FAMEs, and mass spectral comparison with
reference libraries were performed using TargetSearch (Cuadros-
Inostroza et al., 2009). Metabolite identification was also
manually supervised. Metabolites were quantified based on the

peak intensity for a selected mass and subsequently normalization
to the sample FW and total ion count, and log2 transformed.
Data normalization and statistical analysis were performed in
R v3.2.25. Pairwise comparisons of metabolites between control
and AZD8055-treated samples at each time point were calculated
using Student’s t-test (P < 0.05). Principal component analysis
(PCA) was carried out using pcaMethods R package (Stacklies
et al., 2007) and heatmaps generated in Excel using a macro
(Gibon et al., 2006) (Supplementary Datasets 1–3).

For starch quantification, the insoluble material remaining
after the MTBE extraction was solubilized in 0.1 M NaOH by
heating to 95◦C, neutralized, digested enzymatically overnight
and the released glucose was then used to determine starch
content of the samples spectrophotometrically by coupling it to
the reduction of NADP+ to NADPH (Hendriks et al., 2003). The
same statistical analysis performed for metabolomics was used
for starch content.

RNA Preparation and Transcript
Expression Profiling
One µg of total RNA extracted (n = 3 replicates composed by
pools of 15 or 35 S. viridis or A. thaliana seedlings, respectively)
using SV Total RNA Isolation System (Promega) was used to
generate libraries according to TruSeq Stranded mRNA HT

5https://www.r-project.org
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Sample Prep Kit (Illumina). The size and quality of libraries
were confirmed with the 12,000 DNA assay kit (Agilent) and
quantification performed with the KAPA Library Quantification
Kit Illumina R© Platforms (Kappa Biosystems). Libraries were
pooled in equimolar ratios and submitted to paired-end
sequencing on a Hiseq 2500 (Illumina) using TruSeq High
Output SBS Kit v3 – HS (Illumina) at the Brazilian Bioethanol
Science and Technology Laboratory (CTBE/CNPEM). Raw
sequencing reads were trimmed using Trimmomatic v0.38
(Bolger et al., 2014) (Trimmomatic, RRID:SCR_011848),
followed by further filtering to remove rRNA contamination
using SortMeRNA v2.1 (Kopylova et al., 2012) (SortMeRNA,
RRID:SCR_014402). Quantification was performed with kallisto
v0.44.0 (Bray et al., 2016) (kallisto, RRID:SCR_016582) against
cDNA sequences (A. thaliana: Araport11 – Cheng et al., 2017;
S. viridis: v2.1 from Phytozome12). An average of 51.9 and
13.3 million reads were obtained for S. viridis and A. thaliana,
respectively, whereby about 5% were discarded after quality
trimming and rRNA removal, and more than 95% mapped to the
annotated genome for each species (Supplementary Dataset 4).
Differential expression analysis was carried out using EdgeR
package (Robinson et al., 2010) (edgeR, RRID:SCR_012802) as
well as cross-sample normalization to obtain trimmed mean
M-value (TMM) normalized counts. Thresholds of | log2 fold
change| ≥1 and FDR < 0.05 were used to identify differentially
expressed genes (DEGs) (Supplementary Datasets 5–7).
Mercator4 v1.06 (Lohse et al., 2014) was employed to annotate
the coding sequences of S. viridis with MapMan bins (Thimm
et al., 2004) (MapMan, RRID:SCR_003543) (Supplementary
Dataset 8). RNA-seq can be found under accession number
BioProject ID PRJNA494848 in the NCBI SRA database7. The
Arabidopsis DEGs after AZD8055 treatment were compared
with three previous published datasets (Ren et al., 2012; Xiong
et al., 2013; Dong et al., 2015) using the function merge in R
(Supplementary Dataset 9).

RESULTS

AZD8055 Inhibits Root Growth of
S. viridis Seedlings in a Dose-Dependent
Manner at Higher Concentrations Than
of A. thaliana
Sequences of the TOR protein were first compared among
selected photosynthetic organisms, from the green algae
Chlamydomonas reinhardtii to monocots and eudicots. As
previously found for Setaria italica (Sapre et al., 2018),
S. viridis TOR protein sequence is also well-conserved to plants
(Supplementary Figure 1), yeast, and humans. Monocots present
a more relaxed leucine zipper (leu zip) (position 1028–1050 in
Arabidopsis) as the third leucine is replaced by valine (data
not shown). This leu zip is responsible for DNA binding
activating the 45S rRNA promoter and expression of rRNA (Ren

6 https://plabipd.de/portal/mercator4
7https://www.ncbi.nlm.nih.gov/sra

et al., 2011). The impact of this looser structure needs further
investigation.

The FRB domain of TOR forms a ternary complex with the
immunophilin protein FKBP12 and the rapamycin, repressing
only the effectors of TORC1 (Chiu et al., 1994; Sabatini et al.,
1994). In plants, the lack of critical amino acids residues in
FKBP12 hampers the formation of a stable ternary complex with
rapamycin and TOR (Sormani et al., 2007; Leiber et al., 2010; Ren
et al., 2012; Xiong and Sheen, 2012). A slightly higher affinity
of the complex to rapamycin has been previously reported for
maize (Agredano-Moreno et al., 2007) as a consequence of an
amino acid substitution, which is also present in S. viridis FKBP12
sequence (S-55, Supplementary Figure 2A). To investigate the
role of this residue in the ternary complex stabilization, we
performed an in vivo experiment using yeast complementation
assay. SvFKBP12 protein could weakly complement the fpr11
strain grown under 1 µM rapamycin when compared with the
same strain transformed with the empty vector (Supplementary
Figure 2B) but presented a much lesser effect than the strains
transformed with the ScFKBP12. When the growth curves of
these strains were performed, rapamycin-treated fpr11 strains
overexpressing SvFKBP12 presented an increase of 1.3 h in their
doubling time during the exponential phase in relation to the
strain harboring the empty vector, indicating a slight decrease
in cell proliferation (Supplementary Figures 2C,D). Similarly,
roots of S. viridis seedlings treated with 10 µM rapamycin also
presented a tendency to reduce growth after 3 day of treatment
(Supplementary Figure 2E) but this decrease in root length was
not always reproducible in independent experiments. It remains
to be investigated whether the substitution of the residue S-
55 might enable a slightly better affinity to the drug than the
corresponding A-58 found in A. thaliana (Menand et al., 2002;
Mahfouz et al., 2006; Sormani et al., 2007; Ren et al., 2012; Deng
et al., 2016). However, S-55 itself does not seem to confer stability
to this ternary complex, precluding the use of rapamycin to
investigate the TOR pathway in S. viridis.

