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The diversity of plant water use patterns among species and ecosystems is a
matter of widespread debate. In this study, Chinese pine (Pinus tabuliformis, CP) and
Mongolian Scots pine (Pinus sylvestris var. mongolica, MP), which is co-exist in the
shelterbelt plantations in the Horqin Sandyland in northern China, were chosen for
comparison of water use traits by monitoring xylem sap flow alongside recordings of
the associated environmental factors over four growing seasons. Continuous sap flux
density measurements were converted into crown projected area transpiration intensity
(Tr) and canopy stomatal conductance (Gs). The results indicated that MP showed
a higher canopy transpiration intensity than in CP, with Tr daily means (±standard
deviation) of 0.84± 0.36 and 0.79± 0.43 mm·d−1, respectively (p = 0.07). However, the
inter-annual variability of daily Tr in MP was not significant, varying only approximately
a 1.1-fold (p = 0.29), while inter-annual variation was significant for CP, with 1.24-fold
variation (p < 0.01). In particular, the daily mean Tr value for CP was approximately
1.7-times higher than that of MP under favorable soil moisture conditions, with values
for relative extractable soil water within the 0–1.0 m soil layer (REW) being above 0.4.
However, as the soil dried out, the value of Tr for CP decreased more sharply, falling to
only approximately 0.5-times the value for MP when REW fell to < 0.2. The stronger
sensitivity of Tr and/or Gs to REW, together with the more sensitive response of Gs

to VPD in CP, confirms that CP exhibits less conservation of soil water utilization but
features a stronger ability to regulate water use. Compared with MP, CP can better
adapt to the dry conditions associated with climate change.

Keywords: Pinus sylvestris var. mongolica, Pinus tabuliformis, sap flux density, canopy transpiration, canopy
stomatal conductance

INTRODUCTION

The impact of climate change on both natural and plantation forests has been a concern for
some time and has been reported on across the world (Allen et al., 2010; Cook et al., 2018).
In particular, concern has been expressed for forests in water-limited areas and in areas where
the soil habitats are especially fragile (Klein, 2015). Many factors relating to climate change -
more extreme temperatures, increases in pests and diseases, increased numbers and severity of
fire events - are causing or at least exacerbating the declines of many forests through increased
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tree mortality (Martinez-Vilalta and Pinol, 2002; McDowell et al.,
2008, 2013; Allen et al., 2010; Giuggiola et al., 2010; Choat et al.,
2018). Natural forests are generally more robust than plantation
forests. The former are usually better able to resist change due to
the complex interactions among the various components of their
ecosystems and environments and thus maintain greater stability.
Conversely, plantation forests are much simpler ecosystems, and
these forests suffer heightened risk of degradation even under
relatively minor changes in the interactions of the ecosystem
components in their environment. This is especially true in
relation to potentially overwhelming problems associated with
changes in water availability (Licata et al., 2008; Payn et al., 2015).

Transpiration and canopy stomatal conductance of trees are
essential for the quantitative evaluation of severity of drought
stress, the magnitude of drought resistance, and the strength of
drought resilience of trees (Verbeeck et al., 2007; Heres et al.,
2014; Peters et al., 2015; Børja et al., 2016; Macinnis-Ng et al.,
2016). In general, canopy stomatal conductance is sensitive to
changes in the atmospheric and soil environments (Granier et al.,
1999; Nadezhdina, 1999; Bovard et al., 2005; Hernandez-Santana
et al., 2016). Trees seem to benefit from decline in canopy
stomatal conductance, because sensitive stomatal regulation is
critical to prevent trees from approaching the threshold of
critical vulnerability to the excessive loss of water (Jones, 1984;
Addington et al., 2004). However, the long-term closure of
stomata may also bring about carbon starvation (McDowell et al.,
2008), resulting in the risk of chronic tree death. Nevertheless,
the change in canopy stomatal conductance is broadly used to
evaluate the drought-resistance ability of trees, as well as to
discover the underlying mechanisms (Poyatos et al., 2013; Meir
et al., 2015), such as isohydraulic behavior (McDowell et al.,
2008). However, eco-physiological responses to drought show
great species-specific variability (Tatarinov et al., 2016; Urban
et al., 2019), indicating the diversity of tree hydraulic traits.

In general, Pinus is a light-demanding pioneer species and
is thus not highly specialized with respect to site conditions
(Weber et al., 2007). Pinus thus has evolved to avoid competition
from other tree species by being able to control transpiration
and grow in extreme conditions (Urban et al., 2019). However,
Pinus trees have been found to be more prone to drought-
induced xylem embolism than other conifers (Martinez-Vilalta
and Pinol, 2002). Scots pine, as a widely distributed Pinus species
in Europe (Martinez-Vilalta and Pinol, 2002; Giuggiola et al.,
2010), has encountered serious declines and/or tree mortality
in many regions (Irvine et al., 1998; Guada et al., 2016). As a
result, water use by Scots pine has been observed to be reduced
by as much as 60% in 39-year-old Scots pine forests (Llorens
et al., 2010) and by up to 65% in 41-year-old Scots pine forests
(Irvine et al., 1998).

