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Crop disease remains a major problem to global food production. Excess use of pesticides 
through chemical disease control measures is a serious problem for sustainable agriculture 
as we struggle for higher crop productivity. The use of plant growth promoting rhizobacteria 
(PGPR) is a proven environment friendly way of controlling plant disease and increasing 
crop yield. PGPR suppress diseases by directly synthesizing pathogen-antagonizing 
compounds, as well as by triggering plant immune responses. It is possible to identify and 
develop PGPR that both suppress plant disease and more directly stimulate plant growth, 
bringing dual benefit. A number of PGPR have been registered for commercial use under 
greenhouse and field conditions and a large number of strains have been identified and 
proved as effective biocontrol agents (BCAs) under environmentally controlled conditions. 
However, there are still a number of challenges before registration, large-scale application, 
and adoption of PGPR for the pest and disease management. Successful BCAs provide 
strong theoretical and practical support for application of PGPR in greenhouse production, 
which ensures the feasibility and efficacy of PGPR for commercial horticulture production. 
This could be pave the way for widespread use of BCAs in agriculture, including under 
field conditions, to assist with both disease management and climate change conditions.

Keywords: biocontrol, biocontrol agents, plant growth promoting rhizobacteria, dual benefit, phytomicrobiome

INTRODUCTION: THE CURRENT SITUATION OF PLANT 
DISEASE

In recent decades, crop productivity has been challenged by threats from both plant diseases 
and large inputs of artificial pesticides, including those applied to deal with the disease challenge. 
Crop yield reductions due to plant diseases are often in the range of 21–30% globally in some 
major crops (Savary et al., 2019). At the same time, many plant pathogens have evolved resistance 
to long-used chemical control measures (Lucas, 2011). As a result, some plant diseases of 
economic importance have become more difficult to control, principally due to the lack of 
effective compounds (Bailey, 2010); intensive crop production practices and food market 
globalization have aggravated this situation (Fones et  al., 2020). Many chemical pesticides are 
not readily broken down into simple and safer constituents, and as a result, they remain in 
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soil as toxic residues, sometimes with associated human health 
issues (Gilden et  al., 2010). Furthermore, increasing public 
awareness of environmental and health issues associated with 
synthetic chemicals is causing a shift toward more sustainable 
crop management practices that rely less heavily on synthetic 
chemicals (Chandler et  al., 2008; Donley, 2019). Given this 
situation, heavy use of synthetic agrochemicals has come to 
be considered an unsustainable approach, and new and sustainable 
agricultural practices have become a focus of modern agriculture 
research. Increasing demand for alternatives to pesticides has 
provided opportunities for expanded application of biological 
control (Barratt et  al., 2010; Gay, 2012).

From environmental and health perspectives, plant growth 
promoting rhizobacteria (PGPR) have been proposed as one 
of the most promising alternatives to synthetic chemicals. 
However, apart from the points that mentioned above, crop 
production has always being influenced by climatic conditions 
and more concerningly and profoundly as climate change 
conditions develop. Under climate change conditions, plant 
pathogen control will also experience new challenges (Chaloner 
et  al., 2020), including more difficulty in controlling current 
disease; combating new emergence of pathogens (McDonald 
and Stukenbrock, 2016); meeting the challenges associated with 
shifting geological distributions of pathogens (Bebber et  al., 
2019; Fones et al., 2020). Especially for the seemingly promising 
biological disease control methods, as their efficacy can be strongly 
affected by environmental conditions. Under these circumstances, 
researchers need to explore a strategy for future food production 
that includes consistent and sustainable crop disease control.

PGPR AS PROMISING BIOCONTROL 
AGENTS

Soil is both a source of nutrients for plant growth and a complex 
ecosystem where bacteria, fungi, protists, and animals live in 
diverse and active/coordinated communities (Müller et al., 2016). 
Many plant-associated soil/root microbes (the phytomicorbiome) 
have established relationships with plants that can be competitive, 
exploitative, or neutral; the plant plus the phytomicrobiome 
form the holobiont (Lyu et  al., 2020). Recently, researchers 
have begun to investigate the possibility of both alleviating 
pathogenic effects and promoting plant growth via beneficial 
rhizobacteria (Zhang et  al., 2013; Qiao et  al., 2017).