AZD8055 is a widely used active-site TOR inhibitor operating
directly at the ATP-binding pocket competing for substrate
phosphorylation for both TORC1 and TORC2 in humans
(Chresta et al., 2010) and has been extensively used for studying
the role of this complex in plants (Montané and Menand,
2019 and references therein). As plant growth inhibition by
ATP-competitive TOR-inhibitors (asTORis) is dose-dependent
(Montané and Menand, 2013), we next examined the in vivo
sensitivity of S. viridis and A. thaliana to AZD8055. When
concentrations of this drug ranging from 1 to 10 µM were
tested, root growth was impaired in both species (Supplementary
Figures 3A,B). However, the dose-response curves revealed that
50% primary root growth-inhibitory dose (GI50) was reached
after 2 days of treatment with 2 µM AZD8055 for A. thaliana,
whereas S. viridis needed a concentration five-fold higher to exert
the same effect (Figure 2). S. viridis seedlings have three to five-
fold higher FW than A. thaliana depending on the evaluated time
point (Supplementary Figures 3E,F), which reflected the use of
10 µM AZD8055 to compare the effects of TOR repression. This
resembles the AZD8055 concentration that inhibits root growth
when comparing A. thaliana to the C4 Panicum miliaceum
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FIGURE 2 | TOR effect on root growth inhibition in S. viridis and A. thaliana.
Seedlings of S. viridis and A. thaliana were grown under 12 h photoperiod
until specific and compatible developmental stages before the transference to
plates containing different concentrations of AZD8055 (1–10 µM) or DMSO
0.05% (control). The effect of AZD8055 on root growth (n = 15 roots for
S. viridis or A. thaliana) was expressed relative to DMSO 0.05% to identify the
AZD8055 inhibitory concentration (GI50) according to Montané and Menand
(2013).

(Montané and Menand, 2013), pointing out the degree of
response concerning the plant biomass accumulation.

Longitudinally, primary roots can be divided into three zones:
(i) meristematic (MZ), where rapidly proliferation occurs; (ii)
elongation (EZ), where cell division ceases and elongation takes
place; and (iii) differentiation/maturation (MatZ), where cells
achieve their final shape and size and can differentiate into
secondary organs (reviewed by Barrada et al., 2015). Ten days
of AZD8055 treatment brought about a significant decrease
in MZ length of root epidermis in A. thaliana and S. viridis
(Figure 3A), also observed in raptor1b (Salem et al., 2018). As
roots were swollen after the treatment, cell length and cell number
were monitored instead of meristematic cell area. Increased
meristematic cell length followed by reduced cell number was
detected after TORC repression (Supplementary Figures 3C,G),
further indicating impaired cell proliferation in both species.
Interestingly, EZ length was reduced (ca. 70%) in A. thaliana
roots, but no significant alteration was found in S. viridis
(Figure 3A). As MatZ cell length was significantly decreased
in both species after treatment (Supplementary Figure 3D),
the smaller impact on EZ length in this grass might indicate
a narrower window of the AZD8055 effect and faster recovery,
which might be linked to the species growth rate. The root
architecture in monocots and eudicots are diverse, and the
smaller impact of AZD8055 on S. viridis cell length might
indicate different strategies as its fibrous roots are more prone to
ramification instead of investing in one main root (reviewed by
Hochholdinger and Zimmermann, 2008).

Concerning growth in terms of biomass acquisition, S. viridis
seedlings displayed a significant daily increment of FW and DW
in the control, whereas in A. thaliana these differences were
observed only after 3 and 2 days of transference to the new media
containing DMSO, respectively (Figures 3B,C; Supplementary
Figures 3E,F), compatible with the faster-growing ability typical
of C4 grass. When seedlings were subjected to AZD8055
treatment, A. thaliana FW declined in relation to the control after
4 days (∗∗∗P < 0.001) and S. viridis has a faster but less significant
effect at 3 days (∗P < 0.05) (Supplementary Figures 3E,F).
On the other hand, treatment with AZD8055 significantly
decreased DW earlier in A. thaliana compared with S. viridis
(Figures 3B,C). Interestingly, although the drug concentrations
applied were able to influence root growth similarly after 2 days
(Figure 2), DW data suggest that 2 µM AZD8055 exerted a more
severe biosynthetic growth reduction in A. thaliana than 10 µM
AZD8055 in S. viridis.

Primary Metabolism Is Markedly Less
Affected by TORC Repression in S. viridis
The milder changes in S. viridis DW, which directly reflects
C incorporation into biomass, prompted us to investigate to
which extent AZD8055 treatment affected its metabolism. We
profiled primary metabolites using GC-TOF-MS in seedlings
of both species exposed to short-term AZD8055 treatment.
Seedlings were harvested at 0 (i.e., 30 min before the light
was switched on), 1, 2, 4, 8, and 12 h of AZD8055 or DMSO
treatment (Figure 1). This period covers part of the diel cycle
when photosynthetic C assimilation occurs and most of the cell
biosynthetic blocks are synthetized. A total of 61 (S. viridis) and
49 (A. thaliana) compounds with known chemical structures
were determined, 42 of which were common to both species
(Supplementary Dataset 1).

We performed a principal component (PC) analysis to
compare AZD8055 treatment across time in both plant species
(Supplementary Figure 4 and Supplementary Dataset 2). PC1
(55 and 46% of the total variance in S. viridis and A. thaliana,
respectively) separated samples along the first half of the diel
cycle in both species. The responses at time point 0 h represent
the metabolic status at the end of the night/darkness period.
Hexoses and quinate contributed to the separation toward the
time of exposition to light in both species. It is reasonable that
due to its higher growth rate, the primary metabolism of S. viridis
would respond more intensely and promptly to light. Indeed,
the separation was greater between the samples at 0 h and the
remaining time points in this grass. Most of the amino acids
have increased and reduced levels at dawn in S. viridis and
A. thaliana, respectively. In S. viridis, uracil, serine (Ser), lysine,
and isoleucine led to the discrimination of the samples at this
time point. At the end of the night, metabolic responses are well-
characterized in A. thaliana, when plants have almost exhausted
their C reserve storage in the form of starch to provide sugars and
supply growth (Smith and Stitt, 2007). In agreement, our data
showed that maltose, the major product of starch breakdown,
together with orthophosphate, arginine (Arg), and ornithine
(Orn) contributed to the sample separation at 0 h in A. thaliana.
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FIGURE 3 | AZD8055 severely impacts the growth of S. viridis and A. thaliana seedlings. Effect of AZD8055 on root and overall growth of S. viridis and A. thaliana.
For all measurements, seedlings were grown hydroponically under 12 h photoperiod until specific and compatible developmental stages before application of DMSO
0.05% (control), 10 or 2 µM AZD8055 (S. viridis and A. thaliana, respectively). (A) Length of root EZ and MZ, expressed in cm. DW of S. viridis. (B) and A. thaliana.
(C) Black and gray colors represent DMSO and AZD8055 treatments, respectively. Significant differences along time within the same treatment, using ANOVA, are
indicated by letters (P < 0.05), lower case for DMSO and capital letters for AZD8055-treated plants, and significant differences between treatments are indicated by
asterisks (Student’s t-test): ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