Northern China is experiencing increases in temperature
that are to two or three-times greater than those elsewhere in
China, or in the world at large (Stocker et al., 2013). To combat
desertification and control dust storms, the Chinese government
has implemented a number of large-scale projects, such as the
“Three North Shelter Forest Program” and the “Grain for Green
Project,” the two of which are also called the “Great Green Wall”
projects (Zhu and Zheng, 2019). These projects have directly

increased vegetation cover in northern China and contributed to
the greening of the world (Chen et al., 2019), and have therefore
greatly reduced damage from soil erosion and desertification
(Bryan et al., 2018), while their ecological contributions have
sometimes been downplayed or doubted (Wang et al., 2010;
Zastrow, 2019). However, with rapid and widespread “greening”
of the land in China, a series of attendant problems have also
arisen, including declines and tree mortality of forests. These
issues have now become a popular subject of global discussion
(Xu, 2011; Bryan et al., 2018). It is anticipated that the severity of
these challenges will only increase under the projected scenario
of continuing global climate change (Cook et al., 2018).

Chinese pine (Pinus tabuliformis, CP) is a pine species
endemic to China, and Mongolian Scots pine (Pinus sylvestris var.
mongolica, MP) is one of the geographical varieties of Scots pine;
these two Pinus species have together served as the lead actors in
the ongoing “Great Green Wall” projects, specifically in Horqin
Sandyland regions where the shelterbelt afforestation to combat
desertification began in 1955 (Liu et al., 2019; Zhu and Zheng,
2019). MP, as a pine species introduced to low latitudes to the
Horqin Sandyland, exhibits more favorable afforestation survival,
growth, and cold tolerance than does the Chinese endemic CP
pine species (Jiao, 2001; Liu et al., 2019). However, serious
declines in the MP plantations have been found in the Horqin
Sandyland in northern China since 1991 (Jiao, 2001; Zhu et al.,
2005), whereas co-existing CP plantations are growing healthily.
This has stimulated extensive discussions aimed at determining
the causes, mechanisms and degradation processes involved in
MP declines, particularly with respect to tree-water relationships
(Zheng et al., 2012; Song et al., 2014; Sun and Liu, 2014; Cai et al.,
2020). To date, however, it is not clear how CP and MP differ in
their responses to drought conditions.

The hydraulic diversity of the plants in a plantation ecosystem
is important for improving stability by strengthening ecosystem
resilience during drought (Anderegg et al., 2018). In northern
China, both CP and MP have been successfully established on
sandy soils to control desertification. However, the mechanism
underlying the widely reported decline in MP as opposed to
CP and whether a decline in CP in the future under the
scenario of a changing climate is foreseeable are not clear.
We attempt to gain deeper insights into this topic by focusing
on the differences in water-use patterns of the two co-existing
species. Therefore, the main objectives of this study are: (1) to
evaluate annual water use intensity by quantitatively monitoring
transpiration of two tree species in multiple years, (2) to
compare the differences in response of water use to a range
of environmental factors and their gradients at multiple time
scales between two co-existing pine species, and (3) to identify
water use strategies under drought and differences between the
two pine species.

MATERIALS AND METHODS

Study Site
The experiment was conducted at the Zhanggutai National
Desertification Control Experimental Station located at the
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southern edge of the Horqin Sandyland area, Liaoning Province,
China (122◦22′E, 42◦43′N and 226.5 m a.s.l.) during 2013-2018.
The climate is semi-arid and continental monsoon. Over the
last 30 years, the mean annual air temperature was 7.9◦C, the
mean frost-free period was 155 days, the mean annual pan
evaporation was 1553 mm, and the mean annual precipitation
was 475 mm. Approximately, 92% of this precipitation fell
from May to September (the main growing season). The soil
had an aeolian sand texture, consisting of 84% sand particles
(> 0.05 mm), 9% silt particles (0.05–0.002 mm) and 7% clay
particles (<0.002 mm). The soil bulk density was 1.61 g·cm−3, the
capillary porosity was 33% and the soil was barren with a mean
organic matter content of 0.65 g·kg−1 in the upper 1.0 m soil layer
(Dang et al., 2019a).

Materials
We selected two types of monocultural plantation forests that
both served as shelterbelts, MP and CP, as sample forests in
this study. The two species were planted in the same year,
both reaching approximately 46 years of age in 2013. The stand
densities were approximately 400−450 stems·ha−1.

CP is a unique coniferous species in China (Jiang et al., 2002;
Cai et al., 2020). Natural CP forests represent an important
forest type in the warm/temperate deciduous forest regions
of China (approximately 31◦−43◦N, 103◦20′−124◦45′E) (Cai
et al., 2020). In this species’ area of natural distribution,
the multiple-year annual average temperature is 1−2◦C, the
recorded highest annual average temperature is 14◦C, the average
lowest temperature (January) ranges between −20◦C and -
4◦C, the annual precipitation is between 400 and 800 mm,
and the altitude ranges from 400 to 1000 m a.s.l. The soil
types are mainly cinnamon soil, brown soil and gray-cinnamon
soil. The diameter growth rate of natural CP trees in forests
shows a significant negative correlation with latitude over its
entire distribution area and significant positive correlation with
average temperature and precipitation in January but does
not exhibit any significant correlations with either longitude
or altitude.

MP is one of the regional varieties of Scots pine, found
naturally in Russia, Mongolia and the Chinese Da Xiggan Ling
Mountains and Hulunbuir Sand (approximately 47◦35′–53◦33′N,
118◦58′–127◦10′E) (Zhao and Li, 1963). The annual average
temperature in this species’ natural distribution area is −2.5
to −2◦C, the average lowest temperature (January) is −30 to
−24◦C, the average annual precipitation is between 325-600 mm
and the altitude is between 600−400 m a.s.l. The soil types are
mainly gray soil and sandy soil. The MP trees in natural forests
are long-lived and reach maturity at approximately 80-90 years
(Zhao and Li, 1963).

