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Greenhouse cultivation can improve crop yield and quality, and it not only solves people’s
daily needs but also brings considerable gains to the agricultural staff. One of the most
widely cultivated greenhouse crops is tomato, mainly because of its high nutritional
value and its good taste. However, there are a number of anomalies for the tomato
crop that pose a threat for its greenhouse cultivation. Detection of tomato anomalies in
the complex natural environment is an important research direction in the field of plant
science. Automated identification of tomato anomalies is still a challenging task because
of its small size and complex background. To solve the problem of tomato anomaly
detection in the complex natural environment, a novel YOLO-Dense was proposed
based on a one-stage deep detection YOLO framework. By adding a dense connection
module in the network architecture, the network inference speed of the proposed model
can be effectively improved. By using the K-means algorithm to cluster the anchor
box, nine different sizes of anchor boxes with potential objects to be identified were
obtained. The multiscale training strategy was adopted to improve the recognition
accuracy of objects at different scales. The experimental results show that the mAP and
detection time of a single image of the YOLO-Dense network is 96.41% and 20.28 ms,
respectively. Compared with SSD, Faster R-CNN, and the original YOLOv3 network, the
YOLO-Dense model achieved the best performance in tomato anomaly detection under
a complex natural environment.

Keywords: deep learning, plant diseases recognition, DenseNet, real-field scenarios, object detection

INTRODUCTION

With the development of the economy, agriculture is transforming from traditional to modern,
and greenhouses, as an important support for modern agriculture, are widely used. A greenhouse
can be kept untouched by the external environment and at the same time not be restricted by
the geographical and seasonal factors of each crop cultivation, thus showing the capabilities of
controlled environment agricultural production (Xie et al., 2017). Tomato, an important vegetable
variety grown in greenhouses, is one of the most prevalent fruits and vegetables cultivated
worldwide. Tomato is highly favored by global consumers because it is rich in antioxidant lycopene,
multivitamins, and minerals and has the advantages of low heat and considerable cultivation
benefits (Heuvelink, 2005). However, a research field with huge potential about tomato cultivation
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is dealing with the detection of possible threats because crop
diseases are one of the main factors affecting the yield and quality
of agricultural products.

Diseased crops usually show discoloration, necrosis,
deformity, decay, and wilting after infection (Alemu, 2015).
Most of the disease phenomena will be reflected in the leaves
of crops (Pethybridge and Nelson, 2015), and the judgment
of diseases through the leaves of crops has become one of the
common means in the field of agriculture (Barbedo, 2016).
Traditional identification of crop diseases is accomplished
manually by farmers in the field, and incorrect diagnosis and
unnecessary pesticide application are common (Juncheng
et al., 2018). Not only that, the traditional manual judgment
method has the disadvantages of being time-consuming and
labor-intensive, and human-subjective factors play a major role
(Ghazi et al., 2017).

China is one of the largest tomato-producing and -consuming
countries in the world (Xu et al., 2000), and tomato production
is one of the important ways for farmers to increase their income
(Liu, 2018). Early detection of tomato anomalies in the complex
natural environment is of great significance to reduce the cost of
manual identification and improve tomato quality and yield. The
primary task and design difficulty are the real-time and accurate
identification and spatial detection of tomato anomalies. The
growth stages of tomato plants present high diversification, and
tomato anomaly images in natural environments can be easily
influenced by light, occlusion, and background noise, which
cause some difficulties in the detection of tomato anomalies.
Therefore, the rapid and accurate identification of tomato
anomalies in the complex environment is a key problem in
achieving an automated inspection of tomato anomalies.

When using object detection algorithms, usually feature
extractors such as histogram of gradient (HOG), scale-invariant
feature transform (SIFT), and Haar-like feature are manually
designed to extract object features, which are then given as
input to the support vector machine (SVM), iterator AdaBoost,
random forest (RF), and other classifiers for classification and
recognition. The most common object detection methods for
tomato anomalies are basically based on color and shape features
for feature extraction and analysis (Xu et al., 2011; Martinelli
et al., 2015). The generalization of the most common method
is poor, and it is difficult to extract reasonable features. Also,
the calculation complexity is high, and therefore sometimes
the requirements of accuracy and speed for real-time detection
are not fulfilled. Most of them do not take into account the
influencing factors in the complex environment of a greenhouse
and have insufficient robustness against the changes of various
features, so it is difficult to meet the actual requirements.
Deep convolutional neural networks (DCNNs), which have
emerged in recent years, provide a new idea for tomato anomaly
object detection.