In PC2 (15% and 20% of the total variance in S. viridis and
A. thaliana, respectively), the samples were grouped according to
the treatment. Although the compounds driving this separation

were distinct, metabolites involved in C storage and transport
contributed to the discrimination of the control samples in
both species. In S. viridis, fructose, sucrose, fumarate, and
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ketoglutarate were important for the segregation of the control
samples over time. Fructose and sucrose can act as the main C
source to drive energy production, metabolism, and the synthesis
of building blocks (e.g., proteins and DNA) in cell-proliferating
tissues in S. viridis (Martin et al., 2016). In addition, sucrose and
C4 acids, like fumarate, can play a role as C storage compounds
in this C4 model grass. On the other hand, starch content rises
due to AZD8055 treatment in A. thaliana and is not significantly
altered in S. viridis (Supplementary Figure 5). In A. thaliana,
glycine, Arg, Orn, galactinol, and raffinose were the main drivers

for separating the control samples over time. As previously
reported (Caldana et al., 2013; Salem et al., 2018), branched-chain
amino acids, tyrosine, and citrate separated the TOR inhibited
samples in A. thaliana, while isocitrate, glutamine, galactinol, and
dehydroascorbate (DHA) were important for the discrimination
of AZD8055-treated samples in S. viridis.

We performed a heatmap using the relative levels of
metabolites commonly identified for both species (Figure 4 and
Supplementary Dataset 3) to closely investigate their patterns
along with the time series. Most of the compounds that respond

FIGURE 4 | Comparative heatmap of metabolic changes in S. viridis and A. thaliana seedlings under TORC inhibition. Seedlings were grown hydroponically under
12 h photoperiod until specific and compatible developmental stages before application of DMSO 0.05% (control), 10 or 2 µM AZD8055 (S. viridis and A. thaliana,
respectively). Metabolite profiling was carried out using GC-TOF-MS. Data represents the average of biological replicates (n = 5), median scaled, and normalized
log2-transformed values. Significant differences between metabolites from control and TOR-inhibited seedlings are indicated by asterisks (Student’s t-test):
∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001, and also available on Supplementary Dataset 3. Metabolites in bold indicate differential behavior in S. viridis and
A. thaliana.
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to AZD8055 treatment in A. thaliana tend also to have their
levels altered in S. viridis, but with a lower magnitude. Since these
changes were extensively reported previously (Moreau et al.,
2012; Caldana et al., 2013; Salem et al., 2017), we focused only
on the metabolites with specific behavior upon TOR inhibition in
S. viridis. These were DHA, fumarate, and xylose. The increased
levels of DHA might indicate alterations in the cellular redox
state important to relieve stress. Reduction in xylose, the main
component of the hemicellulose xylan abundant in grasses, and
in fumarate might suggest less incorporation into cell wall and
limited use of this alternative C sink for respiration, respectively.
Therefore, these results could strengthen the negative impact
of TOR repression on S. viridis growth and development
(Figures 2, 3B).

Taken together, TOR inhibition triggers common changes
in S. viridis metabolism as the ones previously reported for
other photosynthetic organisms (Moreau et al., 2012; Ren et al.,
2012; Caldana et al., 2013; Salem et al., 2017; Jüppner et al.,
2018; Mubeen et al., 2018, 2019). These include alterations in
C and N metabolism that impact the production of building
blocks, growth, and biomass incorporation. Following the same
tendency observed in the DW, metabolic changes are affected
to a lesser extent in this grass. Thus, metabolic regulation under
TORC-dependent control seems to be less stringent than in other
organisms, at least under our experimental conditions.

Short-Term TORC Inhibition Has a
Far-Reaching Effect on the
Transcriptome, Less Pronounced in
S. viridis
To gain further insight into the biological processes involved
in the short-term response of TORC inhibition, we performed
RNAseq analysis in seedlings harvested at 0 (i.e., 30 min before
the light was switched on), 2, 4, and 6 h of AZD8055 or
DMSO treatment (Figure 1). A total of 25% of the mapped
genes were DEGs (log2FC ≥ 1 and FDR < 0.05) in S. viridis
and A. thaliana, when summing up the differentially expressed
transcripts at all time-points (with and without treatment)
relative to time point 0 (Supplementary Dataset 7). These large
changes were accompanied by alterations in primary metabolites
(Figure 4) and were expected as light, diel, and circadian cycles
have a major impact on transcriptional and metabolic networks
(Harmer et al., 2000; Bläsing et al., 2005; Casal and Yanovsky,
2005; Gibon et al., 2006; Espinoza et al., 2010; Caldana et al.,
2011; Ruckle et al., 2012). When only the effect of treatment
was considered, 1,542 and 1,156 DEGs were detected in the C3
and C4 models, respectively, regardless of the time point and,
as expected, with a larger number of transcripts changing over
time (Figure 5A). Thirty-seven percent of Arabidopsis DEGs
(567 transcripts) identified in this work displayed a similar
expression pattern with at least one of the previously reported
studies using different strategies to investigate the consequences
of TOR repression in this species (Ren et al., 2012; Xiong
et al., 2013; Dong et al., 2015) (Supplementary Dataset 9).
This overlap includes genes belonging to categories well-known
to be controlled by the TOR pathway, such as translation,

ribosome biogenesis, cell wall, and cell cycle. Not surprisingly,
the largest overlap in DEGs, 241 up- and 265 down-regulated
genes, was found comparing our results with those of Dong et al.
(2015), which also assessed the response of AZD8055 treatment
in seedlings, although at later time points (24 h). Overlaps to
some extent were also shown in contrasts with transgenic lines,
estradiol-inducible tor RNAi seedlings at the heterotrophic to
photoautotrophic transition (72 up- and 164 down-regulated
genes, Xiong et al., 2013) and rapamycin-sensitive (84 up- and 33
down-regulated genes, Ren et al., 2012). Despite the differences in
the experimental setup including duration of the TOR repression,
growth conditions (e.g., photoperiod and exogenous sucrose
supply), and transcriptomics platforms, our analysis further
proposes the presence of certain conserved modules of TOR
regulation in A. thaliana.