Plant roots host an enormous range of microbial organisms 
(Bulgarelli et  al., 2013) and an important, the next step is to 
determine which rhizobacterium, or combination of rhizobacteria, 
most benefit the host plant. Developing selective pathogen 
control agents directed at the target plant species could be  a 
key aspect of this (Lommen et  al., 2019). Microbial strains 
that have co-evolved with plants for protracted periods of time, 
and promote plant growth, are likely to provide more than 
one benefit, such as pathogen control (Smith et  al., 2015; 
Kruitwagen et al., 2018). Rhizosphere microbiomes differ among 
plant species (Turner et  al., 2013; Zgadzaj et  al., 2016); plants 
exert control over the composition of their microbiomes (Smith 
et  al., 2015; Zgadzaj et  al., 2016). As a result of their long 

co-evolution with plants, microbes can indirectly influence 
plant phenotypic plasticity and plant health via modulation 
of plant development and defense responses (Goh et al., 2013).

A wide range of microorganisms, inhabit the rhizosphere, 
comprising a tremendous source of PGPR (Antoun and Kloepper, 
2001). The plant-beneficial members of the phytomicrobiome, 
the community of bacteria that colonize the rhizosphere, on 
the root surface, or in the spaces between cells of the root 
cortex or the root cells themselves (Gray and Smith, 2005; 
Inui Kishi et  al., 2017). PGPR have been co-evolving with 
associated plants since plants colonized terrestrial environments, 
leading to development of synergistic interactions with the host 
plants (Gouda et  al., 2018). There have been a large number 
of publications around research investigating the effects, 
mechanisms, and potential for successful application of PGPR 
to production of crop plants grown under controlled environment 
conditions. This is very important for the development of more 
widespread biological control approaches, including field conditions.

For vegetable production, quality control and safety are more 
important and have a close relationship with human health as 
we  often consume them less processed or unprocessed. It is 
much easier to deploy PGPR in greenhouse production systems, 
as the environmental conditions are controlled; at the same 
time, there is a large number of potential BCE strains identified 
and potentially available for possible deployment (Singh et  al., 
2017); these are proven to be effective in greenhouse experiments 
(Zhang et  al., 2010; Hahm et  al., 2012; Lamsal et  al., 2012; 
Liu et  al., 2018). For example, Bacillus spp. has become an 
significant microbe for disease suppression under field conditions 
(Miljaković et  al., 2020) and Pseudomonas fluorescens has also 
been considered as a promising biocontrol agent (BCA; Panpatte 
et  al., 2016). Several specific isolates – Pseudomonas stutzeri, 
Bacillus subtilis, and B. amyloliquefaciens were identified and 
proven to be successful in root colonization and to have significant 
suppression of the pathogen Phytophthora capsici during cucumber 
plant growth (Islam et  al., 2016). Penicillium sp. and Rhizopus 
stolonifer cause fruit infections and were found to be effectively 
suppressed at the post-harvest stage by application of Bacillus 
subtilis (Punja et  al., 2016). Isolates of B. amyloliquefaciens 
significantly inhibit Fusarium wilt disease, caused by Fusarium 
oxysporum, under greenhouse conditions (Gowtham et al., 2016).

These examples illustrate that PGPR, as BCAs, are effective 
under controlled environment conditions, providing strong 
support for application of PGPR in greenhouse production 
systems, which ensure the feasibility and efficacy of PGPR for 
commercial horticulture production.

Prevention of pathogen infection and promotion of plant 
growth under abiotic stresses are both indirect mechanisms 
for PGPR, which should not be  separated. Furthermore, for 
practical application, PGPR with biocontrol effects would 
be  more valuable if they also promoted plant growth.

