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Kernel length, kernel width, and kernel thickness are important traits affecting grain yield 
and product quality. Here, the genetic architecture of the three kernel size traits was 
dissected in an association panel of 309 maize inbred lines using four statistical methods. 
Forty-two significant single nucleotide polymorphisms (SNPs; p < 1.72E-05) and 70 genes 
for the three traits were identified under five environments. One and eight SNPs were 
co-detected in two environments and by at least two methods, respectively, and they 
explained 5.87–9.59% of the phenotypic variation. Comparing the transcriptomes of two 
inbred lines with contrasting seed size, three and eight genes identified in the association 
panel showed significantly differential expression between the two genotypes at 15 and 
39 days after pollination, respectively. Ten and 17 genes identified by a genome-wide 
association study were significantly differentially expressed between the two development 
stages in the two genotypes. Combining environment−/method-stable SNPs and 
differential expression analysis, ribosomal protein L7, jasmonate-regulated gene 21, serine/
threonine-protein kinase RUNKEL, AP2-EREBP-transcription factor 16, and 
Zm00001d035222 (cell wall protein IFF6-like) were important candidate genes for maize 
kernel size and development.

Keywords: kernel size, kernel development, genome-wide association study, transcriptome, differentially 
expressed genes

INTRODUCTION

Maize is one of the most important crops and is widely used as staple food, animal feed, 
and raw materials. Grain yield improvement is a longstanding breeding goal in maize. Kernel 
size traits, including kernel length (KL), kernel width (KW), and kernel thickness (KT), largely 
affect yield component kernel weight and product quality. In addition, large kernels have a 
favorable seed vigor and, finally, promote yield. Therefore, it is important to elucidate the 
genetic architecture of kernel size.

Using linkage mapping, many quantitative trait loci (QTLs) for kernel size traits have been 
identified in F2:3 families (Liu et  al., 2014; Li et  al., 2019), doubled haploid (DH; Shi et  al., 
2017; Liu et  al., 2020a), recombinant inbred line (RIL; Raihan et  al., 2016; Liu et  al., 2017; 
Zhang et  al., 2017), three-way cross (Jiang et  al., 2015), four-way cross (Chen et  al., 2016), 
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and immortalized F2 population (Liu et al., 2020b) with different 
backgrounds. For instance, Liu et  al. (2014) identified 6, 16, 
and 18 QTLs for KL, KW, and KT, respectively, accounting 
for 0.84–20.51% of phenotypic variation in an F2:3 population. 
In intermated B73  ×  Mo17 Syn10 DH population, Liu et  al. 
(2020a) found 50 QTLs for KL, KW, and KT, of which 18 
QTLs were detected in at least two environments. Liu et  al. 
(2017) identified 729 QTLs for KL, KW, KT, and kernel weight 
in 10 RIL populations using three statistical models.

Genome-wide association study (GWAS) is an effective 
approach for analyzing the genetic basis of complex traits. 
GWAS results are easily influenced by population structure 
and rare variants in natural populations. Therefore, many 
statistical methods have been developed to improve the power 
for identifying phenotype-genotype associations such as single-
locus mixed linear model (MLM; Yu et  al., 2006), compressed 
MLM (CMLM; Zhang et  al., 2010), and settlement of MLM 
under progressively exclusive relationship (SUPER; Wang et al., 
2014), and multi-locus methods mrMLM (Wang et  al., 2016), 
multiple locus mixed linear model (MLMM; Segura et  al., 
2012), and fixed and random model circulating probability 
unification (FarmCPU; Liu et  al., 2016). The MLM method 
has proven useful in controlling for population structure and 
relatedness within GWAS (Yu et  al., 2006). To improve the 
statistical power and solve the confounding problem for MLM 
methods, the CMLM method decreases the effective sample 
size by clustering individuals into groups that is fitted as 
random effects (Zhang et al., 2010). SUPER remarkably increases 
the statistical power and solves the computational problem 
using influential bins which are represented by the most 
significant markers (Wang et al., 2014). MLMM utilizes multiple 
markers simultaneously as covariates in a stepwise MLM to 
partially eliminate the confounding between kinship and testing 
markers (Segura et al., 2012; Liu et al., 2016). FarmCPU divides 
MLMM into two parts, i.e., fixed effect model and random 
effect model, and uses them iteratively (Liu et al., 2016). Many 
studies have identified variations of single nucleotide 
polymorphisms (SNPs) for kernel size traits in different 
association panels using these methods (Zhang et  al., 2017; 
Li et  al., 2019; Liu et  al., 2020a) in maize. Li et  al. (2019) 
identified 18, 19, and 7 significant SNPs for KL, KW, and 
KT in 639 inbred lines selected from a nested association 
mapping population using FarmCPU. Twenty-one SNPs were 
detected for the three traits, of which two SNPs were detected 
by CMLM, one by MLM, and 20 by FarmCPU (Liu et  al., 
2020a). In addition, Zhang et  al. (2017) found that a stable 
locus PKS2 affecting kernel shape was detected on chromosome 2 
by combined linkage and association mapping.

