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The length of the day (photoperiod) is a robust seasonal signal originated by earth orbital 
and translational movements, a resilient external cue to the global climate change, and 
a predictable hint to initiate or complete different developmental programs. In eukaryotic 
algae, the gene expression network that controls the cellular response to photoperiod 
also regulates other basic physiological functions such as starch synthesis or redox 
homeostasis. Land plants, evolving in a novel and demanding environment, imbued these 
external signals within the regulatory networks controlling organogenesis and developmental 
programs. Unlike algae that largely have to deal with cellular physical cues, within the 
course of evolution land plants had to transfer this external information from the receiving 
organs to the target tissues, and mobile signals such as hormones were recruited and 
incorporated in the regulomes. Control of senescence by photoperiod, as suggested in 
this perspective, would be an accurate way to feed seasonal information into a newly 
developed function (senescence) using an ancient route (photoperiodic signaling). This 
way, the plant would assure that two coordinated aspects of development such as 
flowering and organ senescence were sequentially controlled. As in the case of senescence, 
there is growing evidence to support the idea that harnessing the reliability of photoperiod 
regulation over other, more labile signaling pathways could be used as a robust breeding 
tool to enhance plants against the harmful effects of climate change.

Keywords: plant development, photoperiod, senescence, flowering, evolution, phytohormones

INTRODUCTION

Due to their particular static nature, plants have adapted a high number of interconnected 
pathways that respond to external and internal stimuli to execute their development programs 
(Pajoro et  al., 2014; Jing and Lin, 2020). Inherently, plants must mature in a plastic way that 
ensures that their development programs are closely coordinated with the seasonal changes 
in their environment. In this way, they can optimize all physiological decisions by synchronizing 
them with the correct time of the year and growth stage (Casal et  al., 2004). Each plant 
species has thus optimized their developmental plans for their particular habitats to maximize 
growth and the production of offspring. Therefore, to understand and predict plant behavior 
at any particular physiological stage and organ, we  need to interconnect all this information. 
This could be  crucial to protect existing plants or design new varieties capable of coping with 
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the unpredictable weather conditions promoted by global climate 
change (GCC; Nicotra et  al., 2010).

Arabidopsis thaliana as an annual model plant has provided 
a wealth of developmental information, which can be  applied 
to other species, including crops (Ferrier et  al., 2011), so this 
review will focus on annual plants. The advent of the genomic 
era and the generation of a massive amount of data on plant 
development from Systems Biology experiments in recent years 
have increased the need for using computer-aided approaches 
to handle the accumulated Terabytes of information (Kinoshita 
and Richter, 2020). However, as already mentioned, this 
complexity reflects the complex developmental responses of 
plants to internal and environmental changes. That is why our 
ability to interconnect different pathways becomes increasingly 
important to understand the behavior of plants (Franks and 
Hoffmann, 2012; Majeed et  al., 2020; Zhang et  al., 2020).

The correct response to external physical stimuli such as 
light or temperature is critical for the survival of any organism, 
and early plants developed a complex gene network to respond 
successfully to them (Serrano-Bueno et  al., 2017; Cheng et  al., 
2019). With the increasing signaling complexity of the new 
aerial habitats and the production of new organs (Bowman 
et al., 2017; de Vries and Archibald, 2018), land plants developed 
new forms of regulation that included transportable signals such 
as florigens, tuberigens, signal peptides, and hormones, among 
other mobile effectors (Thomas et  al., 2009; Wang et  al., 2015; 
Briones-Moreno et  al., 2017; Figure  1). This may explain why 

evolutionarily modern and complex developmental programs, 
such as flower formation or senescence, are deeply intertwined 
with hormonal signals (Thomas et  al., 2009), whereas ancient 
physiological responses, such as photosynthesis modulation or 
photoperiodic signaling in the leaf or algae, often respond to 
more physical stimuli such as changes in light or temperature 
(Serrano-Bueno et  al., 2017). For example, during the flowering 
process in Arabidopsis, there is a relatively low abundance of 
hormonal regulation in early photoperiodic responses in the 
leaf, whereas hormones play a more important role in the shoot 
apical meristem (SAM) and in the stages later in flower 
development (Lee et  al., 2019; Sang et  al., 2020).

In this review, we propose a connection between two processes 
generally considered independently, such as the photoperiodic 
response and the senescence program (Michelson et  al., 2018). 
Recent results show a seasonal input in the maturation and 
senescent programs (Körner and Basler, 2010; Kim et al., 2016), 
which allow us to propose a model through which photoperiod 
and senescence would be  coordinated to ensure a correct 
developmental program in the plant life cycle.