Relevant biological processes affected by TORC repression
were explored with MapMan (Thimm et al., 2004). Individual
DEGs for each pairwise comparison (e.g., 2 h DMSO versus
AZD8055) were analyzed independently for each species. Out
of 35 bins, 28 were found at least in one pairwise comparison
per species, but a large proportion of DEGs was not assigned
to any particular process (Figure 5B). This classification did not
limit the broad discussion of interconnected biological processes.
In general, categories such as cell wall, enzyme classification,
phytohormones, protein modification and degradation, RNA
biosynthesis, and solute transport were similarly relevant to
A. thaliana and S. viridis but the number of DEGs and timing of
changes were divergent. The subset of DEGs belonging to each
bin category and plant species is provided in Supplementary
Dataset 8. It is worth mentioning that the genome of S. viridiswas
relatively recently sequenced (Bennetzen et al., 2012), imposing
limitations in its functional annotation. Nevertheless, we focused
on contrasting responses to the aforementioned biological
processes that somehow are independent of these factors.

Biosynthetic growth relies on C assimilation and metabolic
conversion into macromolecules such as proteins, carbohydrates,
and cell walls. Protein synthesis, essential for plant growth,
is extremely costly in terms of ATP consumption for both
amino acids synthesis and for elongating polypeptide chains
(Piques et al., 2009). The main readout of TORC is the
regulation of translation (Deprost et al., 2007; Sormani et al.,
2007; Ahn et al., 2011; Ren et al., 2011, 2012; Schepetilnikov
et al., 2011, 2013; Dobrenel et al., 2016b; Schepetilnikov and
Ryabova, 2018). Not surprisingly, TOR repression massively
down-regulated the transcription of a long list of ribosomal
proteins and binding factors in A. thaliana plants, whose
number of related DEGs was reduced in S. viridis. Not
only RNA and protein biosynthesis are negatively affected by
TOR inhibition, but also the transport of proteins to the
endoplasmic reticulum is disturbed solely in A. thaliana. Large
amounts of protein are invested in the synthesis of enzymes.
DEGs related to enzymes are broadly affected in both species
after treatment with AZD8055, reinforcing the role of TORC
in controlling metabolism. However, those alterations were
described linked to the main biological processes they belong
to (e.g., cell walls). N is also required for the biosynthesis of
nucleotides, chlorophyll, and several other metabolites essential
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FIGURE 5 | Comparative transcriptional changes in S. viridis and A. thaliana under TOR inhibition. (A) Venn diagrams of DEGs among distinct time points under
TORC inhibition in S. viridis and A. thaliana, showing down- and up-regulated genes. (B) Classification of DEGs into Mapman categories in S. viridis and A. thaliana
seedlings under TORC inhibition. The list of DEGs from control and TOR-inhibited seedlings is available on Supplementary Dataset 8.
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for biosynthetic growth. Transcripts of transporters (e.g., amino
acid permeases, LYS/HIS transporter, and peptide transporter
2, receptors (e.g., glutamate receptors), and enzymes (e.g.,
glutamate dehydrogenase 3 and tyrosine aminotransferase 3)
involved in N metabolism were usually repressed in S. viridis and
induced in A. thaliana after AZD8055 treatment. One exception
was the high-affinity nitrate transporter NRT2.1, particularly
effective when nitrate is limiting (Krapp, 2015). Genes involved
in the metabolism of the phytohormone cytokinin (CK), closely
associated with N availability and signaling (Sakakibara, 2021),
are also altered in both species under TOR suppression.
Together, these data support the higher N use efficiency of
S. viridis, typical for C4, and suggests that N metabolism
seems to be less dependent on TOR control in this species.
There is a close relationship between N and C metabolism
as substantial amounts of assimilated N are allocated into
the enzymes of the photosynthetic apparatus that produces C
skeletons for the basic building blocks of biomass accumulation
(Nunes-Nesi et al., 2010).

Prolonged TORC inhibition (<24 h) leads to changes in
many transcripts related to photosynthesis (Dong et al., 2015),
but this does not seem to be the case for short-term TOR
repression neither in A. thaliana nor S. viridis (Supplementary
Dataset 8). Only nine genes encoding proteins from photosystem
II and components of chloroplast NAD(P)H dehydrogenase
complex are generally suppressed by AZD8055 in A. thaliana.
In S. viridis, single genes are up- (transketolase) and down-
regulated (unknown protein related to photosynthesis) after
6 h of treatment with AZD8055. However, transcripts related
to carbohydrate transport (SWEETs) and metabolism (sucrose
synthase, starch-degrading enzymes, MIOX1, and galactinol
synthase) are affected by TORC inhibition but less tightly
regulated in S. viridis. This transcriptional profile suggests a
more intensively impaired capacity of adequate carbohydrate
production and allocation to fuel growth in A. thaliana. This
is supported by the increased starch levels (Supplementary
Figure 5) that restrict C availability for growth, resulting in
a more pronounced decrease in FW and DW in this species
(Figure 3C, Supplementary Figure 3F).

Besides providing metabolic energy, C storage compounds
or photoassimilates can be metabolized into UDP-sugars that
are incorporated into the plant cell wall polysaccharides,
which act as the main C sink to the cells. Despite the
known substantial differences in grasses and eudicot cell walls,
AZD8055 triggered not only species-specific changes but also
common processes. One example is the repression of expansins
(EXPAs), endotransglucosylases/hydrolases (XTH), extensins
(EXT), and transcription factors (TFs) responsible for cell wall
loosening and expansion in both species. In S. viridis, TORC
inhibition seems to reduce the expression of genes associated
with the cell wall polysaccharide synthesis (cellulose synthase
and glycosyltransferases – GTs) or rearrangements (glycosyl
hydrolases) together with laccase. Nonetheless, in A. thaliana, a
higher number of genes related to pectin stiffening (e.g., pectin
methylesterase and pectin lyases-like) and wall strengthening
(e.g., EXT and proline-rich proteins) had lowered expression after
AZD8055 treatment. Cell wall impairment caused by different

actors probably converged to the reduced biomass (DW) and cell
length observed in both species.

Whereas water influence is absent from DW measurements,
this is not the case for FW (Huang et al., 2019). The impact of
AZD8055 on S. viridis FW might be associated with the water
dynamics. Whilst various aquaporin genes were down-regulated
in S. viridis, such as plasma membrane intrinsic proteins (PIPs),
only one tonoplast and one nodulin-26 like intrinsic proteins
were affected in A. thaliana after TOR repression. Collective
down-regulation of PIPs is described to reduce water loss
(Afzal et al., 2016), although changes in aquaporin transcripts
rely on several elements (e.g., isoform, tissue, species, and
stimuli). In A. thaliana, TORC impairment seems to induce
strategies of water stress responses that are regulated by other
mechanisms, such as general TFs (Myb41, Myb107, FAR5, KCS2,
and CYP86B1), root hair inducers (Myb2, CPL3, ABF3, and
RSL4), and proteins related to suberin synthesis and transport,
all up-regulated. The down-regulation of TOR switches not
only water stress-tolerant genes (Bakshi et al., 2017b; Wang
et al., 2018) but activates the genetic program of general stress
responses such as NACs, MYBs, and WRKYs TFs that are
mostly up-regulated in inhibited-TOR A. thaliana. S. viridis
presented lesser stress response-DEGs, which showed mixed
expression patterns.