A large number of QTLs or SNPs were detected using the 
two mapping approaches, and only a few genes influencing 
kernel size traits have been cloned. For instance, ZmCKX10, 
encoding cytokinin oxidase, was cloned by fine mapping of a 
major QTL (qKL1.07) for KL (Qin et  al., 2016). Although 
numerous functional genes have been reported to regulate 
kernel development through mutant analysis (Fu et  al., 2002; 
Kang et al., 2009; Li et al., 2014; Yang et al., 2017; Zhu et al., 2019; 
Dai et  al., 2020), the application of these functional genes is 

limited for lacking superior allelic variations when using marker-
assisted selection breeding (Liu et  al., 2020a).

Transcriptome has also been employed to detect the 
underlying genetic architecture responsible for phenotypic 
variations. By integrating GWAS, expression quantitative trait 
loci (eQTL), and quantitative trait transcript analyses, Pang 
et al. (2019) identified 137 putative KL-related genes at 5 days 
after pollination (DAP5) and an eQTL that overlapped the 
locus encoding a maize homolog of m6A methylation reader 
protein ECT2 of Arabidopsis. Transcriptome analysis not only 
reveals a large number of genes associated with kernel size 
and development but also some biological processes and 
signaling pathways including DNA methylation, ovule 
development, cell cycle, cell division, ubiquitin, phytohormone 
signaling pathways, and transcriptional regulatory factors 
during seed, endosperm, and embryo development in maize 
(Sekhon et al., 2014; Zhang et al., 2016). These studies provide 
extensive information for genes and regulatory networks, 
which are helpful to dissecting the genetic architecture of 
kernel size traits.

To date, the dissection of kernel size traits by integrating 
GWAS and transcriptome analysis is rare. In the present study, 
we  used an association panel including 309 inbred lines to 
identify significant SNPs and candidate genes for KL, KW, 
and KT in multi-environments using four GWAS methods. 
We  also identified differentially expressed genes of two inbred 
lines with contrasting seed size that were selected from the 
association panel during two seed development stages. We finally 
determined consistent genes associated with kernel size by 
combined GWAS and transcriptome analysis.

MATERIALS AND METHODS

Experimental Design, Phenotyping, and 
Analysis
A total of 309 maize inbred lines were assembled into a panel. 
The panel was comprised of 128 China core germplasms, 16 
new selected inbred lines, and 165 US public inbred lines whose 
plant variety protection had expired (provided by the China 
National Modern Corn Industry Technology System). They were 
planted in Yuanyang (YY, 35.012 N, 113.704 E), Dancheng (DC, 
33.646  N, 115.257 E), and Sanya (SY, 18.381  N, 109.183 E) 
experimental stations of Henan Academy of Agricultural Sciences 
in 2017. In 2019, the association panel was planted in YY station. 
The field experiment was arranged in a randomized complete 
block design with three replicates. Each inbred line was grown 
in two rows with 15 plants, 0.60  m in row spacing, and 0.25  m 
in plant spacing. Best linear unbiased estimate (BLUE) values 
of each trait in the four environments were calculated by the 
software QTL IciMapping v4.0 (Meng et  al., 2015) and were 
used as phenotypes of the combined environment. Three well-
developed ears were harvested for KL, KW, and KT measurement. 
An automatic variety test system for maize ear (National 
Engineering Research Center for Information Technology in 
Agriculture, Beijing, China) was used to measure the three traits 
with 50 randomly selected kernels from each line.
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Pearson correlation was calculated by R software 
(R  Development Core Team, 2015). For single environment 
and multi-environments, the broad-sense heritability at per 
mean level was calculated by QTL IciMapping v4.0. Genotype, 
environment, block within environment, and genotype and 
environment interactions (GEI) were used in the multi-
environment analysis of variance (ANOVA) model, which was 
performed by QTL IciMapping v4.0.