SENESCENCE

Senescence is a naturally-occurring phenomenon that involves 
a gradual decline of functional cells and tissues (Van Deursen, 2014). 
In many plants, senescence is the final stage in their developmental 

FIGURE 1 | Schematic representation of the evolution of the responses to environmental stimuli from algae to land plants. The primary receptor, like a leave 
(represented by an algal cartoon, below), responds primarily to physical stimuli (yellow ray). The secondary receptor, like the SAM (represented by a shoot cartoon, 
above) receives mobile signals that move along the conductive tissues (red dot). After receiving reinforcement from physical stimuli, target organs make different 
developmental decisions represented here by phase transitions, organogenesis, or senescence.
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programs, eventually leading to the death of the organism. 
However, despite its apparently deteriorating character, it is 
often a tightly controlled process whose main objective is 
to allow recycling, remobilization, and reassignment of nutrients 
from decaying tissues to developing organs (Wen et al., 2020). 
In plants with short life cycles, this recycling takes place in 
seeds or fruits, whereas in perennial plants, it mainly happens 
in storage organs such as stems or roots (Gan and Amasino, 
1997; Lim et al., 2007). In annual species, this process provides 
enough resources for the initiation, progression, and 
culmination of its reproductive stage, while in perennial 
species it often implies the beginning of a resting vegetative 
stage (Woo et  al., 2019).

Plant senescence is the result of massive physiological, 
biochemical, and metabolic changes that take place in all 
organs, but which have been well described in leaves and 
flowers. Although essentially dependent on age, senescence 
occurs when multiple internal and external signals are 
integrated into age-related information through different 
regulatory pathways (Buchanan-Wollaston et  al., 2003; Lim 
et  al., 2007; Majeed et  al., 2020). Considering their given 
spatial and temporal niches, plants can fine-tune the onset, 
progression rate, and nature of senescence to ensure successful 
offspring production and survival. Therefore, senescence is 
not only a precisely, fine-tuned process for the controlled 
degradation of macromolecules, but it is also considered a 
refined evolutionary strategy that plants have acquired to 
ensure reproduction and survival (Thomas and Stoddart, 
1980; Buchanan-Wollaston et  al., 2003; Lim et  al., 2007; 
Thomas et  al., 2009; Zhang et  al., 2020).

The Senescence Syndrome: 
Organ-Specific Characteristics
The senescence process involves many morphological, cytological, 
physiological, and molecular changes that are regulated and 
carried out following a specific order (Wojciechowska et  al., 
2018). In this section, we  will briefly describe how senescence 
initiation and progression are regulated at organ-specific level.

Leaf Senescence
Leaf senescence is a degenerative process that culminates in 
the death of leaf cells, and during which they undergo well-
defined cell structure and metabolic changes, as well as 
modifications in gene expression (Lim et al., 2007). Progression 
of leaf senescence is characterized by a change from assimilation 
to remobilization of nutrients and the involvement of degenerative 
events in cellular structures (Masclaux et al., 2000). The earliest 
cell structural change involves the progressive loss of functionality 
and breaking down of chloroplasts, where up to 70% of the 
leaf protein is contained. Concomitantly, a drastic metabolic 
shift in the chloroplast from anabolism to catabolism takes 
place, and chlorophyll is massively degraded together with 
other macromolecules such as RNAs, structural lipids, and 
proteins. This issue leads to the green-to-yellow color change 
of leaves that is visible during grain ripening and maturation 
in crops and during autumn in trees and other perennial plants 

(Thomas and Stoddart, 1980; Gan and Amasino, 1997; Buchanan-
Wollaston et  al., 2003; Lim et  al., 2007). Unlike chloroplasts, 
the nucleus and mitochondria remain intact from the onset 
of senescence until their last stages (Lim et  al., 2007). In 
Arabidopsis, mitochondrial integrity and energy production via 
respiration are maintained along the senescence process, although 
their numbers diminish significantly (Chrobok et  al., 2016).

Flower Senescence
Flower senescence is the terminal phase of its development 
and includes flower wilting, blossoms fading, and the shedding 
of floral sub-structures (Tripathi and Tuteja, 2007). Regulation 
of flower lifespan is not only essential to ensure that its 
maintenance is energetically cost-effective for the plant, but 
also to avoid flowers being misused after fulfilling their role 
(Ashman and Schoen, 1994; Rogers, 2006). Petals constitute 
relatively simple organs with similar characteristics to leaves 
that can be  used as a useful model to study the regulation 
of senescence. The senescence of the petal is the final stage 
of its development and constitute a tightly regulated programmed 
cell death process (PCD; Rogers, 2006, 2013; Van Doorn and 
Woltering, 2008). Although common physiological and 
biochemical changes are shared between petal and leaf senescence, 
both processes differ in terms of reversibility, nutrient 
remobilization purposes, and speed of progression (Ma et  al., 
2018). Furthermore, flower or petal senescence patterns exhibit 
a wide variation across species, being flower wilting or withering 
followed by abscission the most prominent and visibly shown 
events (Van Doorn and Woltering, 2008; Shahri and Tahir, 2011).

Hormonal Regulation of Senescence
As plant development progresses, many of the physiological 
stages are regulated by hormones, often coordinating a complex 
response. Senescence is not an exception, and many hormones 
play an important role in the process (Figure  2). With the 
aim of comparing photoperiod and senescence, this section 
briefly describes the hormonal control of senescence.