Our transcriptomics data revealed a smaller magnitude
of short-term TORC impairment on global gene expression
in S. viridis. However, alterations in transcripts from C
and N metabolism, particularly cell wall synthesis and
protein translation, probably contribute to the reduced DW
in this species.

DISCUSSION

Primary metabolism fuels plant growth and development
through the synthesis or turnover of metabolites and storage
compounds (Sulpice and McKeown, 2015). TORC plays an
essential role in this process, acting as a nutrient/energy sensor
and adjusting growth and metabolic activities accordingly (Wu
et al., 2019; Liu and Sabatini, 2020). As autotrophic organisms,
plants incorporate C through photosynthesis and its allocation is
one of the key factors controlling biomass production. In addition
to altering different aspects of photosynthesis such as non-
photochemical quenching and electron transport (Upadhyaya
and Rao, 2019) as well as CO2 assimilation rates (Salem et al.,
2018), the TOR pathway was demonstrated to play a role in
regulating the partitioning into photosynthetic end products
(Jüppner et al., 2018; Salem et al., 2018; Pancha et al., 2019).
In this study, we were interested in comparing how TORC
disruption would affect a C4 grass model as a means to advance
the understanding of metabolic control in a faster growth rate
species. C4 faster growth rate is derived from the smaller
tissue density that allows the production of more leaves and
a higher investment in roots, increasing the efficiencies on
water and nutrients uptake (Atkinson et al., 2016). Despite the
differences in photosynthesis, S. viridis and A. thaliana present
additional structural, morphological, and genetic specificities
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that have classified them into distinct clades named eudicots
and monocots, respectively. Their roots differ in the number
of quiescent and cortical cells, general root and hair patterns
(Hochholdinger and Zimmermann, 2008), whereas their leaves
diverge in the shape and direction of leaf veins and the temporal
versus spatial growth leaf regulation (reviewed by Nelissen
et al., 2016). Therefore, the effect of TORC repression on
the metabolism and growth of S. viridis and A. thaliana has
to be considered in a more comprehensive view as different
requirements might be needed for TORC-mediated growth
control in each species.

Protein sequence analysis pinpointed a high degree of
conservation of TOR in the plant kingdom with few residue
exchanges that might lead to specificities between monocots
and eudicots (Supplementary Figure 1). In most land plants,
reduced rapamycin sensitivity (Xu et al., 1998; Menand et al.,
2002; Ren et al., 2012; Montané and Menand, 2013; Deng et al.,
2017) was mainly attributed to point mutations at residues K-
53, Q-54, and E-55 of the FKBP12 corresponding to the human
sequence (Choi et al., 1996; Crespo et al., 2005; Mahfouz et al.,
2006; Deprost et al., 2007; Sormani et al., 2007; Ren et al., 2012).
S. viridis FKBP12 protein sequence presents residues L-53 and S-
55 that differ from rapamycin-sensitive species (Supplementary
Figure 2A). Alternatively, the monocots maize and rice both
present corresponding residues Q-53 and S-55 but do respond
differently to rapamycin (García Flores et al., 2001; Menand et al.,
2002; Reyes de la Cruz et al., 2004; Agredano-Moreno et al., 2007).
These results reinforce the limitations of using rapamycin as a
TORC inhibitor among different plant species. Our data on yeast
complementation suggest that the treatment with rapamycin
has a slightly different effect between SvFKBP12 and AtFKB12.
This could come from the different expression levels of these
proteins in yeast or a slightly higher affinity of SvFKBP12 for
rapamycin, which needs more detailed investigation. However,
the formation of S. viridis ternary complex seems to be also
unstable (Supplementary Figure 2). Nevertheless, the asTORis
AZD8055 had a more pronounced effect on root growth
reduction than rapamycin in this grass.

The temporal dynamics of TORC inhibition mediated by the
chemical AZD8055, extensively employed to investigate the TOR
pathway in plants (Montané and Menand, 2013; Dong et al.,
2015; Ouibrahim et al., 2015; Dobrenel et al., 2016b; Prioretti
et al., 2017; Schepetilnikov et al., 2017; Soprano et al., 2017;
Inaba and Nagy, 2018; Mohammed et al., 2018; Riegler et al.,
2018; Barrada et al., 2019; Forzani et al., 2019; Song et al., 2019;
Van Leene et al., 2019; Méndez-Gómez et al., 2020; Zhu et al.,
2020), was followed in seedlings of S. viridis and A. thaliana at
specific and compatible developmental stages. Dose-dependent
experiments, using the root GI50 as a parameter (Figure 2),
revealed that growth arrest is a phenotypic consequence of TORC
repression in both species. Not only root growth was restrained
(i.e., root length and cell growth and proliferation) but FW and
DW (Figure 3, Supplementary Figure 3). The smaller impact
of TOR inhibition in S. viridis DW and length of EZ in roots
suggests differential regulation of both biomass accumulation and
cell elongation, essential for plant growth. The fact that C4 species
display 19–88% daily DW increase compared to C3 depending

on the plant size (Atkinson et al., 2016) and emerging evidence
on distinct responses of TOR signaling to external stimuli (e.g.,
light) in C4 (Henry et al., 2020) might be relevant for this
specificity. Factors such as complexity of root architecture, the
kinetics of drug uptake and efflux, and metabolic mechanisms
to detoxify part of the drug (Kreuz et al., 1996) could also
further contribute to this reduced sensitivity in S. viridis, as it
seems that the effect of the drug had a narrower window in
this grass (Figure 3B, Supplementary Figure 3E). Nevertheless,
distinct species requiring different asTORis doses can result in
similar molecular and phenotypic responses of plant impaired
development (reviewed by Montané and Menand, 2019).

In accordance with the phenotypic analysis, S. viridis
presented milder alterations in primary metabolites and global
gene expression under TORC repression by AZD8055 compared
to A. thaliana. Numerous DEGs belonging to previously reported
categories modulated by TORC were affected in both species
(Figure 5B, Supplementary Dataset 7) (Deprost et al., 2007;
Sormani et al., 2007; Ahn et al., 2011; Ren et al., 2011, 2012;
Schepetilnikov et al., 2013; Dong et al., 2015; Dobrenel et al.,
2016b; De Vleesschauwer et al., 2018; Forzani et al., 2019) and
classical metabolic TORC signatures related to sugars, amino
acids, and intermediates from the TCA cycle were recognized
(Figure 4 and Supplementary Dataset 3) (Moreau et al., 2012;
Caldana et al., 2013; Lee and Fiehn, 2013; Jüppner et al., 2018;
Mubeen et al., 2018; Salem et al., 2018; Zhang et al., 2018).