Experimental Layout
Two experimental plots, each enclosed by a 15 m × 15 m
fence, were each established in the middle of approximately
30 ha sample forest, one of CP and one of MP. According to
the recommendations for the numbers of sample trees for sap
flow measurements (Köstner et al., 1996; Kume et al., 2010),
we selected eight sample trees with similar sizes in each plot.

The diameter at breast height (DBH) averaged approximately
24.1 ± 2.31 cm (mean ± SE) in the MP plot, which was
significantly higher than the mean DBH value of 20.8± 1.3 cm in
the CP plot (p < 0.01). More detailed information on the sample
trees can be seen in Table 1. Measurements for the meteorological
variables and soil moistures had continued since 2013, but the
sap flow measurements were performed only during the growing
season in 4 years, i.e., 2014, 2015, 2017, and 2018.

Crown widths were measured east-to-west and south-to-north
and are listed in Table 1. These were used to calculate the crown
projected areas of the sample trees by applying the following
relationships based on to our stand investigation:

For MP:

Ac = 0.02865DBH2
+ 0.13872DBH

+ 3.38586(R2
= 0.86, n = 53) (1)

For CP:

Ac = 0.03132DBH2
+ 0.03345 DBH

+ 4.32863(R2
= 0.85, n = 67) (2)

where, Ac (cm2) is the crown projected area and DBH (cm) is the
DBH (∼1.3 m).

Meteorological Data
Micrometeorological factors, including radiation, air
temperature (Ta), relative humidity (RH), wind speed and
precipitation, were measured by an automatic weather station
(AR5, Avalon Scientific, Inc., NJ, United States), located in an
open area approximately 50 m away from the experimental plots.
Variables were recorded every 10 min using a data logger and
subsequently averaged (or summed) to generate hourly and daily
values. Hourly vapor pressure deficit (VPD, kPa) was calculated
based on Ta and RH (Campbell and Norman, 1998).

VPD = 0.611e(
17.502Ta

Ta + 240.97 ) (1− RH) (3)

We adopted the standardized precipitation evapotranspiration
index (SPEI) to describe the atmospheric drought severity
(Vicente-Serrano et al., 2010; Beguería et al., 2014). We calculated
the SPEI in the R package SPEI1 based on precipitation and
temperature data over a 12-month time scale during 2004-2018.
We used SPEI to categorize dry and wet gradings according to the
standards (Chen and Sun, 2015).

Soil Moisture Measurements
We measured the volumetric soil water content (θ, cm3

·cm−3)
at 20-cm intervals in the upper 1.0 m soil layer at three
locations in each experimental plot with ECH2O EC-5 probes
(METER Group, Inc., Pullman, WA, United States). The data
were collected at 10 min intervals and averaged to hourly or daily
scales. The sensor readings were site-specific and were calibrated
using the following formula based on the soil-core method:

1http://cran.r-project.org/web/packages/SPEI
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TABLE 1 | Diameter at breast height (DBH), tree height (H), crown width east-west (BCE−W), and south-north (BCS−N) for all sap flow-measured trees in sampled in 2013.

Sample No. Pinus sylvestris var. mongolica (MP) P. tabuliformis (CP)

DBH (cm) H (cm) BCE−W × BCS−N (m) DBH (cm) H (cm) BCE−W × BCS−N (m)

1 20.02 11.3 4.0 × 3.4 19.1 10.7 4.2 × 4.5

2 22.46 12.7 4.2 × 5.4 19.5 11.0 5.2 × 3.8

3 23.32 12.7 5.3 × 4.9 20.2 7.8 4.0 × 3.9

4 24.02 12.7 5.5 × 6.2 20.6 9.2 4.0 × 4.5

5 24.04 13.2 5.8 × 6.0 20.7 9.7 4.2 × 4.0

6 25.28 12.2 6.8 × 5.0 21.4 10.2 4.8 × 3.8

7 25.80 12.0 6.3 × 5.8 21.6 10.5 5.2 × 5.8

8 27.72 13.2 6.2 × 7.1 23.1 9.4 4.8 × 4.9

Mean 24.08 12.50 5.51 × 5.48 20.78 9.81 4.55 × 4.40

SE 2.31 0.64 0.99 × 1.10 1.27 1.03 0.51 × 0.69

θ = 0.99421× θsensor + 0.00128 (R2
adj = 0.94, n = 202, p< 0.001).

We calculated the relative extractable soil water (REW), which
is defined as the quotient of the actual extractable water to the
maximum extractable water, to describe the relative soil moisture
conditions at the site (Granier et al., 1999):

REW =
θ − θmin

θfc − θmin
(4)

where, θfc (%) is the field capacity (17.5% in the 0.0–1.0 m soil
depth based on field observations) and θmin is the minimum soil
moisture during the experimental period (2.3%). θ is the mean
of soil moisture values from the corresponding soil layers (%).
We adopted the threshold value of REW = 0.4 recommended in
several reports to define soil water stress (Granier et al., 1999;
Bernier et al., 2002; Poyatos et al., 2005), which corresponds to the
θ value of 0.086 cm3

·cm−3 at our site. A more detailed threshold
value of REW was later deduced from the model based on our
field measurements.