Jasmonate (JA), ethylene, and abscisic acid (ABA) are regarded 
as senescence-inducing hormones (Jing et al., 2005; Jibran et al., 
2013; Hu et  al., 2017; Ma et  al., 2018). An external addition 
of methyl jasmonates (MeJA) led to a rapid loss of chlorophyll 
and photochemical efficiency, as well as to an increased expression 
of developmental senescence-associated genes (SAGs; Xiao et al., 
2004; Jung et al., 2007), whereas the expression of photosynthesis-
associated genes was reduced (Jibran et  al., 2013). JA content 
was reported to increase during the progress of senescence 
(He et  al., 2002). Consistent with increasing JA levels during 
leaf and flower senescence, genes involved in JA synthesis and 
signaling pathways showed an increased expression during 
organ senescence (Porat et  al., 1993, 1995; He et  al., 2002; 
Van Der Graaff et  al., 2006; Breeze et  al., 2011). Also, a raise 
in transcript abundance of JA biosynthetic genes has been 
found previous to any visible signs of chlorophyll loss, suggesting 
a JA role from early stages of leaf senescence (Figure  2; Jibran 
et  al., 2013). Curiously, the JA-insensitive mutant coi1-1 from 
CORONATINE INSENSITIVE 1 (COI1) does not show signs 
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of JA-induced leaf senescence (He et  al., 2002), although the 
repression of Rubisco activase (RCA) observed in coi1-1 has 
been described as a mechanism by which increased JA content 
can promote senescence (Shan et  al., 2011).

In a similar way to JA, ethylene application accelerates 
leaf and flower senescence, while inhibition of its synthesis 
or signaling promotes senescence delay (Buchanan-Wollaston 
et  al., 2005; Jing et  al., 2005; Kim et  al., 2014). Similarly, 
a reduced expression of the enzyme involved in the ethylene 
biosynthesis, 1-Aminocyclopropane-1-Carboxylic Acid Oxidase 
(ACO), delayed flower senescence and flower abscission in 
some cultivars of petunia, torenia, and carnation (Savin 
et  al., 1995; Aida et  al., 1998; Huang et  al., 2007; Tan 
et  al., 2014). Mutant plants in ethylene signaling (ethylene-
insensitive2, ein2) also displayed an arrest in developmental 
senescence (Buchanan-Wollaston et al., 2005). Another central 
factor of ethylene signaling, ETHYLENE-INSENSITIVE3 
(EIN3), was shown to activate two senescence-promoting 
transcription factors (TFs), ORE1 and AtNAP, that positively 
regulate leaf senescence (Kim et  al., 2014). Increase of 
transcript abundance of ethylene synthesis and signaling 
genes has been found to occur in the same timeframe in 
which a decline of chlorophyll concentration and transcripts 
of photosynthetic genes is observed, which suggests that 
ethylene promotes the latter stages of leaf senescence 
(Figure  2; Breeze et  al., 2011).

As in the case of JA, endogenous ABA levels increase in 
leaf tissues as they mature, which is accompanied by the 
upregulation of genes associated with biosynthesis and signaling 
of ABA (Philosoph-Hadas et  al., 1993; Buchanan-Wollaston 
et  al., 2005; He et  al., 2005; Van Der Graaff et  al., 2006; 
Breeze et  al., 2011). Exogenous application of ABA promotes 
senescence and abscission (Figure 2; Nooden, 1988; Borochov 
and Woodson, 1989; Becker and Apel, 1993; Panavas et  al., 
1998; Yang et  al., 2002) and plants under environmental 
stresses showing leaf senescence have an increased ABA 
content in their leaves (Lim et  al., 2007; Sah et  al., 2016). 
Moreover, ABA regulates the expression of SAGs 

(Zhang and Gan, 2012; Gao et  al., 2016; Zhao et  al., 2016; 
Asad et al., 2019). Regarding the phase in which they function, 
different studies have pointed out to an effect of ABA on 
leaf senescence that depends on age, concomitant with rising 
of ABA levels in later stages of flower development. This 
suggests that ABA may play a role in the enhancement of 
senescence rather than in its onset (Figure  2; Hunter et  al., 
2004; Lee et al., 2011; Arrom and Munné-Bosch, 2012; Zhang 
et  al., 2012; Gao et  al., 2016).

On the contrary, the phytohormone gibberellin (GA) and 
the gaseous signaling molecule nitric oxide (NO) have been 
reported as senescence-retarding effectors whose content declines 
during the progression of developmental senescence (Figure 2; 
Schippers et  al., 2007; Procházková and Wilhelmová, 2011; 
Bruand and Meilhoc, 2019). Different studies in GA biosynthesis 
or GA signaling deficient mutants further support GA role 
as a negative player in regulating senescence (Van Der Graaff 
et  al., 2006; Chen et  al., 2014; Lü et  al., 2014). In Arabidopsis, 
expression of the GA deactivating enzyme GA 2-oxidase 2 
was reported to be  increased during senescence (Van Der 
Graaff et  al., 2006), while silencing of the GA biosynthetic 
gene GA 20-oxidase resulted in accelerating petal senescence 
in cut rose (Lü et  al., 2014). Leaf senescence in Arabidopsis 
was retarded in the GA biosynthesis mutant ga1-3, in which 
negative regulators of GA signaling pathways abnormally 
accumulate. Regarding the gaseous signaling NO, exogenous 
application of NO or NO-donor compounds extended fruits 
and vegetables post-harvesting life and arrested the senescence 
of flowers (Leshem et al., 1998). Although NO has been linked 
to other molecules involved in senescence, no mechanism of 
NO-preventing effect over leaf senescence has been described 
yet. Different studies using NO-deficient Arabidopsis plants 
have demonstrated that NO regulates expression of 
photosynthetic genes and SAGs (Mishina et  al., 2007; Liu and 
Guo, 2013). The recent identification of TFs that respond to 
NO levels in Arabidopsis (Imran et  al., 2018) can pave the 
way to further understand how NO contributes to the regulation 
of senescence.