Genotyping, Population Structure, Kinship, 
and Genome-Wide Association Analysis
The association population was sequenced by genotyping-by-
sequencing technology (Novogene Bioinformation Technology Co., 
Ltd., Beijing, China). The reads were aligned against the maize 
B73 genome1 using the BWA software. SNPs were identified using 
SAMtools (Li et  al., 2009). A total of 58,129 SNPs were used for 
GWAS after filtering SNPs with minor allele frequency 
(MAF)  <  0.05, missing rate >  0.10, and heterozygous rate >  0.10. 
The Centered_IBS method in TASSEL v5.2.60 (Bradbury et  al., 
2007) was used to calculate kinship matrix between lines. The 
Bayesian Markov Chain Monte Carlo (MCMC) method in Structure 
v2.3.4 (Pritchard et  al., 2000) was used to estimate the subgroups 
(K). K was set from 1 to 8 with three-time iterations. Length of 
burnin period was 5,000 and the number of MCMC replicates 
after burnin was 50,000. The results were visualized by Structure 
Harvester (Earl and vonHoldt, 2012), and delta K was used to 
determine the optimal number of subgroups. Two subgroups were 
revealed in the panel (Supplementary Figure S1). One subgroup 
with 79 lines included Stiff Stalk, whereas the other was a mixed 
heterotic group which was mainly comprised of non-Stiff Stalk 
and Reid. To balance positive and negative significant SNPs, two 
single-locus MLM models, namely CMLM and SUPER, and two 
multi-locus methods, namely MLMM and FarmCPU, were conducted 
in GAPIT package (Lipka et  al., 2012). The kinship and the 
population structure (Q matrix) were incorporated in the four 
methods. All parameters were set by default. Stringent Bonferroni 
correction is usually adopted for multiple testing correction in a 
single-locus model, whereas no multiple testing correction is needed 
in multi-locus methods (Zhang et al., 2019). Therefore, a moderate 
threshold for significant SNPs was set at 1/total number of SNPs 
(58,129)  =  1.72E-05 for the four methods, which was used by 
previous studies (Wang et  al., 2015; Ma et  al., 2016; Zhang et  al., 
2017; Zhu et  al., 2018). Phenotypic variation explained (PVE) of 
significant SNPs identified from FarmCPU, MLMM, and SUPER 
was calculated according to a previous study (Liu et  al., 2020a), 
and that of CMLM was given by GAPIT. Candidate genes were 
identified from 50 kb upstream and downstream of each significant 
SNP by ANNOVAR (Wang et  al., 2010).

Transcriptome Sequencing and 
Differentially Expressed Analysis
To validate the candidate loci identified by GWAS, 
we  selected two inbred lines from the association panel 

1 http://ftp.ensemblgenomes.org/vol1/pub/plants/release-36/fasta/zea_mays/dna/
Zea_mays.AGPv4.dna.toplevel.fa.gz

mainly according  to the KL and KW value in SY2017 
where the ear pollination is not easily influenced by the 
climate. AJ525 represented large kernel size because its 
KL and KW values both ranked second, whereas A350 
represented small kernel size due to the two-trait values 
of it belonging to the bottom 10% in the association panel. 
The three-trait value of AJ525 was consistently higher than 
that of A350 across all environments. The population 
structure analysis revealed that AJ525 and A350 were 
assigned to one subgroup.

Maize kernel filling includes three stages: a lag phase of 
minimal gain in dry weight (10–18 DAP), a linear phase 
of dry weight accumulation (18–40 DAP), and a period of 
diminishing dry weight accumulation approaching physiological 
maturity (40–70 DAP; Seebauer et al., 2010; Wang et al., 2012). 
The lag and linear phages are important for the formation of 
maize kernel size. Therefore, 20 seeds of each inbred line were 
collected at DAP15 and DAP39, immediately frozen in liquid 
nitrogen, and stored at −80°C until RNA extraction. Three 
biological replicates were conducted for AJ525 and A350. The 
RNA sequencing platform was Illumina HiSeq X Ten (BioMarker 
Technologies Co., Ltd., Beijing, China). Clean reads were aligned 
to B73_RefGen_v42 using HISAT (Kim et  al., 2015). The RNA 
sequencing data have been uploaded to the Sequence Read 
Archive of the National Center for Biotechnology Information 
(accession no. PRJNA681326).3

