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Pollen tube (PT) growth as a key step for successful fertilization is essential for angiosperm 
survival and especially vital for grain yield in cereals. The process of PT growth is regulated 
by many complex and delicate signaling pathways. Among them, the calcium/calcium-
dependent protein kinases (Ca2+/CPKs) signal pathway has become one research focus, 
as Ca2+ ion is a well-known essential signal molecule for PT growth, which can be instantly 
sensed and transduced by CPKs to control myriad biological processes. In this review, 
we summarize the recent progress in understanding the Ca2+/CPKs signal pathway 
governing PT growth. We also discuss how this pathway regulates PT growth and how 
reactive oxygen species (ROS) and cyclic nucleotide are integrated by Ca2+ signaling networks.
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INTRODUCTION

The calcium ion (Ca2+), as a central second messenger in plants, coordinates a variety of physiological 
responses by binding the calcium sensors, which decode the calcium signatures and elicit different 
cellular responses. In plants, there are four main classes of calcium sensors: calmodulin (CaM) 
or CaM-like proteins (CMLs), calcineurin B-like proteins (CBLs), CBL interacting protein kinases 
(CIPKs), and the calcium-dependent protein kinases (CPKs) and their relatives, CDPK-related 
kinases (CRKs; Harper et  al., 2004; Dodd et  al., 2010). Among them, CPKs share the unique 
feature of combining the calcium-binding motifs and protein kinase domain (PKD) on the same 
peptide. CPKs are implicated in the regulation of plant development, as well as in biotic and 
abiotic stress signaling. The different tissue- and developmental-stage expressions of the CPKs 
possess specific functions; for example, AtCPK28 and AtCPK3/4/6/11 have roles in shoot and 
root development, respectively, and AtCPK6/33 may be  involved in the regulation of floral 
transition (see the review by Yip Delormel and Boudsocq, 2019). Significantly, a number of 
AtCDPKs are mainly expressed in pollen, indicating their involvement in pollen development 
and/or pollen tube (PT) growth, which is crucial for sexual reproduction in flowering plants. 
Successful fertilization begins with pollen grains landing on the stigma and germination of the 
PT. Upon pollen landing on the stigma, the PT rapidly elongates and penetrates the transmitting 
tract to deliver the immotile sperm to the ovule for double fertilization (Higashiyama and Yang, 
2017). During this process, Ca2+ is well-known to control pollen germination, PT growth, and 
intercellular communication between PT and female tissue (Ge et  al., 2007; Zheng et  al., 2019). 
However, we  do not fully understand how these specific Ca2+/CPKs signal pathways regulate PT 
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growth. In this review, we  summarize the key findings of the 
Ca2+/CPKs signaling pathway in PT growth and further address 
the interrelationship between Ca2+ signaling with other complex 
signaling networks such as reactive oxygen species (ROS) and 
cyclic nucleotide.

COMPOSITION AND CONSTRUCTION 
OF POLLEN TUBE

The PT is a tubular structure that germinates from the aperture 
in pollen. In angiosperms, the cell wall of the PT usually comprises 
two layers: the outer fibrillar layer that is mainly composed of 
pectin, hemicellulose, and cellulose, and the inner layer of callose 
(Taylor and Hepler, 1997). The tip of the PT comprises a single 
pectin layer, which is the most elastic region and the expansion 
point of PT growth. Some studies indicated that inhibition of 
cellulose biosynthesis can affect the morphology and structural 
integrity of Petunia and Lily PTs (Anderson et  al., 2002), while 
pectin that is synthesized in the Golgi apparatus and then secreted 
into the cell wall by exocytosis can strengthen the mechanical 
strength and ductility of the PT (Li et  al., 1994; Hasegawa et  al., 
1998). Interestingly, callose is only deposited on the inner layer 
of the cell wall of the PT, except for the tip, and it also has a 
role in the correct recognition of pollen and stigma (Lush and 
Clarke, 1997; Dearnaley et  al., 1999; Kuboyama and Takeda, 
2000). Further, some glycoproteins are deposited in the PT, i.e., 
arabinogalactan proteins (AGPs) and lipid transfer protein 5 
(LTP5; Cheung et  al., 1995; Chae et  al., 2009).