FIGURE 2 | Schematic representation of the chronological effect of different phytohormones on senescence progression. Promotion or delay of senescence can 
take place at different stages throughout the course of the senescence process, reflected by the central arrow stream. The effect of each hormone or signaling 
molecule is indicated on the approximate time of their effect. Arrows indicate positive effects over senescence (senescence promoting, above), while bars indicate 
negative effects (senescence retarding, below).
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PHOTOPERIODIC SIGNALING

In any living organisms, changes in developmental processes 
throughout the year often define their living strategy. This 
is particularly true of annual plants, such as Arabidopsis, 
as well many of the crops that feed humanity (rice, corn, 
and wheat), as they have to precisely plan for germination, 
growth, reproduction, and senescence to complete a life 
cycle in 1  year (Preston and Fjellheim, 2020). The way 
they respond to each seasonal change is also a tactical 
decision, for example, to coincide with pollinators, outsmart 
potential opponents, or conversely, modify flowering time 
to avoid competition (Franks and Hoffmann, 2012). These 
decisions are closely related to how they respond to fluctuating 
seasonal changes in environmental conditions and have 
evolutionarily shaped how their developmental programs 
respond today.

For a plant, a particularly reliable seasonal change is day 
length, since its constant change throughout the year establishes 
the succession of seasons and indicates the duration and intensity 
of energy availability. Therefore, day length has been used 
since early in plant evolution as a reliable source of information 
for making crucial developmental decisions (Serrano-Bueno 
et  al., 2017). In the green alga Chlamydomonas, day length 
(photoperiodic) decisions regulate starch accumulation, 
reproductive behavior, cell division program (Serrano et  al., 
2009), photosynthesis protection (Tokutsu et  al., 2019), or the 
retrograde signal from the chloroplast to the nucleus (Gabilly 
et  al., 2019). This evolutionarily conserved mechanism also 
regulates flowering time and starch synthesis in higher plants, 
but involves a much larger number of genes, reflecting how 
evolution often responds to increasingly demanding complexity 
by amplifying the gene network associated with it (Ortiz-
Marchena et  al., 2014). But it also indicates that a seasonal 
detection system based on photoperiod signals was established 
very early in evolution and still governs many physiological 
responses in plants (Romero-Campero et  al., 2013).

Early Floral Transition, a Physical 
Leaf-Triggered Response
One of the best studied photoperiodic responses in higher 
plants is the floral transition (Andrés and Coupland, 2012; 
Kinoshita and Richter, 2020). It is becoming increasingly clear 
that a conserved central module in the developmental processes 
of plants is designed to receive, process, and transfer signals 
coming from changes in day length in the leaves to decide 
the precise moment of the floral transition (Song et  al., 2018). 
This central floral module dates back to gymnosperms, evolved 
from an ancestral algal system to regulate photoperiodic signaling 
(Serrano-Bueno et  al., 2017), and is conserved in monocots 
and dicots (Shrestha et al., 2014). The core gene module consists 
of genes that encode a family of B-Box proteins called BBX 
or more specifically CONSTANS-like (COL) that can transfer 
light and time information (from the circadian clock) to the 
developmental regulatory program (Valverde, 2011; Shim et al., 
2017). The presence of these central TFs of which CONSTANS 

(CO or BBX1) in Arabidopsis was the first to be  identified 
(Putterill et  al., 1995), must be  strictly controlled to assure a 
perfectly synchronized floral transition (Suárez-López et al., 2001; 
Valverde et  al., 2004). In this way, CO expression is controlled 
at the transcriptional level by a set of TEMPRANILLO (TEM), 
BHLH (FBHs), and DOF (CDFs) TFs (Castillejo and Pelaz, 
2008; Fornara et  al., 2009; Ito et  al., 2012) whose expression 
is simultaneously controlled by microRNAs, photoreceptors (PHYs 
and CRYs), clock genes (GIGANTEA, GI), and LOV-containing 
ubiquitin ligases (Mizoguchi et  al., 2005; Sawa et  al., 2007; 
Kubota et  al., 2017), a bryophyte design that is capable of 
detecting light and sending proteins for degradation through 
the proteasome (members of the ADAGIO family of E3 ligases 
such as ZLP or FKF; Song et  al., 2014). These set of proteins 
ensures that CO expression is high in the leaves during the 
day in Arabidopsis only in long days (LD) but not in short 
days (SD; Suárez-López et  al., 2001; Figure  3A).