Sap Flux Density Measurements and
Canopy Transpiration Estimation
Sap flux density (Js, cm·s−1) in the outer 3 cm width xylem layer
was measured continuously using thermal dissipation sensors
(Dynamax Inc., Houston. TX. United States). We installed the
sensors 1.3 m above the soil level on the north sides of the stems.
The distance between the two probes of each sensor was 0.04 m
(see the specifications in the brochure)2. The upper needle of a
probe was heated with a constant power of 0.2 W. The sensors
were shielded with reflective foil that extended 1.0 m below and
0.5 m above to minimize effects from incident radiation. We
sealed the foil with the stem above the installation to prevent
ingress of raindrops and stem-flow water. The temperature
difference between the two probes was measured at 10-min
intervals and recorded every hour using SQ2040 data loggers
(Grant Instruments Ltd, Cambridge, United Kingdom). The
measurements were recorded during an entire growing season
each year. At the end of the growing season, we removed all

2https://dynamax.com/products/transpiration-sap-flow/tdp-sap-velocity-
thermal-dissipation-probe

probes from the trees and reinstalled them at the beginning of the
next growing season (in early April) to minimize possible signal
dampening (Moore et al., 2010). Js was calculated using Granier’s
original equation (Granier, 1987):

Js = 119 × 10−4 (
1T0 − 1T

1T
)1.231 (5)

where, 1T is the measured temperature difference between the
heated and reference needles. 1T0 is the maximum 1T when
the sap flux density is close to zero, which is determined over
approximately 10 consecutive measuring days, using a linear
regression (Lu et al., 2004).

The total sap flow through the section of trunk instrumented
was considered to be equal to the total transpiration from the
canopy (Köstner et al., 1996). The canopy transpiration intensity
(Tr , mm·day−1) was calculated based on the measured sap
flux density (Js, cm·s−1), the sapwood area (As, cm2) at the
instrumented section, and the projected area of the crown (Ac,
m2):

Tr =

n∑
j=1

24∑
i=1

(Js,i,j × As,j × 3600) / Ac,j / 1000 / n (6)

where, n is the number of sample trees (n = 8 for each of the two
species in the study). Js,i,j is the measured sap flux density in the
outer 3 cm width of xylem of the jth-tree at the ith-hour. As,j is
the sapwood area of the jth-tree calculated by Eq. (7) or Eq. (8)
based on the DBH values. Ac,j is the projected crown area of the
jth-tree calculated by Eq. (1) or Eq. (2) based on the DBH values.

For MP:

As = 0.7117 × DBH1.9472(R2
= 0.99, n = 25

(Han et al., 2013) (7)

For CP:

As = 0.8244 × DBH1.9494 (R2
= 0.99, n = 28)

(Ma et al., 2001) (8)
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where, As (cm2) is the sapwood area and DBH (cm) is the
DBH (∼1.3 m).

In 2018, due to the great decrease in battery power
capacity, insufficiency of sensor power occurred on some
days in two independently observed plots, resulting in
effective data being obtained only during the daytime
when the sunlight rose to relatively strong levels. Days
when these data on any one plot were incomplete were
excluded when calculating daily Tr for comparisons
between tree species.

Canopy Stomatal Conductance
We calculated canopy stomatal conductance (Gs, cm·s−1)
from canopy transpiration (Tr) on the crown projected
area basis and VPD using the simplification of the
inversion of the Penman-Monteith model (Monteith and
Unsworth, 1990). Gs was calculated on an hourly basis:

Gs =
λTrγ

ρcp VPD
×

1
36

(9)

where, λ is the latent heat of vaporization of water (MJ·kg−1),
γ is the psychrometric constant (kPa·◦C−1); ρ is the
density of air (kg·m−3) and cp is the specific heat of air
(MJ·kg−1

·
◦C−1).

Statistical Analyses
We defined the growing season for these pines at the site as
being for the 6-month period from May 1 to October 30.
We calculated Gs only when the daytime VPD was greater
than 0.6 kPa (Ewers and Oren, 2000). Daytime was defined
as when solar radiation exceeded 50 W·m−2 (May and June).
Considering the incompleteness of recordings of sap flow on
some days in 2018, the maximum of hourly sap flux density
in a day (Js−max) was use to describe the xylem sap flow
capacity, while only the days with complete recordings of sap
flow were selected to calculate canopy transpiration. Average
values of Js, Tr , and Gs for sample trees were compared
between tree species at different timescales using repeated one-
way ANOVA at p < 0.05 or p < 0.01 significance level.
Relationships between the variables studied were evaluated using
correction and simple and nonlinear regression analyses. The
daily Tr values of the two pine trees were linearly fitted monthly,
and the slope k was derived. The relationships in which the
slope k declined with the decreasing of REW were fitted with
an exponential equation. The relationships between Gs and
VPD were analyzed using boundary-line analysis performed
with quantile regression in the statistical R package Quantreg3.
We adopted Lohammar’s function (Oren et al., 1999) and
the 95th quantile to reflect the boundary-line relationship
between Gs and VPD. All statistical analyses were conducted
with OriginPro (Version 2021, OriginLan Inc., Northampton,
MA, United States).

3https://cran.r-project.org/web/packages/quantreg/

RESULTS

Environmental Factors
During the 6-year period from 2013 to 2018, the annual
precipitation in 2013 and in 2016 exceeded the 30-year average
by approximately 17 and 31%, respectively, but in 2014, 2015,
2017, and 2018, it accounted for 81, 86, 71, and 93% of the 30-
year average, respectively. These results indicate 4 years of relative
drought from the perspective of annual precipitation. However,
more specifically, the drought year sequence seems to have been
interrupted by wet years, thus dividing the drought year sequence
into two 2-year-long sets. The SPEI values for these 6 years
were between−0.26 and 0.35, so their inter-annual variation was
essentially consistent with the trend for the annual precipitation
(Figure 1A). However, these 6 years belonged to the ‘near normal’
category except for 2016, which belonged to the ‘moderately wet’
category based on the SPEI.