Climate change is one of the major causes for more severe 
abiotic stress: like salinity, drought, and cold. It has been 
illustrated that PGPR not only alleviate pathogen control and 
also help improve plant tolerance of abiotic stresses such as 
salinity (Ilangumaran and Smith, 2017; Numan et  al., 2018; 
Bhat et  al., 2020) and drought (Vurukonda et  al., 2016; 
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Jochum et  al., 2019; Kour et  al., 2020; Leontidou et  al., 2020). 
Quite a few strains have proven to help combat stress and 
promote plant growth under conditions of abiotic (Dehghani 
Bidgoli et  al., 2019; Goswami and Deka, 2020). However, most 
researchers have investigated PGPR under these environmental 
stresses; few have also examined their biocontrol efficacy, and 
particularly in conjunction with abiotic stress. This is an important 
consideration in biocontrol under field conditions, and as climate 
change conditions develop. However, if PGPR have coevolved 
with plants for protracted periods of time, it is likely that they 
provide more than one benefit to the host plant, and given 
that the plant provides them with energy (reduced carbon) 
and niche space, the provide benefit to themselves (Fan et al., 2020).

MECHANISMS FOR BIOCONTROL WITH 
PGPR

PGPR can directly promote plant growth by improving the 
uptake of certain nutrients from the environment (such as 
nitrogen fixation and phosphate mobilization) or production 
of phytohormones, like indole-3-acetic acid (IAA), gibberellic 
acid, or phytohormone regulators such as cytokinin and 1-amino-
cyclopropane-1-carboxylate (ACC) deaminase (Vejan et  al., 
2016; Gouda et al., 2018). PGPR ability to produce phytohormone, 
associated metabolites, and signal compounds also explains 
their mitigation of abiotic stress conditions such as drought 
(Jochum et  al., 2019) and salinity (Ilangumaran and Smith, 
2017; Abbas et al., 2019). Another reason for this is that PGPR 
can modify root morphology, which often leads to increased 
root surface and so enhanced water and nutrient uptake (Kumar 
et  al., 2019; Goswami and Deka, 2020; Nawaz et  al., 2020). 
In addition, PGPR compete with other bacteria by colonizing 
quickly and obtaining more nutrients for themselves, restraining 
the growth of other organisms (Salomon et  al., 2017).

In addition, pathogen controlling PGPR can alleviate or 
prevent the detrimental effects of one or more phytopathogenic 
organisms. The underlying mechanisms are diverse and 
rhizobacteria possess a wide range of mechanisms, one or several 
in combination, which are associated with specific host plants 
(Choudhary et  al., 2011). The most widely recognized direct 
mechanisms for biological control are the suppression of pathogens 
through synthesis of anti-pathogen compounds, such as antibiotics 
(Raaijmakers et  al., 2002), antimicrobial peptides, bacteriocins 
metabolites, toxins, and enzymes (Compant et  al., 2005). 
Antibiotics are antimicrobial substances of low-molecular-weight; 
once released by PGPRs, they can prevent the growth or 
metabolic activities of other microorganisms (Duffy et al., 2003). 
They can suppress diseases by inhibiting pathogen cell walls 
synthesis, influencing membrane structures, and inhibiting the 
formation of initiation complexes on the small subunit of the 
ribosome (Maksimov et  al., 2011). Bacteriocins (peptides with 
antimicrobial activity, such as polymyxin, circulin, and colistin) 
are proteinaceous toxins that are secreted by bacteria and which 
can destroy related/metabolically similar bacterial species by 
damaging the bacterio-cinogenic cells (Riley and Wertz, 2002; 
Abriouel et  al., 2011; Nazari and Smith, 2020). Normally, they 

are strain targeted, and so only toxic to closely related  
bacteria. A large number of bacteria produce more than one 
bacteriocin, and some of them show broader spectra of  
inhibition (Abriouel et  al., 2011).

Siderophores act as specific ferric iron chelating agents, especially 
under iron-limited conditions, making it unavailable to the 
phytopathogens and protecting plant health (Crowley, 2006; Shen 
et  al., 2013). Some PGPR have been shown to enhance plant 
growth by producing extracellular siderophores, which help control 
of several plant diseases as siderophores deprive the pathogen 
of iron nutrition, thus inhibiting disease development (O’Sullivan 
and O’Gara, 1992; Sharma and Johri, 2003; Radzki et  al., 2013).