The structure of the PT can be  divided into four different 
zones according to Franklin’s description (Figure  1; Franklin-
Tong, 1999). At the extreme tip of the PT, a “clear zone” is 
filled with secretory vesicles that package many cell wall 
components, which will then be  incorporated into the apical 
dome of the PT tip for elongation; behind the “clear zone” is 
a subapical growth area, which contains most of the cytoplasm 

and organelles such as mitochondria, Golgi complexes, 
endoplasmic reticulum (ER), and cytoskeletal components. At 
the bottom of the germinated PT are the vacuolar area and 
the cell nuclear area, which contain the vegetative nucleus and 
generative (or sperm) cell. The formation of vacuoles maintains 
tube turgor and pushes the cytoplasm to the apex of the PT. 
To restrict the cytoplasm to the apical region of the growing 
tube, a series of callose plugs are formed at regular intervals 
behind the tip. Although the composition and construction 
of the PT are well understood, the mechanics of its elongation 
are unclear. In addition to the conventional hydrodynamic 
model, ion dynamics and the cell wall model (Zonia and 
Munnik, 2011; Liu and Hussey, 2014), a new Hechtian model 
of PT tip growth has been put forward (Lamport et  al., 2017). 
Briefly, the new model proposes that a viscoplastic pectic cell 
wall is mechanically coupled to the plasma membrane by 
Hechtian adhesion, which transmits wall strain to the plasma 
membrane and thus regulates Ca2+ and other ion fluxes that 
regulate the exocytosis of wall precursors. Moreover, the “kiss-
and-run” mode of exocytosis/endocytosis at the PT apex and 
“durotropic” movement, namely exhibiting increased movement 
speed in stiffer materials, have also been proposed and challenge 
some previous standpoints about PT elongation (see the review 
by Adhikari et al., 2020). In any case, all the models mentioned 
above involve Ca2+ as a key signal.

THE ROLE OF Ca2+ IN POLLEN TUBE 
GROWTH

It is well established that a tip-focused calcium gradient is 
essential for pollen germination and PT growth (Holdaway-
Clarke et  al., 2003; Iwano et  al., 2009; Michard et  al., 2009; 
Steinhorst and Kudla, 2013). The elevation of the Ca2+ gradient 
is correlated with pulsed tube growth. Some studies indicated 
that Ca2+ can directly affect turgor formation during PT growth 