The relative extractable soil water within the 0–1.0 m depth
layer (REW) for both sites during the 6-year period varied with
annual precipitation, indicating the direct effects of precipitation
on soil moisture. In 2014, the REW for the MP plot was
significantly lower than that for CP, 0.28 to 0.31 (p = 0.04), but in
2015, the REW in MP (0.34) was significantly higher than that in
CP (0.30) (p = 0.03), indicating a small decrease in soil moisture
in CP, while there was a 12% increase in precipitation during the
2014-2015 period. In 2017, the REW for the MP plot averaged
0.38, which was significantly lower than the value of 0.41 for the
CP plot (p = 0.01). In 2018, the REW levels in both the MP and
CP plots increased above 0.43 with a 38% increase in precipitation
(Figure 1B). Although the total amount of precipitation in 2017
was the lowest in the 4-year period, the soil moisture at the two
sites was better than that during the 2014−2015 period due to the
greater precipitation in 2016 (623.6 mm).

The inter-seasonal dynamics of daily REW in each year of
the 4-year period showed similar patterns at both the MP and
CP sites (Figure 2). Calculations indicate that the drought days
for REW < 0.4 at the CP site were 138, 132, 96, and 90 days
in 2014, 2015, 2017, and 2018, these accounting for 75, 72, 52,
and 49%, respectively, of the total days in the 6-month growing
season (May 1 to October 31). The drought days for REW < 0.4
in MP were 145, 111, 115, and 88 days, in 2014, 2015, 2017, and
2018, accounting for 79, 60, 63, and 48%, respectively, of the total
days in the 6-month growing season. Specifically, in 2014 and
2015, the number of days with REW < 0.2 accounted for more
than 33% of the growing season at the CP site and approximately
30% at the MP site. The minimum daily REW during the 4-year
period at the MP site appeared in 2014 with a value of 0.07, while
the daily REW at the same time at the CP site was 0.12. The
minimum daily average REW during the 4-year period in CP was
0.06 in 2015, with the daily average REW in MP at that time being
0.08 (Figure 2).

Js−max in a Day
The average hourly Js−max during the entire growing season over
the 4 years averaged 6.21± 1.72 cm·h−1 forMP, with a maximum
of 11.18 cm·h−1. The average was significantly higher than the
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FIGURE 1 | Comparison of annual precipitation, the standardized precipitation evapotranspiration index (SPEI) at the study site (A), and relative extractable soil
water in two plots: Chinese pine (CP) plot and Mongolian Scots pine (MP) plot, (B) between years during the study period. The values in 2013 and 2016 are
displayed with transparent color where there were no xylem sap flux measurements. The dotted horizontal lines represent the 30-year average precipitation (A) and
the threshold value of soil water availability at REW = 0.4 (B), respectively.

average of 5.60± 4.86 cm·h−1 forCP (p< 0.05), with a maximum
of 10.57 cm·h−1. There were significant differences in the Js−max
for MP over the 4 years of 2014, 2015, 2017, and 2018, with values
of 6.00± 2.31, 5.93± 2.44, 6.66± 2.58, and 6.23± 1.76 cm·h−1,
respectively (p < 0.05). Similarly, significant differences were
found for CP, with average hourly Js−max values of 5.61 ± 3.15,
5.12 ± 3.04, 6.07 ± 2.76, and 5.61 ± 1.98 cm·h−1, in 2014,
2015, 2017, and 2018, respectively (p < 0.05). The average hourly
Js−max in trees of both MP and CP varied between years, with the
maximum in 2017 and the minimum in 2015. The average hourly
Js−max for MP each year was higher than that for CP. However,
the difference was significant (p < 0.05) only in 2015 (Figure 3).

Tr and Gs
The average daily Tr of the sampled trees during the
entire growing season in the 4-year trial period averaged
0.84 ± 0.36 mm·d−1, with a maximum of 1.72 mm·d−1 for
MP. The average is slightly higher than the average daily Tr
value of 0.79 ± 0.43 mm·d−1 for CP (p = 0.07), with a
maximum of 1.77 mm·d−1. There were no significant differences
in the daily canopy transpiration between years during the

four-season study (p = 0.29), with the average daily Tr values
being approximately 0.85 ± 0.32, 0.87 ± 0.41, 0.79 ± 0.36,
and 0.81 ± 0.28 mm·d−1 for MP, for the seasons 2014, 2015,
2017, and 2018, respectively. Meanwhile, the differences were
very significant for CP (p < 0.01), with daily average Tr values
of approximately 0.89 ± 0.44, 0.75 ± 0.44, 0.72 ± 0.42, and
0.80 ± 0.35 mm·d−1 in 2014, 2015, 2017, and 2018, respectively,
with a maximum in 2014 and a minimum in 2017 (Figure 4A).

Generally, the canopy stomatal conductance during each
growing season in the four-season study inMP was slightly higher
than that in CP (p = 0.07), with the average daily Gs in the two
species being approximately 0.22± 0.07 and 0.20± 0.11 cm·s−1,
respectively. Additionally, there were significant differences in
the inter-annual variation in Gs between years (p = 0.01) in MP,
with daily averages of approximately 0.22 ± 0.06, 0.22 ± 0.09,
0.19 ± 0.06, and 0.24 ± 0.09 cm·s−1 in the four seasons,
respectively. The highest value was in 2018, and the lowest
was in 2017. More significant inter-seasonal variation patterns
were found in CP (p < 0.01), with average daily values in Gs
being approximately 0.24 ± 0.11, 0.19 ± 0.11, 0.16 ± 0.10, and
0.26 ± 0.12 cm·s−1. The average daily value for Gs in MP was
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FIGURE 2 | Inter-seasonal dynamics of daily precipitation and daily relative extractable soil water (REW) in the 4 years of xylem sap flux measurement. The dotted
horizontal lines represent the threshold value of soil water availability at REW = 0.4.