Fragments per kilobase of transcript per million fragments 
mapped (FPKM) was used as the gene expression level. The 
differential expression analysis was implemented by DESeq2 
(Love et  al., 2014). Genes with FPKM ≥  1  in at least three 
samples were used for each pairwise comparison. The false 
discovery rate (FDR) <  0.05 and |log2fold change| ≥  1 were 
set as the thresholds for significantly differential expression. 
Gene Ontology (GO) enrichment analysis of the differentially 
expressed genes (DEGs) was performed by the GOseq R 
package-based Wallenius noncentral hypergeometric distribution 
(Young et  al., 2010). The KOBAS software was used to test 
the statistical enrichment of DEGs in KEGG pathways (Mao 
et  al., 2005). The GATK2 software (McKenna et  al., 2010) 
was used to perform SNP calling based on the following 
criteria: the quality by depth > 2 and the number of single-base 
mismatch within 35  bp  <  3.

RESULTS

Phenotype Descriptions for Kernel Size 
Traits
Significant pairwise correlations were observed between the 
three kernel-related traits and different environments. The 
positive correlation between KL and KW was high in YY2017 
(r  =  0.72) and DC2017 (r  =  0.85) and moderate in SY2017 
(r  =  0.40) and YY2019 (r  =  0.42; Figure  1). KL was 
negatively  correlated with KT in YY2017 (r  =  −0.32) and 

2 http://plants.ensembl.org/Zea_mays/Info/Index
3 https://www.ncbi.nlm.nih.gov/sra/PRJNA681326
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SY2017 (r  = −0.12), indicating the trade-offs between them. 
The correlation between KL and KT was significantly positive 
in DC2017 (r  =  0.48, p  <  0.001). KW significantly and 
positively correlated with KT in DC2017 (r = 0.54, p < 0.001) 
and SY2017 (r  =  0.28, p  <  0.001). For KL and KW, a 
significantly positive correlation (r  =  0.34–0.47, p  <  0.001) 
was observed between YY2017, SY2017, and YY2019. DC2017 
showed no or weak correlations with other environments 
for the three traits (Figure  1).

In a single environment or multi-environment, the broad-
sense heritability of KL was the highest (0.65–0.97), followed 
by KW (0.62–0.94), and KT was the lowest (0.49–0.83; 
Supplementary Table S1). For the three traits, the heritability 
of a multi-environment was lower than that of a single 
environment (Supplementary Table S1). ANOVA of multi-
environments showed that differences of genotype were 
highly significant (p  <  0.001; Supplementary Table S2). 
Environment and GEI effect were also highly significant in 
multi-environment ANOVA (Supplementary Table S2). In 
order to reduce the environment effect, the BLUE value 
was estimated and also used as an environment for the 
following analysis.

Significant Loci and Candidate Genes 
Identified in Association Mapping
A total of 58,129 high-quality SNPs were used for summary 
description. The average marker density was approximately 
36  kb per SNP, and the average distance between adjacent 
SNPs was 2.59 kb (Supplementary Figure S2A). Little variations 
were observed among 10 chromosomes in terms of MAF, 
missing rate, and heterozygous rate. The average MAF, missing 
rate, and heterozygous rate were 0.047, 0.051, and 0.23 across 
chromosomes (Supplementary Figure S2B). The number of 
SNPs varied from 3,932 on chromosome 10 to 7,869 on 
chromosome 1. Two single-locus methods (CMLM and SUPER) 
and two multi-locus methods (FarmCPU and MLMM) were 
used to balance false signals in the four planting environments 
and the combined environment (BLUE). A total of 42 significant 
SNPs (p  <  1.72  ×  10−5) for three traits were identified under 
five environments, of which five were detected by CMLM, 25 
by SUPER, 14 by FarmCPU, and 11 by MLMM (Figures  2–5; 
Supplementary Figure S3; Supplementary Table S3). There 
were 3, 19, and 20 significantly associated with KL, KW, and 
KT, respectively, explaining 0.087–10.35% of the phenotypic 
variation (Supplementary Table S3).