But a simultaneous posttranslational regulatory level is needed 
to fully confer the day length information to the core 
photoperiodic floral regulome of the leaf (Valverde et al., 2004; 
Shim et  al., 2017). In this way, CO is controlled at the protein 
level by a specific association with a set of ring-finger E3 
ligases (SPA1, COP1, and HOS1) that are activated through 
the interaction of CRYs and PHYs, thus transmitting a second 
light information level to the photoperiod pathway (Jang et al., 
2008; Liu et  al., 2008; Lazaro et  al., 2012). In Arabidopsis 
leaves, stable and active CO protein in the evening of a LD 
is able to associate with NF-YB, NF-YC TFs, substituting NF-YA 
from the trimeric conformation (Wenkel et  al., 2006). The 
CO/NF-YB/NF-YC trimeric complex is capable of interacting 
with DNA and specifying transcriptional activation at CO 
responsive element (CORE) sites of target promoters, such as 
the florigen FT (Tiwari et  al., 2010; Shen et  al., 2020) or the 
starch synthase GBSSI (Ortiz-Marchena et  al., 2014). In fact, 
this trimeric conformation is observed in Chlamydomonas 
(Tokutsu et  al., 2019) and possibly in other proteins of the 
CONSTANS, CONTANS-LIKE, TOC1 (CCT) family (Shen 
et  al., 2020). This so-called external coincidence model of CO 
protein explains why Arabidopsis and other long day plants 
will flower earlier in LD than in SD (Andrés and Coupland, 
2012; Yang et  al., 2014). But in other short day plants, CO 
protein has an almost opposite role, functioning as a repressor 
of FT expression in LD and activating FT expression in SD 
as in rice or Pharbitys species (Hayama et  al., 2003, 2007).

In long day plants, therefore, CO will activate FT expression 
in the leaves during LD and will function as a repressor in 
SD (Samach et  al., 2000; Luccioni et  al., 2019), while in short 
day plants, CO will function in a repressing complex in LD 
and activate transcription in SD (Hayama et al., 2003; Figure 3A). 
How CO is able to differentiate both stages and function as 
a repressor or activator is not fully understood, but it could 
be at the core of making a plant long day or short day flowering. 
The so-called neutral plants, which are not able to respond 
to changes in day length, such as tomato, often present a 
defective photoperiod response or have lost some of the 
regulatory components that would respond to light signals 
(Cao et  al., 2015; Gaudinier and Blackman, 2019).
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The Florigen Signal, From Leaves to the 
SAM
The activation of CO in the leaves is a physical phenomenon 
that depends upon light density, quality, and exposure length, 
a complex regulatory mechanism originated from a relatively 
simple algal toolkit (Serrano-Bueno et  al., 2017). When life 
on land evolved into aerial structures that allowed reproduction 
independently from water, floral structures, and seeds were 
created (Pires and Dolan, 2012; Morris et  al., 2018), but then, 
the external information had to be  transported from the 
photosynthetic tissues where it was originated, to the meristems 
where the reproductive structures were produced. Therefore, 
different long-distance effectors were designed to transfer 
developmental and physiological signals from receiving organs 
to target tissues such as the tuberigen StSP6A (Navarro et  al., 
2011), the metabolic signal HY5 (Chen et  al., 2016), or the 
clock signal ELF4 (Chen et  al., 2020a). In the case of the 
floral transition, the main florigenic signal is the production 
of the protein FT in the leaves and its controlled transport 
to the SAM (Corbesier et  al., 2007; Liu et  al., 2013). Briefly, 
the transformation of the vegetative apical meristem into a 
floral meristem starts with the import of FT into the apical 
cells via the phloem (Abe et  al., 2019). Once in the first 
layers of the SAM, FT can interact with a 14-3-3 chaperon 
that allows the binding of the TF FLOWERING LOCUS D 
(FD), and this so-called florigen complex (FC) is then able 
to activate the expression of other TFs like SUPRESSOR OF 
OVEREXPRESSION OF CONSTANS (SOC1), LEAFY (LFY), or 
APETALA1 (AP1) that eventually activate the cascade of MADS 
box TFs producing the different floral whorls (Abe et al., 2005; 
Wigge et  al., 2005; Collani et  al., 2019). In fact, QTL analyses 
have shown that senescence is influenced by functional alleles 
of the FT repressor, MADS box TF FLOWERING LOCUS C 
(FLC), and its positive regulator FRIGIDA (FRI), whose expression 
levels negatively correlated with those from senescence-induced 

genes as well as the floral promoters FT and SOC1 (Wingler, 
2011). These studies provide a link between flowering and 
senescence in Arabidopsis independent of photoperiodic signaling.