FIGURE 3 | Inter-seasonal dynamics of the maximum hourly sap flux density (Js−max , cm·h−1) in a day in the 4 years of xylem sap flux measurement for the
Mongolian Scots pine (MP) and Chinese pine (CP) trees. The half circle points represent the means of Js−max , and short T-type line represent error bars. Only the
plus or minus direction error bars are drawn for the clartity of the plot.
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FIGURE 4 | Seasonal comparison of average daily canopy transpiration, Tr (A), and canopy conductance, Gs (B) for Mongolian Scots pine (MP) and Chinese pine
(CP) in the 4 years of xylem sap flux measurement. Different lowercase letters represented significant differences at α = 0.05 level.

significantly higher than that in CP only in 2015 and in 2017,
while it was slightly lower in 2014 and 2018 (Figure 4B).

Relationships of Tr Between Tree
Species Varied With REW Levels
The statistics on the daily Tr of the two pine trees during the
whole measurement period as well as their relationships are given
in Figure 5. In general, the daily Tr in MP varied positively
with the daily Tr in CP during the four growing seasons.
When REW > 0.4, the average daily Tr was approximately
1.03 ± 0.37 mm·d−1 in CP, which was significantly higher
than that in MP (p < 0.01), averaging 0.86 ± 0.33 mm·d−1.
However, when REW was in the range of 0.2–0.4, Tr in CP
was lower than that in MP (p = 0.01), with daily Tr values
of 0.72 ± 0.41 mm·d−1 compared with 0.81 ± 0.36 mm·d−1.
In particular, when REW < 0.2, the daily Tr in CP was
significantly lower than that in MP (p < 0.01), with values of
0.47 ± 0.31 mm·d−1 compared with 0.83 ± 0.34 mm·d−1. The
slopes of the linear regressions decreased with decreasing REW
levels (Figure 5).

Detailed descriptions of the relationships for daily Tr between
MP and CP at the monthly scale are presented in Figure 6.
Although the daily Tr in CP was slightly higher than that in MP
under water-favorable conditions, the opposite was true when soil
moisture was lower. For example, the daily Tr in CP was lower
than that in MP in October 2014 when the REW values at the
two sites were low (REW = 0.16–0.17). Similar cases occurred in
July 2015 when REW was 0.17 at the MP sites and approximately

0.14 at the CP sites. Again, in June 2017, the REW at the two sites
was approximately 0.30–0.31 (Figure 6). Analyses show that the
slope (k) of the linear regressions at the monthly scale decreased
exponentially with declining REW (Figure 7). The daily Tr in CP
was higher than Tr inCP with k> 1 given that at REW above 0.34.

Tr Diurnal Patterns Changed With
Drought
In each growing season, we selected two sunny days with
differing but typical levels of soil moisture to explore the possible
differences between the two species in diurnal patterns of Tr in
response to drought. On the two selected days in 2014, during
which REW had dropped from approximately 0.51–0.54 to 0.08–
0.12, the hourly Tr decreased significantly (p < 0.01) in the
CP plot, with the peak value of Tr decreasing by 62%, while
it decreased only slightly (p = 0.16) in the MP stand, with
the peak value of Tr declining by only 13% (Figure 8A). On
the 2 days in 2015, when REW had declined from a relatively
high value of approximately 0.39–0.49 to a very low value of
approximately 0.07–0.08, a similar significant reduction in hourly
Tr was found in both CP and MP trees (p < 0.01); the peak Tr
values fell by 92% and 58%, respectively (Figure 8B). However,
there were only slight reductions on the 2 days in 2017, when
REW dropped from 0.69 to 0.30 in both MP (p = 0.95) and
CP (p = 0.07) plots. Meanwhile, the peak values of Tr dropped
by 10% and 41%, respectively (Figure 8C). A nearly identical
pattern occurred on the 2 days in 2018, when REW dropped
from approximately 0.45–0.46 to 0.24, with the hourly Tr value
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FIGURE 5 | Relationships of canopy transpiration (Tr ) between Mongolian Scots pine (MP) and Chinese pine (CP) in relation to different levels of relative extractable
soil water (REW).

differing insignificantly for both MP (p = 0.53) and CP (p = 0.15)
trees, and the peak Tr values fell by 20% and 36%, respectively
(Figure 8D). We conclude that the peak value of Tr on any day
was typically higher in CP than in MP plot when soil moisture
was not under drought status (i.e., REW > 0.4). This was the case
in each of the 4 years of our study. Conversely, when soil moisture
was under drought (REW ≤ 0.4), the daily peak value of Tr was
lower for CP than for MP.

Relationships Between Daily Gs and
REW
On the daily time scale, Gs of trees in both CP and MP
generally decreased with the decline in REW each year. However,
Gs responded to the decline of REW more quickly in CP
than in MP in each year according to the slopes of linear
regressions at the daily scale, indicating a tighter regulation
in response to drought in CP than in MP, which was usually
considered isohydric behavior (Figure 9). The daily Gs showed
a poor relationship with REW in MP according to the
coefficients of determination from linear regression in each year
except for in 2018.

Relationships Between Hourly Gs and
VPD
The hourly Gs generally decreased with the increasing of VPD
in both CP and MP (Figure 10). In particular, there were clear
boundary lines in Gs that varied with VPD. The boundary was
well fitted with a logarithmic function, from which we deduced
the parameters and calculated a new variable, Gs−ref , which

was defined as the upper value of canopy conductance when
the VPD was equal to 1.0 kPa. Gs−ref was 14.2% higher in
CP than in MP, indicating greater water-consumer behavior in
CP. Another parameter (m), which was used to describe the
sensitivity of canopy conductance to VPD, was 13.2% higher in
CP than in MP.