Therefore, antibiotics, bacteriocins, and siderophores have 
been indicated as the three most effective mechanisms for 
identifying potential biocontrol effects before further evaluation 
in vivo (Kloepper et  al., 1980). For this reason, production of 
siderophores and other plant-beneficial metabolites has been 
used in many studies when exploring PGPR as potentially 
functional plant disease control agents (Maksimov et  al., 2011; 
Subramanian and Smith, 2015).

More indirectly, PGPR can enhance crop stress tolerance by 
synthesizing microbe-to-plant signal compounds. Signal compounds 
including phytohormones and specific signal compounds for both 
plant-to-microbe and microbe-to-plant communications (Lyu 
et  al., 2020). This close relationship between the host plant and 
their “specific” phytomicrobiome members regulates aspects of 
growth and metabolism in both elements of the holobiont (plant 
and phytomicorbiome). Lipo-chitooligosaccharides (LCOs) and 
thuricin 17 are two microbe-to-plant signals that have been found 
to increase stress tolerance in a wide range of plant species 
(Smith et  al., 2015; Subramanian et  al., 2016; Lyu et  al., 2020).

In addition, PGPR can promote plant growth by producing 
pathogen-antagonistic substances and/or by inducing systematic 
resistance in plants to pathogens (Glick, 1995). Recent research 
has also found that volatile organic compounds (VOCs) produced 
by PGPR play a significant role in promoting plant growth and 
provoking induced systemic resistance (ISR; Kanchiswamy et  al., 
2015; Raza et  al., 2016). ISR against pathogens – enhanced plant 
defense ability, provoked throughout the entire plant – is a 
mechanism used by PGPR to enhance the pathogen resistance 
of their host plant (Beneduzi et  al., 2012). Development of 
systemic resistance is indirect but a key strategy to prevent biotic 
losses in crops; beneficial PGPR can trigger ISR in plants 
(van Loon et  al., 1998; Beneduzi et  al., 2012) upon colonization 
of plant roots, as can mycorrhizal fungi (van Loon et  al., 1998; 
Pozo and Azcón-Aguilar, 2007; Pérez-de-Luque et  al., 2017). ISR 
establishes a primed state by inducing more rapid defense-responses 
upon pathogen attack (Mauch-Mani et  al., 2017). ISR has been 
identified and illustrated in many plant species and has been 
found effective against a broad spectrum of plant pathogens, 
including bacteria, fungi, viruses, and even against herbivorous 
insects (van Loon et  al., 1998; Bhattacharyya and Jha, 2012). 
Traditionally, ISR was thought to be  very distinct from  
systemic acquired resistance (SAR), which is induced by local 
infection of pathogens and involves salicylic acid (SA) signaling 
and expression of pathogenesis-related (PR) protein genes 
(Pieterse et  al., 2009; Gao et  al., 2015). Unlike SAR, ISR results 
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in the expression of defense-related genes that are JA- and 
ET-responsive (Mathys et al., 2012), and do not necessarily involve 
accumulation of PR proteins. However, increasing evidence suggests 
that the signaling pathways differ depending on the type of 
PGPR, pathogen, and host plant. ISR-inducing PGPR that use 
the SA-pathway, and not the JA/ET (ISR) pathway, were reported 
in past studies (Maurhofer et  al., 1994, 1998; De Meyer and 
Höfte, 1997; Audenaert et  al., 2002; Barriuso et  al., 2008; 
van de Mortel et  al., 2012; Takishita, 2018). As other plant 
hormones, such as gibberellins (Navarro et  al., 2008), auxins 
(Kazan and Manners, 2009), cytokinins (Giron et  al., 2013), and 
brassinosteroids (Nakashita et  al., 2003) have also been 
demonstrated to function as modulators of the plant immune 
signaling network, hormone crosstalk is believed to exist, providing 
plants with capacity to finely tune immune responses for their 
growth and protection (Pieterse et  al., 2014). Elucidating the 
detailed molecular mechanisms underlying the PGPR-induced 
ISR is an important challenge for future research (Bulgarelli et al., 
2013; Turner et  al., 2013; Zhang et  al., 2013; Müller et  al., 2016; 
Zgadzaj et al., 2016; Kruitwagen et al., 2018; Lommen et al., 2019).