FIGURE 1 | Diagrammatic representation of the structure of the tip region of a pollen tube (PT). The tip of a PT can be classically divided into four zones from the 
tip to the base: clear zone, subapical growth area, nuclear area, and vacuolar area. The bulk of exocytosis occurs in the apical region as shown with the solid red 
arrows, while certain exocytic vesicles may also be secreted to the subapical growth area, as shown with the dotted arrows. Endocytosis can occur in the apical 
and subapical growth areas and nuclear area as shown with the blue arrows (ER is endoplasmic reticulum).
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by affecting the formation of the vacuole (Li et  al., 2017). 
Additionally, asymmetric Ca2+ accumulation within the tip is 
associated with reorientation of growth in that direction (Malho 
and Trewavas, 1996). In most studies, [Ca2+]cyt oscillations 
correlate with oscillations of PT growth speed (Holdaway-Clarke 
et  al., 1997). Channels that account for oscillatory Ca2+ influx 
across the plasmalemma mainly include the stretch-activated 
Ca2+ channels (SACs), the cyclic nucleotide-gated channels 
(CNGCs; Frietsch et  al., 2007), and the glutamate receptor-
related channels (GLRs; see the review by Hepler et  al., 2012). 
SACs locate at the extreme apex of the PT and open in response 
to deformation of the plasma membrane caused by PT growth 
(Dutta and Robinson, 2004). In Arabidopsis, two SACs, namely 
MCA1 and MCA2, have been identified in the root; however, 
it remains unknown if related proteins function in PTs (Nakagawa 
et  al., 2007). In addition to the first identified and molecularly 
characterized CNGC18, there are five additional CNGCs (namely 
CNGC7, 8, 9, 10, and 16) that are potentially relevant for 
pollen ion fluxes (Tunc-Ozdemir et al., 2013; Gao et al., 2016). 
A recent study indicates that CNGC18/8/7 together with 
calmodulin 2 (CaM2) constitutes a molecular switch that either 
opens or closes the calcium channel, depending on [Ca2+]cyt 
levels during PT growth (Pan et  al., 2019). Subsequently, a 
breakthrough study uncovered that MILDEW RESISTANCE 
LOCUS-O (MLO) proteins can regulate PT guidance in response 
to ovular signals by recruiting the CNGC18 to the plasma 
membrane in order to modify Ca2+ gradients in the growing 
PT (Meng et  al., 2020). Among all known CNGCs, only 
AtCNGC18 and OsCNGC13 are reported to be highly expressed 
in the pistils and to act as a novel maternal sporophytic factor 
required for PT guidance (Gao et  al., 2016; Xu et  al., 2017). 
By pharmacology, loss-of-function, and heterologous 
complementary approaches, some studies indicate that GLRs 
facilitate Ca2+ influx, modulating the apical [Ca2+]cyt gradient 
and consequently the impact on PT growth (Qi et  al., 2006; 
Michard et al., 2011; Vincill et al., 2012). Interestingly, AtGLRs 
are inactive when expressed alone in Xenopus oocytes, implying 
that GLRs may be subject to a plant-specific activation mechanism 
by CPKs (Roy et  al., 2008; Alfieri et  al., 2020). A recent study 
revealed that CORNICHON HOMOLOG (CNIH) proteins are 
essential for sorting, trafficking, and localizing AtGLRs (Wudick 
et  al., 2018). More importantly, the result of coexpressing 
AtCNIH4 or AtCNIH1/4 with a PT expressed AtGLR3.3 or 
AtGLR3.2  in COS-7 cells further confirms that CNIH proteins 
can enhance AtGLR channel activity, and with binding specificity 
(Wudick et  al., 2018). In ovules, 1-aminocyclopropane-1-
carboxylic acid (ACC), a precursor of ethylene synthesis, 
stimulates GLR-dependent Ca2+ elevation, which in turn promotes 
LURE1 secretion and PT attraction (Mou et  al., 2020). And 
whether ACC can also act as the most potent elicitor of 
GLR-mediated Ca2+ elevations in PT requires further study. 
In addition to these plasma membrane located Ca2+ channels, 
some internal Ca2+ channels located at a vacuole or endoplasmic 
reticula, such as ACA2/7/8/9/10 and ECA1, are responsible 
for fine-tuning the Ca2+ gradient by sequestration of the ion 
(Harper et  al., 1998; Hwang et  al., 2000; Iwano et  al., 2009; 
Lucca and León, 2011; Michard et  al., 2017; Li et  al., 2018a). 

In addition to being a signal molecule, the Ca2+ ion is also 
required for cross-linking cell wall components. At the extreme 
apex of a growing PT, methyl-pectin is secreted as the main 
new cell wall material, which forms rather loose ionic bonds 
with Ca2+, resulting in reduced cell wall rigidity. As soon as 
[Ca2+]cyt increases, the pectin methylesterase is transported to 
the apex by exocytosis, resulting in de-methoxylation of methyl-
pectin and cross-linking with free Ca2+, which increases cell 
wall rigidity (Bosch and Hepler, 2005). In the process of cell 
wall remodeling, a self-regulatory network modulating oscillatory 
growth cycles of an elongating PT also integrates changes in 
the concentration of [Ca2+]cyt, apical exocytosis of methyl-pectin 
and pectin methyl esterase (PME), and regulation of SACs, 
as well as the contribution of F-actin and ROP1 signaling (see 
the review by Steinhorst and Kudla, 2013).