DISCUSSION

Water Use Intensity of Individuals
In this study, our results indicated that the water use intensity
of MP and CP individuals in semi-arid sandy land was at
relatively low levels, with canopy transpiration averaging 0.84
and 0.79 mm·d−1, respectively, during the 4-year period based
on sap flow measurements. We estimate that these averages
amount to transpiration levels of approximately 155 mm and
145 mm transpiration during the entire growing season of each
year, which account for approximately 39% and 37% of annual
precipitation in the 4 years, respectively. We found that the
water use intensity of MP was slightly higher than that of CP
individuals of the same age, while the tree sizes were significantly
higher for MP than for CP individuals due to the more rapid
growth of MP (p < 0.01). We deduce that the overall water
use efficiency of MP individuals should be higher than that of
CP individuals in sandy habitat. The faster growth in MP in
comparison to CP at our site is consistent with many previous
reports, which have shown that both the aboveground and
belowground biomass are generally higher in MP than in CP
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FIGURE 6 | Relationships of canopy transpiration (Tr ) between Mongolian Scots pine (MP) and Chinese pine (CP) in different months during the 4 years of xylem sap
flux measurement. k is the slope of the linear regression. The gray dotted lines are 1:1 line. Data in May, August and September in 2018 were lost due to faulty cable
in CP sample trees.

of the same age (Zhao and Li, 1963; Zhu et al., 2005). These
physiological differences are especially obvious in harsh habitats
(Zhu et al., 2005). The fewer fine roots in CP help explain
why the water use sensitivity to drought in CP was higher
than that in MP. Measurements at the leaf scale show that MP
features a higher photosynthetic rate, lower transpiration rate,
and higher water use efficiency than CP under favorable soil
moisture conditions (Bai et al., 2008; Ding et al., 2011). However,
this trend would change under severely dry soil conditions (Liu
et al., 2019). Combining these pieces of information, it can be
concluded that the drought stress seems to be more harmful to
the needles of CP, while it imparts greater damage to the fine
roots of MP.

Hydric Behavior in the Two Pine Species
In this study, we compared water consumption of two co-existing
pine species by monitoring xylem sap flow and accompanying
environmental factors during a 4-year period. In general, both
CP and MP in this semi-arid sandy land showed a conservative
water consumption and excellent regulation of canopy stomatal

conductance, which basically agrees with findings of previous
studies (Song et al., 2014, 2020; Wen et al., 2017; Tang et al.,
2018; Wu et al., 2018; Dang et al., 2019a). Our results provide
evidence that both CP and MP exhibit strong drought resistance,
like that of Scots pine, compared with other local tree species
(Poyatos et al., 2005, 2008, 2013; Macinnis-Ng et al., 2016;
Urban et al., 2019). We thus conclude that CP is similar to
MP, and both should be considered water-savers based on their
relatively low levels of canopy transpiration. Pines tend to be
more homogeneous in their vulnerability to embolism than other
conifers (Martinez-Vilalta and Pinol, 2002). The homogeneity
of the conducting system of pines may compromise the ability
of ecosystems to resist the expected increase in aridity due
to climate change.

Isohydric and anisohydric behaviors in species have been
widely discussed to describe their water use strategies under water
stress (McDowell et al., 2008). In general, isohydric behavior is
characterized by decreases in stomatal conductance to maintain
nearly constant leaf water potentials (Tardieu and Simonneau,
1998; McDowell et al., 2008; Garcia-Forner et al., 2017). Many
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FIGURE 7 | The slope k decreased exponentially with the decline in relative extractable soil water (REW). The upper-left block indicates that the canopy transpiration
of Chinese pine (CP) was generally higher than that of Mongolian Scots pine (MP) when REW was higher than approximately 0.34. The canopy transpiration of CP
was below that of MP when REW fell below approximately 0.28.

species, including Scots pine, have been regarded as isohydric
species (Irvine et al., 1998; Llorens et al., 2010; Leo et al., 2013;
Urban et al., 2019). Although the concept of fixed hydraulic
behavior is being challenged by studies showing that individual
plants or species can vary along a continuum spanning isohydric
to anisohydric (Ogle et al., 2012; Feng et al., 2019; Guo and
Ogle, 2019) and are affected by plant-environment interactions
(Hochberg et al., 2018), we think it is a helpful framework concept
if the aims are limited to comparisons of water use patterns in
co-existing species.

In previous studies, pine species such as Scots pine have
been shown to conserve water via sensitive stomatal regulation
and to maintain relatively constant shoot water potentials under
drying conditions compared with other genera such as Larix
(Dulamsuren et al., 2009; Urban et al., 2019) and Quercus
(Poyatos et al., 2008; Chirino et al., 2011; Morán-López et al.,
2014). In this study, we conclude that both CP and MP display
typical isohydric behavior by analyzing Gs. Specifically, MP
individuals have been shown to exhibit a remarkable ability
to maintain relatively constant water potentials by reducing
stomatal conductance, which is consistent with findings from
previous reports (Dang et al., 2019a,b; Song et al., 2020). It has
been reported that CP maintains its leaf water potential at a
relatively constant level of approximately−1.7 MPa by markedly
reducing its leaf stomatal conductance (Wen et al., 2017; Tang
et al., 2018; Wu et al., 2018). Direct measurements at the leaf scale

also indicate that both CP and MP may be drought-tolerant tree
species with high water potential and delayed dehydration (Tang
et al., 2018); their leaves exhibit relatively strong water retention
capacity and an ability to maintain turgor (Ding et al., 2011; Liu
et al., 2019).