PGPR are involved in diverse mechanisms to enhance plant 
growth and/or act as BCAs. To ensure the sustainability and 
cost-effectiveness of agricultural systems, crop production 
promotion and pathogen control could be considered together. 
It would be  very efficacious to identify and develop novel, 
effective PGPR strains providing several beneficial activities, 
such as improving nutrient uptake, improving stress tolerance, 
enhancing plant growth, and combating fungal or bacterial 
pathogens. In particular, it seems possible to identify and 
develop PGPR that both suppress plant disease and more 
directly stimulate plant growth, bring dual benefit. It seems 
likely that phytomicrobiome members that have coevolved with 
plants for long periods of time and perform one activity 
beneficial to plant growth very well, will perform other plant-
beneficial activities. This is in the best interests of the microbe.

CHALLENGES IN USING PGPR AS 
BIOCONTROL AGENT

The goal of PGPR-based biocontrol is to provide alternative 
and sustainable approaches for disease management. The 
United  States and Europe have become the largest potential 
markets for biocontrol products, followed by South America 
(Barratt et  al., 2018). A large set of PGPR have been studied 
at the laboratory scale and some of which have been 
commercialized (Glick, 2012; O’Brien, 2017; Rosier et al., 2018). 
In the last decade, there has been continued growth in the 
commercialization of BCAs (Fravel, 2005; Bashan et  al., 2014; 
Mishra et  al., 2015; Begum et  al., 2017; O’Brien, 2017). A 
number of research projects are now focused on developing 
novel biocontrol products for Europe1 and the United  States.2

1 https://cordis.europa.eu/project/id/612713/reporting
2 https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-
programs/biological-control-program

While the BCA market is expanding, it is still far from 
being broadly applied, and the use of chemical pesticides is 
still dominant in crop production (Mishra et  al., 2015). There 
are important challenges that need to be  overcome before 
biocontrol practices can be  widely accepted and optimally 
utilized (Bashan et  al., 2014).

Multifaceted research is required to improve our understanding 
of the efficacy of BCA in control of specific diseases. Ideally, 
a BCA should include as many beneficial features as possible, 
for example, growing rapidly in vitro for the purpose of 
commercial production, possessing high rhizosphere competence, 
enhancing plant growth capabilities, having a broad spectrum 
of bioactive metabolites, being environmentally safe, being 
aggressively compatible with other rhizobacteria, and being 
tolerant to abiotic stress (Nakkeeran et al., 2005; Egamberdieva 
and Lugtenberg, 2014; Ilangumaran and Smith, 2017; Lyu et al., 
2020). Effective root colonization is an important feature of 
good biocontrol PGPR as only when effective strains colonize 
the rhizosphere and/or root tissues, can they perform their 
action against pathogens. Inconsistent performance of the 
inoculated PGPR due to poor survival in soil, compatibility 
with the crop, interaction with indigenous microbial organisms 
and other environmental factors (Martínez-Viveros et al., 2010; 
Vejan et  al., 2016) is a major barrier that prevents the wide 
application of BCA. For researchers, survival and colonization 
should be  considered as essential characteristics during the 
identification of useful isolates.

The effect of bacterial isolates against targeted pathogens 
is normally determined by in vitro antagonism tests, as a first 
step, followed by greenhouse and field research trials (Bashan 
et  al., 2014). The consistency of performance is generally 
evaluated at various geographical locations, under a range of 
climatic conditions. Furthermore, because rhizobacteria have 
strong relationships with host plants, crop species are also 
considered (Choudhary et  al., 2011). Monitoring of BCA 
development in soil also helps in understanding their subsequent 
endurance and interactions with host plants. Development of 
BCA under greenhouse conditions is easy to monitor, due to 
relatively stable environmental conditions. Abiotic stress could 
also be  considered in this stage, investigating performance 
under various climate change scenarios. Experimental testing 
in the greenhouse is valuable not only for providing practical 
guidance regarding application of BCAs for controlled-
environment crop production, but also for providing theoretical 
support for field application.