THE STRUCTURE AND FUNCTIONS OF 
Ca2+ SIGNAL DECODER CPKs

The Ca2+ signal can be  decoded and relayed by a series of 
phosphorylation cascades mainly regulated by four families of 
protein kinases (Harper et  al., 2004). Among them, CPKs can 
be  directly activated by Ca2+ and phosphorylate downstream 
effectors to regulate myriad biological processes. The 
representative structure of CPKs harbors a variable N-terminal 
domain (VNTD) followed by a PKD and an auto-inhibitory 
junction domain (JD) that is linked to the C-terminal calmodulin-
like domain (CaMLD) with EF-hand Ca2+-binding sites (Harper 
et  al., 1991; Cheng et  al., 2002; Hrabak et  al., 2003). The 
VNTD is important not only for membrane localization when 
modified by palmitoylation and myristoylation at the cysteine 
and glycine residues, respectively; it is also essential for specific 
interaction with targets (Stael et al., 2011; Boudsocq and Sheen, 
2013). The JD serves as a pseudosubstrate that blocks the 
kinase active center in the absence of Ca2+ and releases 
autoinhibition upon Ca2+ binding to EF-hands within the 
CaMLD domain (Figure  2; Harmon et  al., 1994; Liese and 
Romeis, 2013). CPKs have been identified throughout the plant 
kingdom and constitute a large multigene family in various 
plant species, i.e., 34 CPKs identified in Arabidopsis thaliana, 
29 CPKs identified in Oryza sativa, and 32 CPKs identified 
in Zea mays (Cheng et  al., 2002; Asano et  al., 2005; Khalid 
et al., 2019). The CPK superfamily members have been implicated 
in many biological processes, such as development, metabolism, 
and biotic and abiotic stress responses (reviewed in Klimecka 
and Muszynska, 2007; Asano et  al., 2012). Given the huge 
number of CPKs with specific functions in different cells or 
tissue, one important question is how the Ca2+/CPKs signal 
pathway regulates pollen germination and PT growth.

THE ROLE OF CPKs IN POLLEN TUBE 
GROWTH

Calcium-dependent protein kinases, as the vital components 
in Ca2+ signaling pathways, have been implicated in many 
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aspects of plant life including development and abiotic and 
biotic stress responses (Simeunovic et  al., 2016). The first CPK 
found to be  involved in pollen germination and PT growth 
was in maize, as the inhibition of this pollen-specific CPK 
(ZmCPK20) impaired both the pollen germination and growth 
(Estruch et  al., 1994; Moutinho et  al., 1998). Further analysis 
of the expression patterns of ZmCPKs using the maize gene 
expression atlas revealed that about 12 ZmCPKs were 
predominantly accumulated in the anther (Stelpflug et al., 2016; 
Li et  al., 2018a). Some proteome studies also found that many 
CPKs accumulated in maize pollen and many phosphorylate 
specific substrates upon PT germination and growth. The crucial 
role of the maize CDPK in PT growth is further substantiated 
by the function study of ZmCPK32 (Li et al., 2018b). In contrast 
to most CPKs’ positive regulation of PT growth, ZmCPK32 
as a pollen-specific CPK was demonstrated to negatively regulate 
the PT growth, as a transient expression of ZmCPK32 in 
tobacco via microparticle bombardment suppressed both the 
PT germination and growth (Li et al., 2018a). In Petunia inflate, 
PiCPK1 and PiCPK2 were highly expressed in PT and had 
distinct functions. The PiCPK2 is involved in PT extension 

by mediating peroxisome function in conjunction with a small 
CDPK-interacting protein 1 (PiSCP1; Guo et  al., 2013), while 
the PiCPK1 is likely a key regulator of growth polarity by 
regulating Ca2+ homeostasis (Yoon et  al., 2006). Moreover, five 
of the 34 CDPK isoforms in the Arabidopsis are highly expressed 
in pollen, including AtCPK14, 16, 17, 24, and 34 (Harper 
et  al., 2004). Among them, the genetic evidence indicated that 
AtCPK17 and AtCPK34 are essential for PT growth in response 
to a Ca2+ signal in the apical dome (Figure  3; Myers et  al., 
2009). How AtCPK17 and AtCPK34 influence the PT polarized 
tip growth remains poorly understood, and whether AtCPK17/34 
has a regulatory function in the rho-GTPase of plants (ROP) 
pathway awaits further confirmation (Yang and Fu, 2007; Zhou 
et  al., 2009). Two pollen-specific aquaporins, AtNIP4;1 and 
AtNIP4;2, were identified, which can be  phosphorylated by 
AtCPK34 in vitro and have a role in pollen germination and 
PT growth (Di Giorgio et  al., 2016). AtCPK2, AtCPK20, and 
AtCPK6 were shown to promote PT growth by activating the 
anion channel SLAH3 and ALMT12/13/14 at the pollen tip 
(Gutermuth et al., 2013, 2018). K+ influx into PT is also essential 
for PT growth. Further studies showed that AtCPK11 and 