The less pronounced inhibition of protein translation, which
is the typical molecular phenotype of TOR repression, together
with down-regulation of fewer genes related to N uptake and
transport and minor magnitude of alterations in amino acids
might indicate that TORC makes a less significant contribution
to monitoring N status in S. viridis. On the other hand, N
metabolism was more densely affected in A. thaliana. Arg, its
precursors citrulline and Orn, and transcripts associated with Arg
biosynthesis such as BAC2 (Planchais et al., 2014) were markedly
reduced during the day in this species under TORC inhibition
(Figure 4 and Supplementary Dataset 3). These results are
consistent with higher N demand. Arg functions as the major
storage and transport form for organic N due to its increased
N to C ratio (Schneidereit et al., 2006). Arg catabolism is also
an artifact to mobilize N according to stress and nutritional
limitations (Winter et al., 2015) and corroborates with the
perturbations in C/N metabolism resulting from TOR inhibition
(Ren et al., 2012; Caldana et al., 2013; Mubeen et al., 2019).
Alternatively, the lower Arg and Orn in A. thaliana might be
partially due to Proline (Pro) accumulation as they take part in
Pro biosynthesis. Pro and its regulators WRKY54 and WRKY70
(Li et al., 2013) were also elevated in this species. Recently,
high abundances of Pro and other amino acids were implicated
in inhibited leaf respiration under TORC control at night-
time (O’Leary et al., 2020). The A. thaliana lst8-1 mutant also
displays higher Pro content, which is amplified after transference
from short to long days, and fails to produce raffinose and
galactinol that replace Pro during this adaptation to longer light
periods (Moreau et al., 2012). In our equinoctial conditions,
galactinol and raffinose levels increased after treatment with
AZD8055 in A. thaliana. These compounds are proposed as
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cellular membrane osmoprotectants and stabilizers, and ROS
scavengers (Nishizawa-Yokoi et al., 2008a,b). ROS marker genes
had their transcript levels augmented, which could be an
indication of induced ROS production (Garcia et al., 2014), and
correlate with the higher impairment of cell expansion (Dunand
et al., 2007) in this eudicot. Our results also show a strong
connection between TORC and CK, which overlaps in several
aspects of plant growth (e.g., promotion of cell proliferation and
differentiation, cell cycle regulation, and nutrient signaling). CK
oxidases (CKX1, CKX5, and CKX6) that promote CK degradation
were repressed in S. viridis, whereas CK hydroxylases (CYP735A1
and CYP735A2) implicated in CK biosynthesis were inhibited
in A. thaliana as well as ABCG14. It remains to be elucidated
whether these observed changes in transcripts of CK metabolism
would result in altered CK levels that modulate organ growth
besides N acquisition and distribution (Rahayu et al., 2005;
Werner and Schmülling, 2009; Ruffel et al., 2011; Landrein
et al., 2018). Together, these alterations match higher N use
efficiency (Ghannoum et al., 2011) in grasses that jointly with
morphological features (e.g., crown root) contribute to the
acquisition of adequate quantities of nutrients, faster growth
rates, and higher biomass.

Regarding C metabolism, only a few genes related to
photosynthesis were affected in both species in the short
time frame of our experiment. It was recently shown that
changes in light intensities broadly impact photosynthetic genes
in S. viridis but transcripts of the TOR signaling pathway
remained unaffected, suggesting a differential sugar feedback
inhibition than C3 (Henry et al., 2020). In contrast, TOR and its
downstream targets are post-translationally regulated. This might
clarify why TORC disruption impacted only two photosynthetic
transcripts in S. viridis (Supplementary Dataset 8). However, C
metabolism and partitioning were altered at the transcriptional
and metabolite level indicating that TORC may exert a
differential control on C allocation in both species. Treatment
with AZD8055 does not impact starch reserves in S. viridis,
a classical readout of TORC inhibition in A. thaliana and
algae (Caldana et al., 2013; Jüppner et al., 2018; Salem et al.,
2018; Pancha et al., 2019). However, the levels of the organic
acid fumarate decreased in S. viridis under TOR repression,
which could limit the usage of this C skeleton to fuel growth.
Fumarate together with malate represent an alternative C sink for
photosynthate (Chia et al., 2000; Gibon et al., 2006; Fahnenstich
et al., 2007; Pracharoenwattana et al., 2010) and have been
addressed as storage C molecules (Zell et al., 2010). Their
accumulation could be associated with reduced energy and
ultimately growth in A. thaliana (Figure 4 and Supplementary
Dataset 3). This species has incredibly high fumarate contents
compared to other C3 (Araújo et al., 2011) and shows large diel
fluctuations (Gibon et al., 2006; Sulpice et al., 2014). Fumarate
is also involved in pH regulation during nitrate assimilation
(Araújo et al., 2011).Transcripts encoding the enzyme MIOX1
involved in myo-inositol metabolism crucial for nucleotide sugar
biosynthesis of plant cell walls (Kanter et al., 2005) were up-
regulated in A. thaliana after treatment with AZD8055. MIOX1
is induced in C-starved A. thaliana seedlings and its expression
together with other MIOX family members was proposed to

allow scavenging of alternative C sources (Osuna et al., 2007).
The augmented levels of glycerate in A. thaliana-treated plants
(Figure 4 and Supplementary Dataset 4) might indicate higher
photorespiration, in agreement with the up-regulation of some N
transporters in this species. Photorespiration forces C3 to heavily
invest in the production of RubisCO, making them more N
demanding (Lara and Andreo, 2011). Increased Ser levels were
observed in both species after AZD8055 treatment and might be
associated with the transcriptional regulation of photorespiration
(Timm et al., 2013). Interestingly, Ser biosynthesis through the
phosphorylated pathway seems to be linked with S assimilation
in C4 (Gerlich et al., 2018). S metabolism is also under TORC
control (Dong et al., 2017) and two genes were commonly
disturbed in both species but in opposite directions (i.e.,
positively and negatively affected in A. thaliana and S. viridis,
respectively): sulfurtransferase 18 involved in cellular redox
homeostasis (Henne et al., 2015) and phloem sulfate transporter
1.3 important for source to sink transport (Yoshimoto et al.,
2003). The induction of LSU1, a marker for S deficiency,
together with the repression of the sulfate transporter 1;1
responsible for sulfate uptake by roots (Yoshimoto et al., 2003)
suggest S limitation after AZD8055 treatment in A. thaliana,
which can imbalance S-containing amino acids like methionine
(Figure 4) and impact growth. Among crops, members from the
Brassicaceae family are more S-dependent than Poaceae (Aarabi
et al., 2020), which might explain why S metabolism was more
markedly affected in A. thaliana. TORC repression also disturbed
the expression of genes involved in the metabolism of other
nutrients, such as potassium, iron, zinc, and copper in both
species but the relevance of those alterations to plant biomass
accumulation needs further investigation.