FIGURE 1 | Pairwise correlations and histograms of kernel-related traits in different environments. Pearson correlation coefficient and significant level denoted by 
asterisk are shown in the upper triangular matrix. Significant levels at 0.05, 0.01, and 0.001 are represented by *, **, and ***, respectively. Histograms and scatter 
plots of kernel length (KL), kernel width (KW), and kernel thickness (KT) are shown in diagonal and lower triangular matrix, respectively. DC2017, Dancheng in 2017; 
SY2017, Sanya in 2017; YY2017 and YY2019, Yuanyang in 2017 and 2019. BLUE, best linear unbiased estimate.
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S2_138681134 was the only one environment-stable SNP, 
which was co-detected in BLUE and SY2017 environment 
in the SUPER model (Supplementary Table S3). It could 
explain 8.20–8.44% of the variation for KW. Eight SNPs 
were method-stable which were co-identified by at least 
two methods, and they explained 5.87–9.59% of the 
phenotypic variation (Figure  5; Supplementary Table S3). 
S5_201017684 and S6_22359567 were co-detected by  
the four GWAS methods. Specifically, S5_201017684 was 

significantly associated with KT in BLUE (CMLM, p = 1.05E-
05; FarmCPU, p = 1.29E-05; MLMM, p = 5.47E-06; SUPER, 
p  =  2.75E-06), whereas S6_22359567 was significantly 
associated with KW in YY2017 (CMLM, p  =  2.16E-06; 
FarmCPU, p  =  2.39E-06; MLMM, p  =  8.15E-07; SUPER, 
p = 2.67E-08). KT-associated SNP S8_5131540 was detected 
by CMLM (p  =  1.53E-05), FarmCPU (p  =  9.68E-06), and 
MLMM (p = 8.37E-06) in BLUE. Five SNPs were co-detected 
by two methods (Figure  5). Among them, S8_159308804 

FIGURE 2 | Manhattan plots of significant association analysis for KL in different environments using compressed mixed linear model (CMLM), multiple locus mixed 
linear model (MLMM), and settlement of MLM under progressively exclusive relationship (SUPER). The red dotted line indicates the significance threshold of p value 
1.72E-05. DC2017, Dancheng in 2017; YY2019, Yuanyang in 2019. BLUE, best linear unbiased estimate.
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was co-detected by CMLM (DC2017, p  =  1.58E-05) and 
MLMM (DC2017, p  =  7.83E-06) in terms of KL. It was 
also significantly associated with KW (DC2017, p  =  9.47E-
06) by MLMM, indicating the SNP had a pleiotropic effect 

on KL and KW. S8_159308804 explained 7.18–8.58 and 
8.38% of the variation of KL and KW, respectively.

We used these 42 significant SNPs to identify candidate genes 
for kernel-related traits, and 70 candidate genes were found 

FIGURE 3 | Manhattan plots of significant association analysis for KW in different environments using CMLM, SUPER, MLMM, and FarmCPU. The red dotted line 
indicates the significance threshold of p value 1.72E-05. DC2017, Dancheng in 2017; SY2017, Sanya in 2017; YY2017 and YY2019, Yuanyang in 2017 and 2019. 
BLUE, best linear unbiased estimate.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ma et al. Genetic Analysis of Kernel Size

Frontiers in Plant Science | www.frontiersin.org 7 March 2021 | Volume 12 | Article 632788

(Supplementary Table S3). Four TFs—AP2-EREBP-transcription 
factor 10 (EREB10), EREB16, Alfin-like-transcription factor 10 
(ALF10), and NAC-transcription factor 113 (NAC113)—were 
involved for KT, and two TFs—Aux/IAA-transcription factor 6 
(IAA6) and Myb-related protein1 (MYBR1)—were involved for 
KW. Four E3 ubiquitin-protein ligases (RHY1A, BRE1-like 2, 

UPL4, and XBAT31), three ribosomal proteins (RPS8, RPS4A, 
and RPL7), ethylene receptor homolog40 (ERH40), proliferating 
cell nuclear antigen2 (PCNA2), pentatricopeptide repeat-containing 
protein (PPR), probable protein phosphatase 2C 33, cytochrome 
P450 71D7, and GDP-L-galactose phosphorylase 1 were also 
candidate genes for the three traits.

FIGURE 4 | Manhattan plots of significant association analysis for KT in different environments using CMLM, SUPER, MLMM, and FarmCPU. The red dotted line indicates 
the significance threshold of p value 1.72E-05. DC2017, Dancheng in 2017; SY2017, Sanya in 2017; YY2017, Yuanyang in 2017. BLUE, best linear unbiased estimate.
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Global Transcriptome Analysis of Two 
Inbred Lines With Contrasting Kernel Size
From the association panel, we  selected two inbred lines 
with contrasting kernel size from field trials. In large seed 
AJ525, the mean value of KL, KW, and KT was 1.11, 0.85, 
and 0.54  cm, respectively, across different environments 
(Supplementary Figure S4). For A350, the mean value of 
KL, KW, and KT was 0.77, 0.68, and 0.50, respectively, 
across different environments. The difference of AJ525 and 
A350 was significant for the three traits in SY2017 
(Supplementary Figure S4). In terms of KL, the difference 
between the two lines was significant in YY2017 and YY2019. 
KW of AJ525 was significantly higher than that of A350  in 
YY2019 (Supplementary Figure S4). We  constructed RNA 
sequencing on their seeds at DAP15 and DAP39 with three 
replicates. The high correlation among three biological 
replicates indicated the reliability of our transcriptomic 
profiling data (Supplementary Figure S5).