A

B

FIGURE 2 | The structures of four calcium sensors and the activation mechanism of calcium-dependent protein kinases (CPKs) by calcium-binding. (A) Domain 
organization of the four main classes of calcium ion (Ca2+) sensors in plants. (B) Activation mechanism of CPKs by calcium-binding. When Ca2+ concentration is low, 
the C-lobe is loaded with Ca2+ and interacts with the junction domain (JD), forming an inactive conformation, which blocks the kinase domain access to the 
substrate. While Ca2+ concentration is elevating, the N-lobe binds Ca2+, resulting in an active conformation, which drives the auto-inhibitory JD out of the active site. 
EF: EF-hand usually occurs in pairs, N-lobe having a lower calcium affinity than the C-lobe; PKD: protein kinase domain; NAF: asparagine-alanine-phenylalanine 
domain mediating interaction with the calcineurin B-like proteins (CBLs); PPI: protein-phosphatase interaction domain mediating the interactions of CIPK with 
2C-type protein phosphatases (PP2Cs); VNTD: variable N-terminal domain, where the myristoylation (myr) and palmitoylation (palm) occur; VCTD: variable 
C-terminal domain; JD/AI: an auto-inhibitory junction domain; CaMLD: a C-terminal CaM-like domain classically with 4 EF-hands Ca2+-binding motifs.
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AtCPK24 (the closest homolog of ZmCPK32) negatively affect 
PT elongation by mediating the Ca2+-dependent inhibition of 
the inwardly rectifying K+ channels (Zhao et  al., 2013). In  
O. sativa, OsCPK21 plays an essential role in pollengenesis, possibly 
via indirectly regulating the transcription of MIKC*-type MADS 
box proteins (Wen et  al., 2019). Moreover, OsCPK25/26 can 
phosphorylate the predominantly pollen-expressed OIP30 (a 
RuvB-like DNA helicase 2) and likely affect pollen development 
by transcriptional control of gene expression (Wang et al., 2011).

HOW Ca2+/CPKs REGULATES THE 
POLLEN TUBE GROWTH

Although mounting evidence indicates that the Ca2+/CPKs 
signal pathway has a role in PT growth, how it regulates PT 
growth is still unclear. The key to unlocking the underlying 
mechanisms depends on the identification of downstream signal 
pathway targets. Simeunovic et al. (2016) have comprehensively 
summarized the identified CPKs targets in plants, while only 
a small number of CPKs targets have been identified in pollen, 
mainly including some ion channels (or aquaporin) such as 
AtSPIK, AtSLAH3, AtACA8, and AtNIP4;1/2 (see Table  1). 
The activity of PT specific shaker pollen inward K+ channel 
(SPIK) was inhibited by AtCPK24, which is phosphorylated 