However, several experiments indicate that CO regulation 
and function in development maybe more complex than above 
described, such as participating in an interplay between CO 
and GA signaling (Andrés et  al., 2014), having an active role 
on stomata opening (Ando et  al., 2013) and promoting a link 
with the circadian clock by the interaction with PRR proteins 
(Hayama et  al., 2017), among others (Kinoshita and Richter, 
2020). Recently, a protective role for chloroplast photo redox 
defense and retrograde signaling has been reported in algae 
(Gabilly et  al., 2019) that could also be  conserved in plants, 
as well as an active role in sugar mobilization from starch 
(Ortiz-Marchena et al., 2014) and a regulation by phosphorylation 
(Sarid-Krebs et  al., 2015; Chen et  al., 2020b). The complex 
aspects of CO regulation, the different roles it is playing and 
its presence in different organs suggest that seasonal information 
is not only controlling floral transition but also other important 
physiological processes (Valverde, 2011). Here, we present some 
evidences that suggest that CO may also be  involved in 
senescence by providing a seasonal input to this important 
developmental process.

PHOTOPERIOD AND SENESCENCE

Many physiological processes in plants are affected by 
photoperiodic signaling, and particularly important for this 
perspective review, they include flowering and senescence 
(Nooden et  al., 1996; Valverde, 2011). In general terms, 
Arabidopsis developmental processes are accelerated under LD. 
In this sense, Kim et  al. (2016) compared the expression of 
the senescence marker SENESCENCE 4 (SEN4) in leaves of 
Arabidopsis plants grown under LD and SD conditions. 

A

B

FIGURE 3 | Comparison of the effect of long days (LD) and short days (SD) signals on flowering and senescence. (A) Schematic description of day length effect on 
flowering and its capcity to activate FT gene (green box) expression in LD plants (left) and SD plants (right). CONSTANS (CO) abundance is represented by the size of 
the blue circle, while the arrow size reflects its capacity to activate FT mRNA (green line) production. (B) Observed results of LD or SD on senescence. Length of the day 
is represented by a light/black diagram and a white background (LD) or yellow background (SD). Arrows indicate positive effects; bars indicate repressive effects.
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SEN4 expression increased under both conditions; however, 
the increase was higher under LD than under SD, suggesting 
a possible senescence dependence on photoperiod. This effect 
was also observed in the long day plant Pea (Pisum sativum L.). 
A pea early flowering genetic line named G2, showed early 
apical senescence under LD, while in SD, it extended the 
reproductive phase and showed delayed apical senescence 
(Proebsting et  al., 1976, 1978). Parrott et  al. (2012) showed 
an acceleration of leaf senescence associated to LDs in barley 
(Hordeum vulgare L.). Under LD, they observed the beginning 
of leaf senescence at day 77 after sawing, while under SD 
treatment, the first symptoms of leaf senescence showed up 
at day 105. Another point of connection between photoperiod 
and senescence is mediated by the FBHs TFs. In Arabidopsis, 
overexpression of FBH4 promoted a high increase in CO levels 
and led to an early flowering phenotype, while CO expression 
was reduced in the fbh1-4 mutant (Ito et  al., 2012). In Petunia 
flowers (Petunia hybrida), PhFBH4 levels were significantly 
increased during senescence, indicating a possible connection 
with photoperiodic signaling (Yin et  al., 2015). PhFBH4 
overexpression line showed early flower senescence, whereas 
phfbh4 antisense silencing lines extended flower longevity. In 
addition, the expression of senescence associated genes (SAG12 
and SAG29) was drastically altered in Petunia PhFBH4ox flowers.

On the contrary, in short day plants, the effect of day length 
over senescence is the opposite to what was observed in LD. 
This way, post flowering SD treatment promoted leaf senescence 
while LD delayed aging in the short day plant Soybean. Han 
et al. (2006) proposed that the photoperiodic control of development 
is active from germination through maturation, and the 
photoperiodic signals are likewise mediated by phytochromes 
throughout plant development. In rice, the CO like gene, Ghd2 
(Grain number, plant height, and heading date2) is involved in 
the regulation of leaf senescence and drought resistance. The 
accelerated senescence and the increase of many SAGs transcripts 
in Ghd2ox rice plants grown under drought stress revealed the 
implication of Ghd2 in drought-induced senescence (Liu et al., 2016).

From the above referred data, it seems that in annual plants, 
the day length effect over senescence seems to be  opposite in 
long day and short day plants: while LD condition accelerates 
senescence in long day plants, in short day plants, this process 
is delayed. On the contrary, SD treatment seems to induce 
aging in short day plants, whereas reduces senescence in LD 
plants. Therefore, a correlation between flowering phenotype/
CO activity and senescence can be  deduced, in both LD and 
SD plants and this is reflected in Figure  3B. Although an 
early study in the Arabidopsis early flowering accession Ler 
showed that leaf senescence was unaffected in the co-2 mutant 
grown under continuous illumination (Hensel et  al., 1993), it 
has been argued that such light regime could cause the uncoupling 
of flowering from the senescence process (Wingler, 2011). 
However, what can be deduced from experiments in the literature 
run in different light regimes, is that early flowering phenotype 
and high CO activity are associated with accelerated plant 
senescence, while late flowering phenotype and low CO activity 
correlate well with a delay in this effect. These facts reveal 
that the relationship between photoperiod and senescence may 
be  due in part to CO function.

Photoperiodic Signaling and 
Phytohormones
Phytohormones play an important role in plant senescence as 
discussed above. This signal also affects flowering time/CO 
activity in Arabidopsis through the photoperiod pathway (Davis, 
2009), particularly in late developmental stages (Figure  4). A 
short description of the effect of phytohormones in photoperiodic 
flowering follows and will help to understand the relationship 
between both processes.