To identify genes associated with kernel size, we  performed 
pairwise comparisons between AJ525 and A350 at each development 
stage. The DEGs were identified with FDR <  0.05 and |log2fold 
change| ≥  1. There were 5,156 and 8,280 DEGs between the 
two genotypes at DAP15 and DAP39, respectively, indicating that 
the major difference between the two genotypes was shown at 
DAP39 (Supplementary Figure S6). At DAP15, 2,630 and 2,526 
genes were upregulated and downregulated, respectively, in AJ525 
relative to A350. Among them, 229 TFs showed more than 
two-fold expression between the two genotypes, of which 
NAC-transcription factor 61 (NAC61), bHLH-transcription factor 
38 (bHLH38), agamous-like MADS-box AGL8-like protein 
(AGL8L), GRAS-transcription factor 3 (GRAS3), MYBR110, and 
SBP-transcription factor 4 (SBP4) increased over 30-fold expression 
in large seed AJ525 relative to A350 (Supplementary Figure S7; 
Supplementary Table S4). bHLH96, E2F-DP-transcription factor 
214 (E2F14), and GRAS51 showed over 16-fold expression in 

A350 compared with AJ525. At DAP39, 3,831 and 4,449 DEGs 
were upregulated and downregulated, respectively, in large seed 
AJ525 compared with A340 (Supplementary Figure S6). Among 
them, 364 TFs showed more than two-fold expression between 
the two genotypes, of which GRAS3, E2F14, E2F8, NAC100, 
NAC61, MYBR110, MYBR58, bHLH38, WRKY-transcription factor 
15 (WRKY15), and AGL8L showed high differential expression 
in AJ525 relative to A340 (Supplementary Table S5).

Apart from these TFs, we  found 86 genes encoding 
ribosomal proteins, 33 genes encoding PPR, and 59 genes 
associated with ubiquitin-conjugating enzyme, and ubiquitin-
protein ligase showed over two-fold difference between AJ525 
and A350 at DAP15 (Supplementary Figure S7). At DAP39, 
50 genes encoding RP, 27 genes encoding PPR, and 41 
genes related to ubiquitin-conjugating enzyme and ubiquitin-
protein ligase were differentially expressed between the two 
genotypes (Supplementary Figure S7). The three family 
members are reported to regulate seed size in maize, rice, 
and Arabidopsis (Song et  al., 2007; Xia et  al., 2013; Li et  al., 
2014; Qi et  al., 2019; Dai et  al., 2020).

In the two inbred lines, DEGs between two development stages 
were also identified. In large seed AJ525, there were 5,452 DEGs 
in DAP39 stage compared with DAP15, of which sugars will 
eventually be  exported and transporter12a showed increased 
expression (Supplementary Table S6). In A350, 10,316 DEGs were 
identified between the two stages, of which floury3, bHLH123, 
WRKY10, GRAS47, embryo specific protein5, and cytochrome 
P450 family 81 subfamily D polypeptide8 showed high differential 
expression (Supplementary Table S7).

Some known genes for kernel development and size including 
Miniature1 (Mn1; Kang et al., 2009), small kernel2 (SMK2; Yang 
et  al., 2017), and defective kernel44 (Dek44; Qi et  al., 2019) 
showed over two-fold differential expression between genotypes 
or development stages (Supplementary Figure S8). Mn1 first 
downregulated at DAP15, and then upregulated at DAP39  in 
large seed AJ525 relative to A350. In addition, Mn1 was significantly 
downregulated at DAP39 compared with DAP15 in both genotypes. 
In both genotypes, SMK2 showed increased expression at 
DAP39  in relative to DAP15. At DAP39, Dek44 showed 2.17-
fold increased expression in AJ525 compared with A350.