Deep learning-based detection algorithms can be divided into
region-based and regression-based. The region-based method
generates candidate regions by selective search algorithm and
then classifies them using convolutional neural networks. A few
of these methods are RCNN (Girshick et al., 2014), Fast R-CNN
(Shahid et al., 2015), Faster R-CNN (Ren et al., 2017), and

SPP-Net (He et al., 2014). This kind of region-based, two-step
method can achieve high detection accuracy, but it has the
disadvantages of complex network and slow detection speed.
Regression-based methods such as SSD (Liu et al., 2016) and
YOLO (Redmon et al., 2016) frame take the object detection
problem as a regression one, so the object class probability
and position coordinates can be directly regressed. The YOLO
series algorithm based on regression have fast processing speed
and high accuracy, so they have been widely used in actual
scenarios, such as fruit detection (Xu et al., 2020), mask-wearing
detection (Ren and Liu, 2020), and traffic sign detection (Zhang
et al., 2021). YOLOv2 (Redmon and Farhadi, 2017) and YOLOv3
(Li Y. et al., 2019) were improved on the basis of the YOLO
algorithm, which further enhances the detection effect. However,
the network structure of the fast regression-based detection
algorithm remains large, and therefore the speed of deploying to
embedded services is slow while the deployment cost is high.

Artificial intelligence has been widely used in agriculture in
recent years (Tang et al., 2020). Farmers have gradually begun to
use smartphones to detect crop anomalies (Prasad et al., 2014). In
view of the problem of crop anomaly detection, Li W. et al. (2019)
proposed a pipeline based on deep learning for locating and
counting agricultural pests in image by a self-learning saliency
feature map, and the average accuracy (mAP) achieved was 0.885.
Xing et al. (2019) developed a simple but effective CNN model
based on a self-built dataset, which increased the complexity
of cross-channel operation and made the frequency of feature
reuse adapt to the network depth, but this algorithm cannot be
widely used in systems of general performance as it requires
a high amount of computation. For the detection of tomato
anomalies, Fuentes et al. (2018) proposed a detection algorithm
in a real, natural environment based on Faster R-CNN, and the
average accuracy it achieved was up to 96% for 10 common
tomato anomalies including leaf mold, gray mold, canker, plague,
miner, low temperature, powdery mildew, whitefly, nutritional
excess, and yellow leaf curl. Zhang Y. et al. (2020) also proposed
a detection method based on the improved Faster R-CNN
algorithm, but this method has a slow detection speed and is
not suitable for the real-time detection of tomato anomalies
with large datasets.

YOLOv3 is an end-to-end object detection algorithm based
on Darknet-53, and multiscale feature fusion is done via FPN
(Feature Pyramid Networks) (Lin et al., 2017). YOLOv3 has the
characteristics of fast detection speed and strong comprehensive
performance, but when it is directly applied to certain specific
detection objects, due to the influence of scene complexity
and feature diversification, the detection effect cannot meet the
requirements, so it needs to be improved. Zhang X. et al. (2020)
improved YOLOv3 using an expanded spatial pyramid, achieving
a speed of 56 frames/second and an average accuracy of 82.2%.
Chen et al. (2020) designed an anchor box (a set of initial
prediction boxes with fixed width and height, and the number
and width of the anchor boxes clustered by different datasets are
different) that was more suitable for face detection, and a new loss
function was used to replace the square sum loss function, which
reduced the model error and improved the convergence speed.
Fu et al. (2020) automatically detected kiwifruit in orchards by
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improving the YOLOv3-tiny model; two convolution cores of
3 × 3 and 1 × 1 were added to the fifth and sixth convolution
layers of the YOLOv3-tiny model to develop the deep YOLOv3-
tiny (DY3TNet) model. The experimental results showed that
the improved DY3TNet model had small volume and reduced
computational complexity, thus realizing real-time detection.
Xu et al. (2020) improved YOLOv3 by using soft-NMS (non-
maximum suppression) instead of NMS to reduce the loss of the
prediction bounding box due to green mango overlap, which can
meet the requirements of real-time detection for robotic picking.