and activated by AtCPK11 (Figure  3; Zhao et  al., 2013). 
Disruption of SPIK will reduce K+ influx and impair pollen 
germination and PT growth (Mouline et  al., 2002). Moreover, 
the Ca2+/CPKs signal pathway to control PT growth via anion 
channel (AtSLAH3 and ALMT12/13/14) activation is confirmed 
by reverse genetics and electrophysiology (Figure 3; Gutermuth 
et  al., 2018). The tip-focused Ca2+ gradient is essential for PT 
growth, which requires Ca2+ channel distributions in PT. The 
cyclic nucleotide-gated channel 18 (CNGC18) is functionally 
validated for Ca2+ influx across the plasma membrane of PT. 
Some research reveals a potential feed-forward mechanism in 
which CPK32 activates CNGC18, further promoting calcium 
entry during the elevation phase of Ca2+ oscillations in the 
polar growth of PTs (Zhou et  al., 2014). And whether the 
activities of other CNGCs are directly and indirectly influenced 
by Ca2+/CPKs requires further investigation. AtACA8, a  
Ca2+-ATPases to extrude Ca2+ to the apoplast, is confirmed to 
be  phosphorylated by AtCPK16 in vitro (Giacometti et  al., 
2012). All these results suggest that the Ca2+/CPKs signal 
pathway may regulate PT growth by maintaining the appropriate 
intracellular ion concentrations at the apex via fine-tuned 
diversified ion channels. Besides these, the Ca2+/CPKs signal 
pathway may crosstalk with other signal molecules such as 
ROS, which are generated by respiratory burst oxidase homolog 
(Rboh) NADPH oxidases and also involved in PT growth.  

FIGURE 3 | The proposed Ca2+/CPK signaling regulating PT growth. On the plasmalemma of the PT, calcium entry mainly occurs through three different channels: 
the stretch-activated Ca2+ channels (SACs), the cyclic nucleotide gated channels (CNGCs), and the glutamate receptor-related channels (GLRs). CNGCs become 
activated by the binding of adenosine 3', 5'-cyclic monophosphate (cAMP), which are produced by adenylate cyclases (ACs) and inhibited by calmodulin (CaM) 
binding. Moreover, MLO5/9 can recruit the CNGC18 with asymmetric distribution and result in a change in PT growth direction. The SACs are located at the 
extreme apex of the tube in response to the deformation of the plasma membrane caused by growth. GLRs as a ligand Ca2+ gated channel are transported, 
targeted, and activated by CORNICHON HOMOLOG (CNIH) proteins. Some other Ca2+ channels located on the organelle membrane are also involved in fine-tuning 
of the cytoplasmic Ca2+ concentration and affecting the PT growth, such as mitochondrial calcium uniporters (MCUs) and Ca2+-ATPases (ACAs). Ca2+ signals are 
perceived by CPKs that decode the information presented in specific Ca2+ signatures and regulate PT growth. In Arabidopsis, the Ca2+/AtCPK11 signal pathway 
phosphorylates AtCPK24, which will further phosphorylate the K+ influx channel SPIK, resulting in the inhibition of PT elongation. The Ca2+/AtCPK2/10 signal 
pathway phosphorylates the anion channel SLAH3 and some ALMTs to export anion at the PT tip. Ca2+/AtCPK17/34 can promote pollen tip growth and tropism. 
The Ca2+/AtCPK34 signal pathway can phosphorylate pollen-specific aquaporins NIP4;1 and NIP4;2 to ensure pollen germination and PT growth. In maize, 
Ca2+/ZmCPK20 positively regulates PT growth, while Ca2+/ZmCPK32 negatively regulates PT growth. In petunias, PiCPK2 can interact with the small  
CDPK-interacting protein 1 PiSCP1 to affect PT growth, presumably by mediating peroxisome function, while PiCPK1, which is localized in the plasma membrane, 
can regulate the polarity of PT growth. In rice, Ca2+/OsCPK25/26 can phosphorylate DNA helicase OIP30 in mature pollen. Moreover, the Ca2+/CPK signal may also 
integrate and coordinate with other signaling systems, such as ROP1 signaling, reactive oxygen species (ROS), and cAMP.
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In Arabidopsis, RBOHH and RBOHJ were revealed to not only 
slow down PT growth but also maintain PT integrity when 
regulated by the RALF-BUPS/ANX complex (Boisson-Dernier 
et  al., 2013). The direct regulation of RBOHD activity by  
Ca2+/CPKs has been reported in Arabidopsis and Potato (Kobayashi 
et  al., 2007; Liu and He, 2016). However, whether there are 
some specific CPKs in pollen that are responsive to phosphorylate 
Rboh remains unknown so far. Moreover, cell wall-modifying 
enzymes are crucial for PT growth. Some studies show that 
PME and PME inhibitor (PMEI) modulate the rapid growth 
of the PT (Röckel et  al., 2008). It will be  interesting to explore 
these enzymes, which are potential downstream targets of the 
Ca2+/CPKs signal pathway. We  also summarized a model to 
illustrate the Ca2+/CPKs signal pathway regulating PT growth.