Cell wall synthesis seems to be prioritized and regulated by C
supply, representing the largest sink for photosynthetically fixed
C and the driving force behind expansion- and biomass-based
growth (DW) (Verbancic et al., 2018). As a master regulator of
cell growth, it is not surprising that TOR repression leads to
massive changes in cell wall genes (Moreau et al., 2012; Ren et al.,
2012; Xiong and Sheen, 2012; Caldana et al., 2013; Dong et al.,
2015). A. thaliana type I cell walls have similar levels of cellulose
and xyloglucans embedded in pectin, whereas S.viridis type II
presents lower abundances of structural proteins, xyloglucan, and
pectin, but higher levels of phenylpropanoids and arabinoxylans
(Vogel, 2008). The rapidly increase in xylose levels after AZD8055
treatment (Figure 4) indicate less incorporation of this sugar
into xylan to compose the S. viridis hemicellulosic biomass,
matching the down-regulation of GTs. Moreover, in S. viridis,
reduced growth seems to be related to lowered primary and
secondary cell wall polymers biosynthesis and modifications, as
shown in our omics data. In A. thaliana, however, the down-
regulation of genes related to pectin stiffening is in agreement
with previous studies (Ren et al., 2012; Caldana et al., 2013; Xiong
et al., 2013) suggesting that reduced TOR activity leads to altered
pectin content (Leiber et al., 2010), impairing plant growth. In
both species, the decreased DW may result from reduced cell
wall synthesis controlled by specific mechanisms, from which
we might relate the less incorporation of xylose in S. viridis and
reduced pectin in A. thaliana.
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Besides biomass incorporation, cell wall expansion is one of
the main restrictions for plant cell growth. As some EXPAs and
XTHs are root-specific, the downregulation of their expression
probably contributed to the reduced root final cell size in both
species (Supplementary Figures 3C,D). The differential number
of water-related transcripts (such as PIPs) coupled to contrasting
hydraulic conductance (Ghannoum et al., 2011; Taylor et al.,
2012) might indicate a diverse impact on the turgor pressure
needed for cell expansion. In A. thaliana, the up-regulation
of stress-responsive TFs and suberin/lignin-related transcripts
pinpoint that stress sensing was more heavily impacted and
different strategies were adopted, such as avoiding water loss
by suberization. Interestingly, ectopic overexpression of AtTOR
in rice is described to potentially increase yield under water
restriction (Bakshi et al., 2017a). The smaller root cell length in
both species seems to be derived from impaired cell elongation
provoked by the down-regulation of several enzymes, however
insufficient turgor pressure suggested by the transcriptomics
data may play an additive effect, leading to reduced FW. The
mechanisms of water loss avoidance triggered by AZD8055
treatment may contribute to the changes observed in S. viridis
FW and a smaller impact on root EZ length, as water influences
cell elongation (Ivakov et al., 2017).

Cell division is the third axis that defines growth, besides
biomass incorporation and cell expansion. The increased
meristematic cell length coupled to the decrease in MZ cell
number and length indicate repression of cell division in S. viridis
roots. This is consistent with the up-regulation of NAC087 and
NAC078, TFs related to cell death (Huysmans et al., 2018)
and negative control of cell proliferation (Tang et al., 2016),
respectively. In addition, S. viridis presented high levels of
DHA that associated with the decreased transcript levels of the
detoxifiers glutathione S transferases (GST) at 6 h might reflect
an inadequate ROS protection (Miret and Müller, 2017). DHA
can be recycled by the GST dehydroascorbate reductase (DHAR)
to produce ascorbate (ASC), an important cell antioxidant
involved in maintaining cellular redox homeostasis. Suppression
of DHAR slowed down leaf expansion and DW in tobacco (Chen
and Gallie, 2006) whilst DHA delayed cell cycle progression
in maize and BY-2 tobacco cells (Kerk and Feldman, 1995;
Potters et al., 2000). The accumulation of DHA coupled with
a decrease in GSTs expression indicates that this compound
might not be recycled to ASC, which could have negatively
impacted S. viridis DW, root cell expansion and proliferation.
Our data suggest that the lesser incorporation of xylose into
S. viridis cell wall mediated by enzymes might be one of the
reasons for decreased DW, together with impaired regeneration
of ASC. The reduced expression of genes coding for enzymes that
perform cell expansion (i.e., EXPAs) and rearrangements (i.e.,
GHs) are consistent with root cell length decrease. On the other
hand, the suggested antioxidant impaired activity coupled to the
regulation of specific transcription factors could have contributed
to the S. viridis meristematic cell number reduction under TOR
inhibition. However, target analyses are needed in order to tight
the correlation of specific actors under TOR regulation with
the observed phenotypic changes. Taken together, our results
give further indication that TOR signaling coordinates the three

aspects of plant growth; biomass accumulation, cell elongation
and division, and strengthen the role of this pathway as a
positive general cell wall regulator in plants, acting differentially
in each cell wall type.

In conclusion, our data provide a glimpse of the major
processes affected by TORC in a C4 model grass with fast growth
rates. Improved nutrient use efficiency and C allocation and
partitioning optimize S. viridis biosynthetic growth, which seems
to be under less tight regulation of the TOR pathway. Besides
photosynthetic differences, S. viridis and A. thaliana present
several specificities that classify them into distinct lineages, which
also contribute to the observed alterations mediated by TOR.
Functional studies are required to further elucidate the mode-of-
action of TOR in different plant species. Despite the similarities
of TORC sequences, domains, and known phosphorylation
sites, it remains to be investigated whether secondary targets
could switch diverse genetic and metabolic networks. A better
mechanistic analysis considering the sink and source tissues is
needed to uncover to which extent these observations hold true.
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Supplementary Figure 1 | Predicted residues responsible for ATP binding and
phosphorylation in TOR kinase sequences from photosynthetic species.
Schematic TOR protein domain structure and multiple amino acid sequence
alignment. Numbers indicate the amino acid position along the protein sequence.
The alignment shows the kinase and FATC domains from Arabidopsis thaliana
(Ath), Solanum lycopersicum (Sly), Oryza sativa (Osa), S. viridis (Svi), Sorghum
bicolor (Sbi), Zea mays (Zma), and Chlamydomonas reinhardtii (Cre). Conserved
residues, essential for ATP binding, are marked in red. Residues implied in mLST8
interaction are shown in blue, whereas residues implied in kinase activity are
displayed in green and yellow. The TOR activation phospho-site corresponding to
S-2424 in Arabidopsis is shown in magenta.