Stability of PGPR products is influenced by the production 
procedure, formulation, transportation, and storage conditions. 
Thus, following the identification of potentially deployable 
microbial strains, there is a need to achieve subsequent high 
levels of survival of biocontrol products (McIntyre and Press, 
1991), improve formulation of the novel technology (Lobo 
et al., 2019), and achieve desirable attributes such as long-term 
shelf life (Carrasco-Espinosa et al., 2015). During the production 
procedure, diverse culture media and growth conditions have 
been studied and optimized for production of targeted microbial 
types (Pastor-Bueis et  al., 2017; Khanghahi et  al., 2018; 
Zhang et  al., 2019). Achieving low-cost production at large 
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scale is a difficult task, but reachable with careful research 
effort (Trujillo-Roldán et  al., 2013; Carrasco-Espinosa et  al., 
2015; Kang et  al., 2017). Liquid formulations are the most 
popular forms (Lee et  al., 2016); many researchers tried to 
increase the shelf life of PGPR through lowering storage 
temperature and/or modifying the combinations of additives 
(Arriel-Elias et  al., 2018; Berger et  al., 2018).

Apart from the problems mentioned above, comprehensive 
analyses of risks and benefits of application of BCAs are also 
required since agricultural decisions for choosing a disease 
control strategy are made on the basis of this balance. As the 
modes of action of PGPR are diverse, the identification, 
performance assessment, and registration of potential strains 
take time and require academic and industrial sector support.

On the other hand, the use of natural sources for combating 
pathogens also poses legal and ethical challenges of its own, 
due to the fact that exotic BCAs can threaten local biodiversity 
(De Clercq et  al., 2011; Simberloff, 2012; Hajek et  al., 2016), 
leading to restrictions on the importation of new species/
populations into some jurisdictions. In this regard, it is easier 
to utilize PGPR in the protective conditions of a commercial 
greenhouse which provide a relatively isolated and controlled 
environment, as compared to field production, while potentially 
having less negative effects of the ecosystem.

Regulatory issues are another barrier to global application 
of PGPR-based biocontrol. At the moment, each individual 
country has its own regulatory system and the nature of these 
varies considerably among countries (Bashan et  al., 2014). For 
instance, it was indicated that barriers to growth of the BCA 
industry in Australia included high costs of developing new 
commercial BCAs (Begum et  al., 2017). One of the leading 
factors is the high regulatory costs in terms of importation 
of new BCAs into Australia (Begum et  al., 2017). Registration 
of BCAs requires close cooperation between governmental 
agencies and academic plus industrial sectors, to support the 
much needed evaluation and marketing of these new products. 
An obvious problem is the lack of programs for demonstrating 
the financial and environmental benefits of their utilization 
(Heimpel et  al., 2013). Commercialization should follow 
international legislation for international markets and local 
practical uses. An International Organization for Biological 
Control (IOBC)3 has gathered together practitioners and 

3 http://www.iobc-global.org/index.html

researchers from widely diverse fields to promote the 
identification of any limitations to broad-application of biocontrol 
products and to provide recommendations for mitigating these 
limitations (Barratt et  al., 2018).

Furthermore, at the grower level, low adoption of commercial 
BCAs occurs, as crop producers who have not been engaged 
in biocontrol or lack of basic knowledge of the area may see 
only slow progress in general acceptance, or no initial impact 
on crop disease within their production systems (Begum et al., 
2017). Thus, farmers may have little or no financial benefit 
compared with pesticides which tend to be  more reliable and 
predictable. Associated programmed introduction and local 
workshops could help to promote distinct BCA applications 
in specific farming areas.

In summary, PGPR-based biocontrol shows great promise, 
reducing the reliance of agrochemical in crop production. 
Wider application of PGPR biocontrol products requires 
substantial evidence of efficacy and acceptability, evidence of 
which must be  provided not only to the regulatory agencies, 
but also to crop producers, to gain their confidence in the 
capacity of the new product, in terms of disease control and 
yield improvement. High-valued crop production in the 
greenhouses could be  an excellent place for utilizing PGPR 
as BCAs, and exploring the efficacy under a variety of abiotic 
stresses. Based on current successful examples in greenhouse 
trials, the advantage of controlled environment conditions 
would be  and easier venue for initial development and 
implementation of BCA for disease management and attendant 
crop plant growth promotion.
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