CROSSTALK WITH OTHER SIGNALING 
NETWORKS IN POLLEN TUBE GROWTH

Certainly, proper growth of the PT depends on an elaborate 
mechanism, which not only needs the central Ca2+/CPK signal 

but also needs integration and coordination with other molecules 
and signaling systems, such as ROP1 signaling, inositol-
polyphosphates (IP3/6) and numerous pistil factors (γ-aminobutyric 
acid, long-chain base phosphates, and polyamines; Wu et  al., 
2014; Yu et  al., 2014; Aloisi et  al., 2017; Domingos et  al., 2019). 
Additionally, some evidence reveals a link between [Ca2+]cyt and 
pHcyt plays a role in PT growth (Behera et  al., 2018; Mangano 
et  al., 2018). Further, we  will emphasize some interconnections 
and convergence points of Ca2+ signaling with ROS and adenosine 
3',5'-cyclic monophosphate (cAMP). ROS generated by NADPH 
oxidases (NOXs) that are shown to be involved in various processes 
in PT growth, including germination, polarized, and ovule-targeted 
growth, and PT burst during fertilization (see review by Wudick 
and Feijo, 2014). Some direct evidence indicates that binding of 
Ca2+ will activate some NOXs activities, such as RbohH and 
RbohJ (Potocky et  al., 2012; Kaya et  al., 2014). This activation 
mechanism probably occurs synergistically with phosphorylation 
of NOXs, although phosphorylation seems to be  a prerequisite 
for Ca2+-mediated NOX activation (Kimura et  al., 2012). Based 
on these findings, a positive feedback model for Ca2+/ROS signaling 
in PT growth is raised, in which Ca2+-induced NOXs activity 

TABLE 1 | Overview of the identified CPKs in pollen.

Namea Gene IDb Locationc Targetsd Physiological relevancee Referencesf

  Arabidopsis thaliana

AtCPK2 AT3G10660 ER, MB AtRBOHD/F (PM), 
AtSLAH3 (PM), 
ALMT12/13/14 (PM)

Reduced ROS production in cpk1,2 double 
mutants; reduced anion currents and fluxes 
are reduced in cpk2,20 double mutants

Lu and Hrabak, 2002; Harper 
et al., 2004; Gao et al., 2013; 
Gutermuth et al., 2013, 2018

AtCPK14 AT2G41860 MB - - Harper et al., 2004
AtCPK16 AT2G17890 PM ACA8 (PM), AtDi19-2 (N, 

C)
- Curran et al., 2011; Giacometti 

et al., 2012
AtCPK17 AT5G12180 PM - Reduced pollen transmission efficiency in 

cpk17/34 double mutants
Myers et al., 2009

AtCPK20 AT2G38910 S, MB AtSLAH3 (PM), 
ALMT12/13/14 (PM)

Anion currents and fluxes are reduced in 
cpk2,20 double mutants

Gutermuth et al., 2013, 2018

AtCPK24 AT2G31500 PM, N SPIK,14-3-3 Impairing the Ca2+-dependent inhibition of K+ 
in currents and PT elongation

Zhao et al., 2013; Swatek et al., 
2014

AtCPK26 AT4G38230 N, C - - Harper et al., 2004
AtCPK34 AT5G19360 PM NIP4;1/2 Fewer seeds per silique and reduced pollen 

germination and PT length in nip4;1/2 mutant
Di Giorgio et al., 2016

  Zea mays

ZmCPK20 GRMZM2G365815 - - - Estruch et al., 1994
ZmCPK32 GRMZM2G332660 PM - Inhibition of PT growth by transient 

expression of ZmCPK32 in tobacco pollen
Li et al., 2018a

  Petunia inflate

PiCPK1 DQ147913 PM PiSCP1 Loss of growth polarity Inhibited pollen 
germination and tube growth