GO analysis revealed that DNA integration, oxidation-reduction 
process, cell proliferation, abscisic acid/gibberellin biosynthetic 
process, carbohydrate metabolic process, carbohydrate transport, 
microtubule-based movement, and flavonol biosynthetic process 
were remarkable biological processes in DEGs between the 
genotypes and development stages (Supplementary Figure S9). 
KEGG analysis indicated these DEGs were mostly related to 
plant hormone signal transduction, starch and sucrose metabolism, 
glycolysis/gluconeogenesis, photosynthesis, carbon metabolism, 
phenylpropanoid biosynthesis, and flavonoid biosynthesis 
(Supplementary Figure S10).

Candidate Genes Identified by GWAS and 
Transcriptome
We identified common genes detected by GWAS and 
transcriptome analysis. Thirty-four genes detected by GWAS 

FIGURE 5 | Venn plots of significant SNPs for kernel-related traits identified 
by four methods.
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were expressed (FPKM ≥ 1) in at least three samples, and 
26 genes were expressed in all 12 samples. Twenty-two 
genes were differentially expressed between the two inbred 
lines or between the two development stages (Table  1; 
Supplementary Tables S8, S9). Three and eight genes showed 
significantly differential expression between the two genotypes 
at DAP15 and DAP39, respectively (Table  1). At DAP15, 
JRG21 and ureide permease 5 (UPS5) showed 4.74–6.16-fold 
decreased expression in AJ525 relative to A350, whereas 
Zm00001d020107 had presence/absence variation DEG which 
was only expressed in AJ525. At DAP39, ERH40, plasma 
membrane intrinsic protein2 (PIP2), and BRI1-KD interacting 
protein 130 (Zm00001d009041) showed upregulated expression 
in AJ525 compared with A350. Zm00001d028675 (plant-
specific domain TIGR01589 family protein), Zm00001d051180 
(DUF3755 family protein), UPS5, and aldehyde oxidase5 
(AO5) were downregulated 2.87–10.95-fold in AJ525 compared 
with A350.

Ten and 17 genes identified by GWAS were significantly 
differentially expressed between the two stages in the two genotypes 
(Supplementary Tables S8, S9). In both genotypes, MYBR1, 
serine/threonine-protein kinase RUNKEL, Zm00001d035222 (cell 
wall protein IFF6-like), and probable beta-D-xylosidase 7 
(BXL7) were downregulated in DAP39 compared with DAP15, 
whereas E3 ubiquitin-protein ligase RHY1A and AO5 showed 
increased expression in DAP39 relative to DAP15. EREB16, 
RPS8, RPL7, JRG21, and PCNA2 also showed over two-fold 
differential expression between the two stages. In addition, 
RPL7, JRG21, serine/threonine-protein kinase RUNKEL, 
EREB16, and Zm00001d035222 (cell wall protein IFF6-like) 
were detected from the environment-table and method-stable 
SNPs, which may be  important for regulating kernel size 
and development.

The allele variations detected by GWAS and transcriptome 
analysis were identified through 22 common genes. The positions 
of SNPs from 22 common genes did not match exactly in 
both omics levels. With a distance of 0.20–71  kb, 23 SNPs 
detected in the transcriptome showed consistent allele variations 
as five significant SNPs identified by GWAS. Of these, 20 
transcriptome SNPs corresponding to three significant SNPs 
by GWAS showed different alleles between the two genotypes 
at DAP39, whereas three transcriptome SNPs from two GWAS 

SNPs exhibited allele variations between the two development 
stages in A350 (Supplementary Table S10).

DISCUSSION

Kernel size is a complex quantitative trait and is coordinately 
regulated by kernel length, width, and thickness. Elucidation 
of the variation of kernel size will facilitate to reveal the 
regulatory mechanisms of maize kernel development. GWAS 
and transcriptome analysis are effective methods to identify 
key loci and genes for kernel size in different omics levels. 
The combination of GWAS and transcriptome analysis is useful 
to improve the efficiency of gene identification.