The objective of this study is to introduce the idea of dense
connection in DenseNet (Dense Convolutional Network) (Huang
et al., 2016) into a YOLOv3 basic network, and a YOLO-Dense
object detection algorithm is proposed. DenseNet is a densely
connected network structure. All layers in the network are
directly connected. The input of each layer in the network is
the intersection of all the output layers in front, and the feature
map learned in each layer of the network will also be directly
transmitted to the latter layer as the output, so the multiplexing
of features can be enhanced. The improved method begins by
designing the YOLO Dense network based on the structure of
Darknet-53 in YOLOv3. Then, the improved K-means clustering
algorithm was used for calculating the anchor bounding boxes, in
order to reduce the impact of the initial points on the clustering
results. Finally, the last step of the method involves the multiscale
training of the network.

METHOD FOR IMPROVING THE YOLOv3
MODEL

YOLOv3 has excellent detection effects in the field of object
detection, but for the detection task of tomato anomalies in the
complex natural environment, the network needs to be improved.
In this study, an improved YOLO-Dense network model was
proposed based on the characteristics of the self-made tomato
anomaly dataset. The improvement scheme is shown in Figure 1.

In the YOLOv3 network structure, the Darknet-53 network
was used to extract features. Due to the increase in the number
of layers in the network, it is possible that an overfitting or
gradient (diffusion, explosion) problem will occur. Therefore,
the idea of residual network is used in the Darknet-53 network:
the original output of a layer is directly connected to the
back layer, and the residual layer is constructed between
layers of the same dimension. The problem of gradient
disappearance in deep neural network is solved by means of
Jump-Layer connection.

This study draws on a DenseNet network idea: the input of
each layer in the network is the sum of the output of all the
layers in front, and the output of this layer will also propagate
backward, becoming part of the input of the latter layer. The new
YOLO-Dense network, which uses dense connection, can realize
feature fusion through dimension connection on the channel,
which is helpful for feature extraction of tomato anomalies.
Meanwhile, it reduces parameters and calculation costs and
improves network efficiency. Therefore, it is necessary to change
part of the residual layer in the underlying network Darknet-
53 of YOLOv3 into a densely connected network and refer
to the DenseNet network for naming. The modified structure
can make more effective use of the features extracted in the
prediction layer, and thus its detection speed is faster than the
original YOLOv3.

Figure 2 shows a descriptive graphical depiction of the YOLO-
dense on how the system works.

The improved network structure model is shown in Figure 3
below:

The specific ways of improvement are as follows: the
dimensions of the 13th layer to the 36th layer of Darknet-
53 are the same, and there is no need to be transformed,
so the residual layer in Darknet-53 is changed to the dense
connection layer, and the shortcut layers in the 15th, 18th,
21st, 24th, 27th, 30th, 33rd, and 36th layers of Darknet-53 are
changed to route layers. The original residual layer is changed
to dense connection layer to achieve the dense connection of
the features of the same dimension, and the design was named

FIGURE 1 | Schematic diagram for improving the YOLOv3 model 2.1 YOLO-Dense network design.
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FIGURE 2 | The system structure.

FIGURE 3 | YOLO-Dense network model.

DenseBlock-1. The shortcut layers of Layers 40, 43, 46, 49,
52, 55, 58, and 61 were changed to route layers, the original
residual layer was changed to dense connection layer, and the
design was named DenseBlock-2. Similarly, the shortcut layers
of Layers 65, 68, 71, and 74 were changed to route layers, and

the original residual layer was changed to dense connection
layer, and the design is named DenseBlock-3. The 37-layer
convolution layer in Darknet-53 is similar to the transition layer
of the DenseNet network in function, both of which reduce
the dimensionality of the output feature map, so the 37-layer
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FIGURE 4 | Structure of dense modules of the YOLO-Dense network.

layer is renamed Transitionlayer-1; similarly, the 62-layer layer
is renamed Transitionlayer-2.

The structure of dense modules of the improved network
is shown in Figure 4, which can realize multilayer feature
multiplexing and fusion and avoid the computational complexity
caused by the new structure.

In the dense module:

xl Hl
([
x0, x1, · · · , xl−1

])
, l 1, 2, 3, 4, 5 (1)

In the abovementioned formula, and x0 is the input
feature map of the module, x1 is the output of the first
layer.

[
x0, x1, · · · , xl−1

]
is the concatenation of x0, x1, · · · , xl−1.