Yoon et al., 2006; Guo et al., 
2013

PiCPK2 DQ147912 P PiSCP1 Inhibition of PT extension but did not affect 
growth polarity or germination rates

Guo et al., 2013

  Oryza sativa

OsCPK25 Os11g04170 - - - Wang et al., 2011; Tang and 
Page, 2013

OsCPK26 Os12g03970 - - - Wang et al., 2011; Tang and 
Page, 2013

aShort name.
bGene identifier according to TAIR (A. thaliana CDPKs) or GeneBank (other species).
cSubcellular localization published in the literature: S, soluble; MB, membranes; N, nucleus; C, cytoplasm; P, peroxisomes; PM, plasma membrane; ER, endoplasmic reticulum.
dLists of published CPK target genes with their published subcellular localization in parentheses.
ePhysiological relevance is defined by phenotypes of knockdown or overexpressing lines, when available, or other physiological traits.
fCorresponding references.
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leads to ROS mediated activation of some Ca2+ channels, which 
in turn causes an increase in the cytosolic Ca2+ level (Breygina 
et  al., 2016; Makavitskaya et  al., 2018). An interesting recent 
finding is that LINC-complex mediated VN proximity to the 
PT tip is required for both responses to exogenous ROS and 
internal nuclear Ca2+ fluctuations (Moser et  al., 2020). Cyclic 
nucleotides (cNMPs), such as cAMP and guanosine 3',5'-cyclic 
monophosphate (cGMP), as the activators of CNGCs are 
undoubtedly involved in PT growth (Duszyn et al., 2019). Presently, 
information is limited because there are only seven experimentally 
confirmed adenylate cyclases (ACs) in higher plants, which limits 
the knowledge about how cAMPs were synthesized and how 
they regulate the CNGCs during PT growth (Yang et  al., 2020). 
Among them, ZmPSiP is preferentially expressed in PT and 
catalyzes the production of cAMP, which is responsible for PT 
growth and reorientation (Moutinho et  al., 2001). As for cGMP, 
it is noteworthy that nitric oxide can activate guanylyl cyclase 
and possibly activate CNGCs through increases in cGMP levels, 
leading to an influx of extracellular Ca2+ and actin filament 
organization during cell wall construction in Pinus bungeana 
PTs (Wang et  al., 2009; Marondedze et  al., 2017). Therefore, 
capturing a more complete picture of the Ca2+/CPK signaling 
in PT growth requires an exhaustive investigation of the other 
integrated molecular and signaling systems.

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES

Although substantial progress has been made in the past 
decades, the mechanism of the Ca2+/CPKs signal pathway for 
regulating PT growth is still fragmented. Only a few relatively 
complete signal transduction chains are reported. Besides the 
regulation of the cell wall properties and ion concentrations, 
the related researches about the Ca2+/CPKs signal pathway 

involved in other processes such as endo- and exo-cytosis and 
cytoskeletal regulation fine-tuning of Ca2+ concentration in 
organelles (vacuole, dictyosome, and mitochondria) need 
exhaustive investigation (Steinhorst et  al., 2015; Selles et  al., 
2018; Flores-Herrera et al., 2019; Guo and Yang, 2020). Moreover, 
identification of the unknown targets of CPKs (particularly 
for nuclear targets such as TFs) and depiction of the elaborate 
internetwork of the Ca2+/CPKs pathway with other signal 
pathways will lead to important insights into the mechanisms 
of PT growth. The progress of experimental techniques such 
as various omics techniques, Y2H screens, CRISPR/Cas gene 
editing, and RNAi by directly adding the siRNAs into the PT 
culture medium (Suwinska et  al., 2017), various molecular 
probes (Mravec et  al., 2017), microfluidics and microrobotics 
(Burri et  al., 2020), and computational methods (Damineli 
et  al., 2017) will provide new opportunities and boost our 
understanding of the Ca2+/CPKs signal pathway in PT growth.
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