It has been described that a mutant of the JA signal receptor 
CORONATINE INSENSITIVE 1 (COI1) showed early flowering 
phenotype, while overexpression of the JA signal repressor 
JASMONATE-ZIM-DOMAIN PROTEIN 1 (JAZ1) delayed this 
process (Robson et  al., 2010; Zhai et  al., 2015). While the 
loss-of-function coi1-1 mutant showed early flowering phenotype 

A B

FIGURE 4 | Effect of hormones on photoperiodic signaling and a proposed model for photoperiod and senescence connection. (A) Schematic overview of 
phytohormones effects on central photoperiod module (yellow box) through different effectors (in bold) in Arabidopsis plants under LDs (positive effect: green stick 
and negative effect: stop symbol). (B) A model of how photoperiod, phytohormones, and senescence could be related. Arrows indicate positive effects; bars 
indicate repressive effects.
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and high FT expression, the molecular mechanism behind the 
phenotype is unknown (Zhai et  al., 2015). Zhang et  al. (2015) 
described that JAZ1 controls the activity of TARGET OF EAT1 
(TOE1) and TOE2, which repress FT transcription. In the 
morning, TOE1 and TOE2 can form a complex with CO, 
while in the afternoon, both proteins interact with CO stabilizer 
FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) to 
suppress CO activity in both cases (Song et  al., 2012; Zhang 
et  al., 2015). Regarding the effect of photoperiod over JA 
pathway, Cagnola et  al. (2018) analyzed the transcriptome of 
Arabidopsis plants grown under SD and then transferred to 
LD. The study revealed that LD enhanced JA response to 
increase plant defense; however, this effect was independent 
of the hormone levels.

Among phytohormones, the role of GAs in Arabidopsis 
flowering is probably the best understood (Davis, 2009). 
Exogenous application of GAs as well as overexpression of 
the biosynthetic gene GA5 promoted flowering (Huang et  al., 
1998; Coles et al., 1999). Diverse genetic studies also suggested 
that GA signaling promoted flowering under both SD and 
LD (Galvão et  al., 2012; Porri et  al., 2012; Yu et  al., 2012). 
Two studies published in 2016 revealed that GAs induce FT 
expression by a CO-dependent pathway. Moreover, DELLA 
proteins, the main repressors of GA signaling, can directly 
interact with CO and inhibit CO/FT-mediated flowering in 
LDs (Wang et  al., 2016; Xu et  al., 2016). These facts evidence 
an integration of GA pathway and photoperiodic signaling to 
modulate flowering under LDs. Regarding flowering induction 
by GAs in SD, a recent study stablished that MYC3, a bHLH 
TF, is stabilized by DELLA proteins in the GA pathway to 
suppress FT expression by opposing CO activation (Bao et  al., 
2019). MYC3 regulates flowering under SD through FT 
suppression. This TF competes with CO to regulate FT 
transcription. Therefore, GAs promote flowering in SD through 
DELLA proteins interaction with MYC3. This interaction 
promotes GA-mediated degradation of MYC3, releasing CO/
FT-mediated flowering in SD (Bao et  al., 2019).

Ethylene production results in a delayed floral transition. 
Arabidopsis plants grown in the presence of ethylene or a 
precursor, showed late flowering phenotype (Achard et  al., 
2006). Similarly, the Arabidopsis mutant ctr1, a main negative 
regulator of ethylene signaling, showed the same flowering 
phenotype under LD and SD photoperiodic conditions (Achard 
et  al., 2007). This delay of flowering can be  partially rescued 
by mutation of genes encoding DELLAs. This finding indicates 
that the effect of ethylene on flowering may be  in part due 
to modulating the activity of DELLA proteins. Also, activated 
ethylene signaling enhanced the accumulation of DELLAs by 
reducing bioactive GA levels (Achard et  al., 2007). It has been 
demonstrated that the effect of ethylene on flowering depends 
on EIN3, so that ethylene stabilizes EIN3 and EIN3-like proteins 
by inhibiting the activity of their proteases Cullin1-based E3 
complexes EBF1/EBF2 (Binder et  al., 2007). Actually, GAs 
application partially restored flowering time in ebf1ebf2 double 
mutant, indicating that ethylene effect over flowering cannot 
be  exclusively due to the inhibition of GA signaling. This fact 
also reveals the existence of an unknown ethylene control of 

flowering independent of DELLAs (Achard et al., 2007). Regarding 
the effect of photoperiod over ethylene pathway, an early target 
gene of CO activity is involved in ethylene biosynthesis (Samach 
et al., 2000). ACS10, which encodes a putative synthase involved 
in ethylene biosynthesis, was differentially expressed in the 
CO-activity inducible plant 35S:CO:GR in response to the 
inducer DEXAMETASONE (DEX). Treatment of 35S:CO:GR 
plants with DEX increased the abundance of ACS10 mRNA 
(Samach et  al., 2000).