Hl
([
x0, x1, · · · , xl−1

])
is the combination function of BN (batch

normalization), ReLU (rectified linear units), and convolution, to
realize the l layer nonlinear transformation.

The YOLO-Dense network uses the YOLO detection layer
for class output and uses the three different prediction scales to
detect objects of different sizes, with different prediction scales of
13 × 13, 26 × 26, and 52 × 52, respectively. The predictive scale
output feature map has two sets of dimensions: the dimension of
extracted features, such as 13 × 13, and the second dimension is
calculated by using the following formula:

dimensionality + B×(5+ C) (2)

In the abovementioned formula, B indicates the number of
bounding boxes per prediction and C is the number of classes of
the bounding boxes. So, another dimension is 3 × (5+6) = 33.
In the output layer of the network, the Softmax classifier used
in the original YOLO network cannot identify and locate two
kinds of anomalies in the same grid correctly. Therefore, this
study uses a separate logistic classifier for each different disease

FIGURE 5 | IoU schematic. (A) IoU=0.7. (B) IoU=0.95.

category to predict the confidence score that each anchor box
belongs to a specific category and replaces the original Softmax
classifier with it.

Anchor Box Calculation Using the
Improved K-Means Clustering Algorithm
YOLOv3 borrows the idea of using the anchor box in Faster
R-CNN. The anchor box is used as a priori box to assist in
predicting the object bounding box, which is designed according
to different datasets. For the self-built dataset in this study, the
anchor box needs to be recalculated.

The K-means algorithm usually uses Euclidean distance,
Chebyshev distance, Manhattan distance, and other methods as
distance measures to calculate the distance between two points.
YOLO v3 has used the K-means clustering algorithm and got nine
prediction boxes. The K-means clustering algorithm of YOLO v3
is based on features from the PASCAL-VOC dataset, which in

Frontiers in Plant Science | www.frontiersin.org 5 April 2021 | Volume 12 | Article 634103

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-634103 April 8, 2021 Time: 13:30 # 6

Wang and Liu Tomato Anomalies Detection

turn produces a prediction box, and since images in the PASCAL-
VOC dataset have large gaps from tomato anomaly features, it has
poor detection accuracy for tomato anomalies and is not suitable
for tomato anomaly detection tasks. In addition, the K-means
clustering algorithm randomly chooses K points as the initial
clustering center (i.e., there are k classifications), and this random
way increases the randomness of the clustering and affects the
clustering effect of the algorithm. In this study, if the clustering
algorithm uses these commonly used distances, the larger the
candidate box generated, the greater the error, so it will not
produce good detection results. The main focus of this study is
small object detection; thus, the original anchor is not applicable.
It is necessary to find a more suitable anchor box by the clustering
algorithm, which can help improve the average accuracy and
speed of small-object detection. Considering that the K-means
algorithm is sensitive to the initial value setting, and it is easy
to converge to the local optimum when the dataset is large, this
study uses the K-means + + (Arthur and Vassilvitskii, 2007)
algorithm to obtain the initial value before clustering. Therefore,
the similarity between bounding boxes can be calculated by a
custom distance formula, which is as follows:

d
(
box, centroid

)
= 1− IoU

(
box, centroid

)
(3)

In the abovementioned formula, the centroid is the bounding
box selected as centers in clustering; the box is the bounding
box labeled in samples; and IoU(box,centroid) represents the
merging ratio of sample annotation boxes and cluster center
boxes (intersection over union, IoU), that is, the merging of the
intersection ratio of the detection result and the ground truth. As
shown in Formula (4) and Figure 5.

IoU =
DetectionResult∩GroundTruth
DetectionResult∪GroundTruth

(4)

(a) IoU = 0.7 (b) IoU = 0.95
When the IOU value is maximum, the annotation box and

anchor box match best, d(box,centroid) is minimum, and the
annotation box is assigned to the cluster center. Compared with
the K-means clustering algorithm, it uses the strategy that the
initial center points are as far away from each other as possible
as to measure the average overlap degree of the object cluster, so
that the clustering results are not affected by the random selection
of the initial cluster center point distance, and the clustered prior
box is closer to the object box of the dataset.

Let K = 1, 2,...12. Cluster analysis was performed on the
dataset samples, and the relationship between the IoU and K was
obtained as shown in Figure 6.