Species-Specific Sensitivity to Dryness
Interspecific variation related to water use patterns was
confirmed in our study. Compared with MP, we found
significantly higher canopy transpiration and canopy
conductance values for CP individuals when soil water was
favorable but sharper reductions under drought conditions. This
behavior led to relatively lower annual water consumption by
CP trees than by MP trees in this semi-arid sandy habitat. The
results imply that CP is more sensitive to soil-water conditions
(REW) and atmospheric water conditions (VPD) than is MP.
These findings provide an explanation for the tighter stomatal
regulation in CP than in MP, enabling the former to cope
better with low REW and high VPD and to exhibit stronger
adaptation in future projected dry environmental conditions.
This interpretation is directly supported by certain case study
comparisons of stomatal conductance (Quan et al., 2004) and
sap-flow (Yan et al., 2018) between these two species.

In this study, our results indicate that CP exhibits a more
isohydric behavior than MP by making a direct comparison
of Gs from an individual perspective. However, this conclusion
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FIGURE 8 | Comparison of diurnal patterns of canopy transpiration, Tr on two typical sunny days with very different relative extractable soil water (REW) values in
2014 (A), 2015 (B), 2017 (C), and 2018 (D) of measurement.

does not signify with certainty that the drought resistance of
CP is stronger than that of MP. Previous studies at the level
of organs such as needles and/or of seedlings indicate that

the indexes such as the ratio of bound water to free water
of needles, the water content of needles, the predawn leaf
water potential, and the relative permeability of plasmalemma
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FIGURE 9 | Comparison of canopy conductance, Gs varied with the level of relative extractable soil water (REW) between Chinese pine (CP) and Mongolian Scots
pine (MP) in different years.

of needles are higher in MP than values of these parameters
in CP (Bai et al., 2008). These results imply that the needles
of MP feature greater drought-tolerant attributes than those of

CP, with delayed dehydration to maintain high water potential
through biochemical response (Wang et al., 2015). The drought
resistance of trees is a complex trait, resulting from morphology,
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FIGURE 10 | Hourly values of canopy conductance, Gs varied with vapor pressure deficit, VPD for two tree species Mongolian Scots pine (MP) (A) and Chinese pine
(CP) (B). Data were selected when daytime VPD was higher than 0.6 kPa. The dotted line shows the fitted boundary curves suing a logarithmic function.

physiological and biochemical response characteristics, cellular
photosynthetic organelles, and protoplasm structure, etc. Only by
comprehensive studies from different perspectives can we draw
more objective conclusions.

Water Use Strategies Related to Root
Distribution
Although the fine control of stomatal openness in isohydric
behavior has been considered an important mechanism in
drought resistance, isohydric species are often considered to
suffer from carbon depletion caused by excessive stomatal
closure in the course of multi-annual droughts, resulting
in long-lasting growth decline and finally tree death (Buras
et al., 2018). Alternatively, trees may depend on other
nonstomatal mechanisms, such as water absorption by widely
distributed roots, to improve drought resistance in coordination
(Konôpka et al., 2005).

The ability of roots to access deep soil water has been
found to be crucial to a species’ adaptation to drought (Jiang
et al., 2020). Although the roots of larger diameter generally
account for a greater proportion of root biomass, approximately
92% of the mineral nutrients and 75% of the water that
supports growth is absorbed by fine roots in lateral roots
rather than by taproots (Makkonen and Helmisaari, 2001;
Epron and Osawa, 2017). Both MP and CP are shallow-
rooted with nearly 85−90% of roots within the upper 60-
cm soil layer (Jiang et al., 2002; Xue, 2003). This shallow-
rooted feature enhances the ability of trees to use precipitation
opportunistically but is not helpful for resisting severe drought
because fine roots would die almost immediately when soil
turns dry (Vanguelova and Kennedy, 2007), thus directly
leading to a reduction in soil-root water transport (Konôpka
et al., 2005). This explains why the shallow-rooted trees can
easily suffer from drought stress when drought occurs in
MP forests (Song et al., 2015, 2018) or CP forests (Zhou

and Shangguan, 2007). In contrast, the water use strategy of
MP individuals is more prominently reflected in flourishing
roots, but that of CP is more prominently reflected in
stomata regulation.

CONCLUSION

In this study, both MP and CP were found to respond to
drought through a fast reduction in canopy transpiration and
canopy stomatal conductance, which was attributed to their
typical isohydric behavior. MP and CP also behaved as water
savers with relatively low daily water use intensity during
the growing season. These findings provide basic information
on the ability of pine trees to adapt to drought in semi-
arid sandy land habitats. In comparison, CP showed less-
conservative water use than did MP with higher canopy
transpiration under favorable soil moisture condition. However,
greater reductions in canopy transpiration and canopy stomatal
conductance were found in CP than in MP under developing
drought. CP is more sensitive to water availability, with
significant inter-seasonal variability in canopy transpiration
and a rapid decline in canopy stomatal conductance with
increasing vapor pressure deficit than observed for MP.
These results imply a more obvious isohydric behavior in
CP than in MP through tighter stomatal regulation of
water use in response to drought. From this point of view,
as an introduced tree species, MP may increasingly face
problems related to drought stress and thus has less adaptive
capacity in this semi-arid sandy land. Our study highlights
the similarities and differences in water use patterns of
the two co-existing pine species, and provides suggestions
for establishing a mixed shelterbelt forests that adapt to
the local hydrological environment and flexibly respond
to climate change.
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