Abscisic acid signal delays flowering by upregulating FLC 
and downregulating CO through ABI5-BINDING PROTEIN 2 
(AFP2). The bZIP TF ABSCISIC ACID-INSENSITIVE MUTANT 
5 (ABI5) can bind to the FLC promoter, activate FLC expression 
and delay flowering (Wang et al., 2013). Furthermore, flowering 
time was significantly delayed, and CO expression was reduced, 
in an Arabidopsis AFP2ox line under LD conditions, while, 
in the loss-of-function afp2 mutant, flowering time was markedly 
accelerated and CO expression was increased. This study 
showed that AFP2 interacts with CO and the transcriptional 
corepressor TOPLESS-related protein2 (TPR2) to form the 
CO-AFP2-TPR2 complex that mediates CO degradation during 
the night (Chang et  al., 2019). These studies reveal a role 
for AFP2 in photoperiodic flowering by modulating CO levels. 
Regarding the effect of photoperiod over ABA pathway, Zeevaart 
(1971) analyzed ABA content in the LD plant spinach (Spinacia 
oleracea L.) transferred from SD to LD, and the ABA content 
increased 2 to 3-fold.

It has been described that the gaseous signaling molecule 
NO repressed flowering in Arabidopsis (He et  al., 2004). Plants 
treated with a NO-promoting agent, as well as a mutant 
overproducing NO (nox1), showed late flowering phenotype, 
while the Arabidopsis NO deficient mutant (nos1) flowered 
early. nox1 mutant showed upregulation of the FLC transcript; 
however, the molecular mechanism still awaits further 
investigation. Late flowering phenotype associated to NO levels 
cannot be  exclusively assigned to the interaction with the 
vernalization pathway, since expression levels of the photoperiodic 
genes CO and GI were reduced in the nox1 mutant (He et  al., 
2004). Thus, NO was proposed to interact with the photoperiod 
pathway to regulate CO expression through a GI-dependent 
pathway. A recent study revealed that this interaction depends 
on sugar signaling (Zhang et al., 2019). Sucrose supplementation 
reversed the effects of NO treatment over CO and GI transcripts. 
While NO induced S-nitrosation modification on CO and GI, 
sucrose reduced the levels of this modification in both proteins 
(Figure  4A).

CONCLUDING REMARKS

The influence of phytohormones on the central regulatory module 
of photoperiodic signaling often involves the central hub 
CONSTANS, as shown in Figure  4A. Interestingly, many 
senescence-inducing phytohormones, such as ethylene, jasmonato, 
and ABA, are also involved in the photoperiodic-dependent 
flowering signal. In these cases, phytohormones delay flowering 
time by activating CO-repressors, DELLAs, TOE1/TOE2, and 
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AFP2/TRP2 proteins. Although there are many works that analyze 
the effects of phytohormones over the photoperiodic pathway, 
few of them describe the effect of photoperiodic signaling on 
phytohormones and their responses in Arabidopsis (Samach 
et  al., 2000; Cagnola et  al., 2018), or in other species (Zeevaart, 
1971). It would be  of particular interest to further investigate 
this relationship in order to establish a complete overview of 
photoperiod, phytohormones, and senescence cycle in plants.

Most of the studies we  have referred to in this review have 
been conducted on the annual model plant Arabidopsis. It is 
not clear whether photoperiodic regulation of senescence could 
also occur in perennials. It has been reported that branches 
of the perennial Arabis alpina could behave as annuals, since 
leaves from flower-containing branches senesced earlier than 
those from flower-devoid branches (Wingler, 2011). Another 
major question concerns the directionality of the connection 
between flowering and senescence in perennials, since flower 
promotion does not always result in early senescence. Miryeganeh 
et  al. (2018) showed that senescence is synchronized in 
Arabidopsis regardless of flowering initiation; however, a strong 
synchronization of flowering termination and whole-plant 
senescence was observed. Senescence-related genes were 
upregulated before flowering termination, pointing out that 
nutrient remobilization preceded reproduction termination 
(Miryeganeh et  al., 2018). Further studies will be  needed to 
explore whether in perennials flowering and senescence are 
connected in a similar manner to annuals.

Based on all the data collected in this perspective article, 
we propose a model on how photoperiod and senescence could 
be  related, where CO regulation could be  the central axis 
(Figure  4B). This model includes the implication of 
phytohormones, such as JA, ethylene, and ABA, on this 
relationship. In this model, we suggest that senescence regulation 
by photoperiod is due to CO activation of phytohormone 
responses. This scenario also includes a negative feedback loop, 
where phytohormones, in turn, inhibit CO activity.

In conclusion, this perspective review tries to shed new light 
on the increasingly complex regulation of plant development by 
integrating two independent, but chronologically interconnected 
programs, such as photoperiodic signaling and senescence. Early 
physiological responses (light and temperature) would be transmitted 
through physical signaling systems of archaic origin, while more 
complex regulatory pathways of modern origin would involve 
mobile signals and/or hormonal actions. Developing genetic strategies 
to modulate robust and constant photoperiodic signals to control 
plant development could have the added value of balancing the 
deleterious effects that other less consistent signals such as 
temperature, drought, or salinity will have on plant growth in 
the future GCC scenario.
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