It is observed in Figure 6 that when the number of anchor
boxes is 9, the average IoU reaches 94.6%, and there is no
important improvement thereafter. To balance the IoU and
network complexity, the clustering result of K = 9 is taken as the
anchor box size in the network, i.e., (52, 20), (65, 29), (73, 32),
(84, 36), (89, 40), (97, 46), (109, 58), (122, 63), and (136, 71).

Multiscale Training
Compared with the YOLO model, the model proposed in this
study does not contain a fully connected layer, so it is possible

to try different sizes of input images for multiscale training when
training convolutional neural networks. By training input images
at different scales, the model can achieve the task of adapting to
object detection at multiple scales.

Since the improved network contains four residual modules
and one dense connection block, the minimum size image is
1/32 of the input image, so when changing the image size, it is
necessary to ensure that it is a multiple of 32. Therefore, the image
size of the training set is divided into a variety of image scales,
which are {320, 352,..., 608}. During training, a scale training is
selected randomly 10 times per iteration. The schematic diagram
of the multiscale training process is shown in Figure 7.

The multiscale training benefits the robustness of the model
by being able to accept any size of image as input and therefore
improves the performance indicators of the model network.

EXPERIMENT DESIGN

Experimental Platform
The experimental environment configuration is as follows: Intel
i7-9750H processor, Nvidia GeForce RTX 2060 graphics card,
16-GB memory, and operating system Ubuntu 16.04. The
experiment adopts Python programming language, and the deep
learning framework is Keras TensorFlow.

Dataset Construction
Due to the lack of datasets of tomato anomalies in the complex
natural environment and because the quality of images is not
high, within the context of this study, a tomato anomaly dataset
was created by taking photos from complex natural environments
and from the Internet as well. The dataset contains 15,000
images of tomato anomalies in various scenarios. Dataset images
include occlusion, shading, and other situations. The dataset
was converted into VOC2007 dataset format according to the
experimental requirements, and the data were annotated with
LableImg annotation software.

Model Training
In the original data set, 70%, 20%, and 10% images of each
category were selected to form the training set, validation set,
and test set, respectively. In the YOLO-Dense model proposed
in this study, the training process uses the trained weight file
of the original YOLOv3 as the initialization parameter. Because
different network structures need to be trained in the comparative
experiment, and the number of iterations to achieve the optimal
detection performance is also different, this study monitors
dynamically during training and saves the weight file of the
network every 1,000 iterations in order to select the best weight
file to prevent overfitting. In the iteration process, after 100 and
150 rounds, the learning rate decay factor is set to 0.1, that is,
the current learning rate is 0.1 times the previous learning rate.
Some experimental training parameter settings that improve the
optimal network detection effect are shown in Table 1. At the
same time, a multiscale training strategy is used, i.e., random
selection of an input image size every 10 rounds to achieve the
effect that the model can adapt to image features of different size.
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FIGURE 6 | The relationship between the IoU and K.

FIGURE 7 | Schematic diagram of the multiscale training process.

Evaluating Indicator
The detection accuracy of each category in the detection of
tomato anomalies is very important. False-positive and false-
negative detection may cause the risk of further spread of the
disease. Therefore, average precision (AP) and mean average
precision (mAP) were selected as the evaluation indexes of object
detection algorithm in this study. These two evaluation indicators

take into account the accuracy rate (Precision, P) and recall
rate (Recall, R):

P
(
classes

)
=

TP
TP + FP

(5)

R
(
classes

)
=

TP
TP + FN

(6)
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TABLE 1 | Selection of key parameters.

Parameter name Parameter value

Batch size 64

Learning rate 0.0026

Decay 0.0054

Momentum 0.9

Factor 0.1

AP =
∫ 1

0
P(R)dR (7)

mAP =
∑N

i=1 APi
N

(8)

Taking the gray mold category in the detection object of this
research as an example, TP in the above formula indicates that
the detection model detects the correct gray mold object as the
number of gray mold diseases, FP indicates the number of false
detection of other categories of object as gray mold diseases,
and FN indicates the number of false detection of the correct
gray mold object as objects of other categories. The values of
recall rate and accuracy rate are taken as abscissa and ordinate,
respectively, and a P–R curve is drawn, and the area under
the curve is AP. For all categories (the number of categories is
denoted as N), the average precision is obtained by calculating
AP and taking the mean value. mAP is an important index for
evaluating the performance of the model, which can reflect the
overall performance of the network model and avoid the problem
of extreme performance of some categories and weakening the
performance of other categories in the evaluation process.