Supplementary Figure 2 | Analysis of TOR-RAPAMYCIN-FKBP12 ternary
complex in S. viridis. (A) Amino acid sequences of FKBP12 from S. viridis (Svi)
compared to other representative organisms: Sorghum bicolor (Sbi), Zea mays
(Zma), Arabidopsis thaliana (Ath), Solanum lycopersicum (Sly), Oryza sativa (Osa),
Chlamydomonas reinhardtii (Cre), Saccharomyces cerevisiae (Sce),
Caenorhabditis elegans (Cel), Drosophila melanogaster (Dme), and Homo sapiens
(Hsa). Identical residues are shaded in gray, and identity percentages are indicated
aside. Red asterisks indicate residues involved in rotamase activity in
non-photosynthetic organisms (DeCenzo et al., 1996). Blue asterisks indicate two
cysteine residues at fixed positions, characteristic of plant sequences. Red boxes
indicate residues from human FKBP12 that interact with rapamycin (Choi et al.,
1996). The green bar indicates the rapamycin binding regions of HsaFKBP12. (B)
Yeast complementation assay performed in solid media supplemented with
rapamycin concentrations ranging from 0–1 µM. Wild-type BY4741 cells were
transformed with the empty vector (WT + P). The fpr1 mutant strain lacking the
FKBP12 protein was transformed with the empty vector (fpr11 + P) or with
recombinant plasmids expressing FKBP12 from S. cerevisiae (ScFKB12),
A. thaliana (AtFKBP12), or S. viridis (SvFKBP12). Cultures were normalized at
OD600 = 0.6, subjected to 10-fold serial dilutions, and spotted onto selective
SD-Ura plates containing different concentrations of rapamycin or the diluent
0.1% (90% ethanol, 10% Tween20(R)). Plates were incubated at 30◦C for 2 days.
(C) The logarithmic growth phase, assessed up to 10 h, in SD-Ura liquid media
supplemented with 1 µM rapamycin was adjusted by linear regression to obtain
the slope value of each strain to measure their doubling times. The slope values
were obtained by plotting log10OD600 in the function of time and adjustment of the
linear regression equation y = ax + b, where a = slope, b = intercept, when X is 0.
(D) Doubling times peak in yeast strains grown under liquid cultures supplemented
with 1 µM were determined by the equation Td = log2/a, where Td is the time of
duplication, and “a” is the slope determined by linear regression equation of log
phase. At least three colonies per strain were analyzed for each treatment. The

graphs and statistics were obtained with OriginPro (version 8.5). Significant
differences comparing every strain using ANOVA are indicated by letters
(P < 0.05). (E) Effect of rapamycin and AZD8055 on root growth of S. viridis along
7 days of treatment. Seedlings were grown under a 12 h photoperiod until
reaching stage 11 (BBCH scale), when they were transferred to plates containing
DMSO 0.05% (control), AZD8055 (10 µM) or rapamycin (10 µM).

Supplementary Figure 3 | Treatment with AZD8055 severely impacts root and
overall growth of S. viridis and A. thaliana seedlings. Seedlings of S. viridis and
A. thaliana were grown under 12 h photoperiod until specific and compatible
developmental stages before the transference to plates containing AZD8055. The
effect of different concentrations of AZD8055 (1, 2 and10 µM) or DMSO 0.05%
(control) on root growth of S. viridis (A) and A. thaliana (B) was expressed in cm
along days of treatment. For the root zone and cell length measurements, 10 and
2 µM AZD8055 was used for S. viridis and A. thaliana, respectively. (C) Length of
meristematic cells. (D) Length of mature cells. Fresh weight of S. viridis (E) and
A. thaliana (F). (G) Estimative of the number of cells at the meristematic zone of
S. viridis and A. thaliana.

Supplementary Figure 4 | Principal component analysis (PCA) of primary
metabolic profiles of S. viridis and A. thaliana upon TORC-inhibition. Seedlings
were grown hydroponically under 12 h photoperiod until specific and compatible
developmental stages and exposed to treatment with DMSO 0.05% (control), 10
or 2 µM AZD8055 (S. viridis and A. thaliana, respectively). Metabolite profiling was
carried out using GC-TOF-MS. (A) A. thaliana. (B) S. viridis. Blue and red colors
represent DMSO and AZD8055 treatments, respectively, whereas gray indicates
the beginning of the treatments (0 h, ZT 23,5).

Supplementary Figure 5 | Starch content in S. viridis and A. thaliana seedlings
under DMSO 0.05% (control), 10 or 2 µM AZD8055 treatment, respectively.

Supplementary Table 1 | Protein IDs used for the analyses of TOR sequences.

Supplementary Table 2 | Protein IDs of FKBP12 used for sequence alignment.

Supplementary Table 3 | Primers for cloning full-length cDNA sequences of
FKBP12 from Saccharomyces cerevisiae (ScFKBP12), A. thaliana (AtFKBP12),
and S. viridis (SvFKBP12).

Supplementary Dataset 1 | GC-TOF-MS measurements of polar metabolites
from the MTBE-extraction in S. viridis and A. thaliana after AZD8055 treatment.

Supplementary Dataset 2 | Principal component (PC) analysis of metabolites
and their loadings contribution.

Supplementary Dataset 3 | Overview of the metabolites differentially regulated in
control and AZD8055 treatments in S. viridis and A. thaliana.

Supplementary Dataset 4 | Summary of results obtained by RNAseq
sequencing during short-term TORC repression in S. viridis and A. thaliana.

Supplementary Dataset 5 | List of DEGs (log2FC ≥ 1 and FDR < 0.05) in
distinct pairwise combinations in S. viridis during short-term TORC repression.

Supplementary Dataset 6 | List of DEGs (log2FC ≥ 1 and FDR < 0.05) in
distinct pairwise combinations in A. thaliana during short-term TORC repression.

Supplementary Dataset 7 | Summary of DEGs in S. viridis and A. thaliana under
TORC repression.

Supplementary Dataset 8 | List of genes for each Mapman bin comparing
AZD8055 vs DMSO treatments in S. viridis and A. thaliana.

Supplementary Dataset 9 | Comparison of A. thaliana DEGs (| log2FC| > 1)
with similar expression pattern among our data and previous studies (Ren et al.,
2012; Xiong et al., 2013; Dong et al., 2015).
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