EXPERIMENTAL RESULTS AND
ANALYSIS

Comparison of Algorithm Performance
Under Different Resolution Images
The multiscale training method makes the model robust to
different resolution images. The corresponding models of this
study were trained by changing the resolution of the input
image to 320 × 320, 416 × 416, 544 × 544, and 608 × 608,
respectively. Then, based on the obtained detection model,
the test set was tested separately by adjusting the threshold
of the comprehensive score of tomato anomaly detection, and
the corresponding Precision–Recall curve of each model was
obtained. Figure 8 shows the Precision–Recall curve of the
model proposed in this study at four different image resolutions,
and Table 2 gives the results table of its specific detection
evaluation index.

From the above table, we can see that the algorithm
performance under different resolution images is satisfying, the
mAP value of the model can reach more than 90%, and the
detection time of a single image can be controlled within 30 ms.
As the resolution of the input image increases, the size of the

FIGURE 8 | Precision–Recall curves of the proposed model at four different
image resolutions.

TABLE 2 | Algorithm performance under different resolutions.

Resolution mAP (%) Detection time/(ms)

320 × 320 90.26 17.68

416 × 416 92.32 18.99

544 × 544 96.40 20.27

608 × 608 96.98 29.98

output feature map, the number of output grids, and the mAP
value of the model increase as well; however, the detection speed
decreases. When the input resolution is 608 × 608, the detection
time of a single image of the model increases to 29.98 ms,
affecting the real-time performance of the system. Therefore,
it is necessary to select the appropriate resolution for tomato
anomaly detection after considering the detection accuracy and
detection speed.

Comparison of Detection Accuracy
The test set is used for testing, and the experimental results
are compared with the results of other commonly used object
detection algorithms such as the original YOLOv3, Faster
R-CNN, and SSD. The results are shown in Table 3.

Compared with Faster R-CNN, SSD, and other algorithms,
the YOLO-Dense algorithm has higher detection accuracy in
terms of accuracy (AP). Compared with the original YOLOv3,
the proposed algorithm in this study achieves an improvement
in the average detection accuracy of 12 categories of detection
objects. The main reason is that the original YOLOv3 network
directly divides an image into 7 × 7 grid, and each grid is
predicted with 2 bounding boxes, and each grid predicts only one
object, which easily leads to inaccurate positioning. In contrast,
as for the YOLO-Dense algorithm, it was mentioned before that
during training various image sizes could be used in order for the
model to be robust and accurate. Moreover, because the original
YOLOv3 network only detects one class for each prediction
box, and there are different objects of anomalies in this dataset,
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TABLE 3 | Comparison of detection accuracy (AP) (%).

Disease/pest SSD Faster
R-CNN

The original
YOLOv3

YOLO-
Dense

Early blight 85.46 91.35 90.84 96.71

Late blight 85.67 91.22 90.67 96.68

Yellow leaf curl virus 84.78 91.17 89.98 96.28

Brown spot 85.19 91.08 89.69 93.98

Coal pollution 85.03 91.26 90.52 96.86

Gray mold 84.99 91.41 90.17 96.78

Leaf mold 85.11 90.96 89.65 96.56

Navel rot 85.79 90.89 89.37 96.55

Leaf curl disease 84.98 90.71 89.44 96.48

Mosaic 84.43 90.29 89.32 96.51

Leaf miner 79.12 86.31 85.38 94.95

Greenhouse whitefly 78.01 80.58 79.69 94.01

the detection result on the closely related Leaf miner and the
greenhouse whitefly is not ideal.

Faster R-CNN has high accuracy in large-object recognition,
but the accuracy of small-object recognition is very low. The
reason is that Faster R-CNN introduces the anchor idea to
predict 9 anchor boxes with equal ratio of length to width and
area ratio in each position of the feature map, which greatly
improves the position prediction ability of the model. However,
because Faster R-CNN does not cluster the anchor box, the
anchor box for the PASCAL VOC dataset is not applicable to the
characteristics of this dataset, resulting in low accuracy of small
object detection. On the contrary, the large object is closer to the
characteristics of the PASCAL VOC dataset, and the large size
diseases are clearly distinguishable, so the detection accuracy can
reach more than 90%.

In the actual object detection process of tomato anomalies,
the original YOLOv3 algorithm did not perform satisfactorily
due to the complex scenes and small differences among different
disease classes, especially in the detection of occluded objects
and small objects. This study attempts to improve on the basis
of the YOLOv3 algorithm and proposes a detection algorithm
for tomato anomaly detection task in greenhouse scenarios.
Applying DenseNet to the detection of tomato anomalies can
improve the expression ability of the network model and thus
improve the detection accuracy.

Comprehensive Performance
Comparison
In the case of the low recognition rate of the original YOLO
algorithm for tomato anomaly detection, the proposed newly
improved network structure YOLO-Dense obtained its optimal
performance at 8000 iterations. A comprehensive performance
comparison is shown in Table 4.

For the YOLO-Dense network proposed in this study,
although the network appears redundant when densely
connected, it cannot increase parameters and computation
too much, thus not having too much impact on the detection
speed. Especially, the concatenation method of dense network
connection is adopted, which enables each layer to obtain

TABLE 4 | Comprehensive performance comparison.

Algorithm name mAP (%) Time/(ms) False
detection
rate (%)

Missed
detection
rate (%)

SSD 84.32 25.69 1.38 1.29

Faster R-CNN 90.67 2868.94 1.87 1.97

YOLO v3 88.31 21.18 1.05 1.14

YOLO-Dense 96.41 20.28 0.61 0.96

Bold values highlight the performance of the proposed algorithm.

gradient and input signal directly from loss function, so as to
train a deeper network, further improving the detection accuracy
of the network, reduce the detection speed, and improve the
overall performance of the network. This study also draws on
the idea of anchor, which predicts 3 anchor boxes (i.e., 3 × 3
anchor boxes per grid) for multiple scales of YOLO-Dense,
so that it is equal to the number of anchor boxes of Faster
R-CNN and sets different scales for different sizes of objects
to detect, which greatly improves the detection accuracy. The
output layer uses the Logistic classifier instead of the original
Softmax classifier, which improves the final detection accuracy.
It is also seen from Table 4 that the network proposed in
this study has the highest average detection accuracy (mAP),
the lowest false detection rate, and a missed detection rate,
but the detection time is 141 times faster than that of Faster
R-CNN. Compared with other algorithms, the speed of Faster
R-CNN is the slowest. The biggest difference of Faster R-CNN
is that regression and classification are separated. Thus, the
detection speed of Faster R-CNN is far behind the other three
network frameworks.

By using dense connections, feature fusion and reuse are
achieved. By improving the K-means algorithm, object bounding
box dimensions are clustered and anchor boxes are calculated for
self-made tomato anomaly image datasets; multiscale training is
used to enhance the robustness of the model against different
sizes. The experimental results show that the YOLO-Dense
algorithm improves the detection rate of small objects and
occluded objects. Compared with the commonly used algorithms
such as SSD, Faster R-CNN, and original YOLOv3, the detection
effect is better and the robustness is stronger.

CONCLUSION

This study proposes a tomato anomaly detection method based
on the deep-learning YOLO framework. Integrating the dense
connection idea of DenseNet into the feature extraction part
of the original YOLO network realizes the high fusion and
multiplexing of feature information. Meanwhile, the improved
K-means clustering algorithm is used for anchor box calculation
to improve the matching degree between prior anchors and the
feature map, so as to adapt to the detection task of tomato
anomalies and improve the detection accuracy. The experiment
shows that the optimized model has high detection accuracy and
fast speed. The model has strong robustness to the detection of
tomato anomalies in the complex natural environment, with an

Frontiers in Plant Science | www.frontiersin.org 9 April 2021 | Volume 12 | Article 634103

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-634103 April 8, 2021 Time: 13:30 # 10

Wang and Liu Tomato Anomalies Detection

average accuracy of 96.41%. Also, the detection time of a single
image is only 20.28 ms. The experiment verifies that this method
can be used for the detection of tomato anomalies in the complex
natural environment. Among its potential applications are in
handheld devices, edge computing terminals, and other systems.

In conclusion, compared with the other three algorithms, the
YOLO-Dense algorithm has certain advantages in performance.
The model makes full use of low-level feature information to
improve the detection rate of small objects; dense connection
reduces the interference of useless features to the model, realizes
feature enhancement, improves the detection effect of occluded
objects, and improves the model performance. The experimental
results prove the effectiveness of the algorithm.
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