To control false associations, two single-locus methods 
(CMLM and SUPER) and two multi-locus methods (MLMM 
and FarmCPU) were used to identify significant SNPs for 
kernel size. Forty-two significant SNPs for the three kernel 
traits were identified. Eight SNPs were co-detected by at least 
two methods, of which two were detected by four methods, 
one by three methods, and five by two single-locus and multi-
locus methods. However, most of the significant SNPs were 
specific to each GWAS method. Similar results were also found 
in previous studies. Li et  al. (2018) found 15 loci of 342 
significant SNPs for cotton fiber quality traits were simultaneously 
identified in both single-locus and multi-locus models. Only 
two SNPs were co-detected by MLM, FarmCPU, and least 
absolute shrinkage and selection operator in maize starch pasting 
properties (Xu et  al., 2018). Several studies demonstrated that 
multi-locus models have higher power and accuracy levels for 
QTL detection when compared with some single-locus models 
(Wang et  al., 2016; Wen et  al., 2017; Li et  al., 2018; Xu et  al., 
2018; Liu et  al., 2020a). Our study showed that the statistical 
power of SUPER was the highest, followed by FarmCPU, and 
CMLM was the lowest. The ways of dealing with sample size, 
marker size, and effects varied differently in each GWAS method, 
which could result in the differences of the statistical power 
and accuracy levels. Eight method-stable loci demonstrated 
that the combination of single-locus and multi-locus methods 
could help improve the reliability of GWAS.

Due to a significant GEI effect, only one SNP was co-detected 
in two environments. Although KL and KW showed a significant 

TABLE 1 | Candidate genes identified by GWAS were significantly differentially expressed between AJ525 and A350 at DAP15 and DAP39.

DAP Gene ID Description FPKMAJ525 FPKMA350 FDR value

DAP15 Zm00001d020107 Unknown 2.03 0.00 1.17E-11
Zm00001d035462 Jasmonate-regulated gene 21 (JRG21) 2.13 8.50 5.89E-47
Zm00001d035214 Ureide permease 5 (UPS5) 0.73 3.98 6.18E-29

DAP39 Zm00001d020107 Unknown 5.58 0.10 2.96E-18
Zm00001d028675 Plant-specific domain TIGR01589 family protein 0.53 2.85 9.7E-13
Zm00001d051180 DUF3755 family protein, partial 17.34 47.12 5.85E-89
Zm00001d009041 BRI1-KD interacting protein 130 1.95 0.01 1.95E-17
Zm00001d035214 Ureide permease 5 (UPS5) 0.45 4.96 2.56E-39
Zm00001d018869 Aldehyde oxidase5 (AO5) 8.68 51.82 0
Zm00001d004372 Ethylene receptor homolog40 (ERH40) 4.27 2.02 1.74E-12
Zm00001d005421 Plasma membrane intrinsic protein2 (PIP2) 62.91 15.17 1.00E-133
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and positive correlation in four environments, only one SNP 
(S8_159308804) was detected with a pleiotropic effect on KL and 
KW. Except KL and KW, the pleiotropism between KW and KT 
or KL and KT was also found in other studies (Liu et  al., 2014, 
2017, 2020a). In some environments, trade-offs between KT and 
KL were observed (Figure 1). However, no evidence was detected 
in genomic level since no common SNPs were found. The PVE 
of 42 SNPs ranged from 0.087 to 10.35% and only one was a 
major effect SNP, which is consistent with previous studies that 
kernel size traits are mainly controlled by minor effect loci (Chen 
et  al., 2016; Raihan et  al., 2016; Liu et  al., 2020a). Therefore, 
genomic selection rather than marker-assisted selection is useful 
for the application of these SNPs in maize breeding.

Twelve SNPs were located within QTL regions for kernel 
size in previous studies. S5_201017684 detected by four methods 
and S8_159308804 detected by three methods were located 
within QTL regions for KT, KL, and KW that were identified 
by Liu et  al. (2017; Supplementary Table S3). S9_124772115 
was a major effect SNP for KT with PVE of 10.35% and was 
located in qkl9, qkw9, and qhkw9 (Shi et  al., 2017; 
Supplementary Table S3). S1_159584490 (KL) was located in 
a major QTL for KL (qkl1-2, PVE  =  17.8%) and a KW QTL 
(qkw1; Shi et  al., 2017). S4_176126505 for KW was identified 
within the intervals of qkw4 (Shi et  al., 2017). S8_159308804 
for KL was detected in qKL8 which had a pleiotropic effect 
on KW, kernel volume, and thousand kernel weight (Zhang 
et  al., 2017). S2_106835164 (KW) and S5_134065604 (KT) 
were detected in two KL-associated QTL regions found by 
Liu et  al. (2020a; Supplementary Table S3).

Three SNPs were located closely to the identified SNPs from 
previous studies (Supplementary Table S3). S2_234183333 for 
KW was detected in the BLUE environment, and at 76  kb 
downstream of this SNP, Li et  al. (2019) found a significant 
SNP for KW in a NAM population. In an association panel 
consisting of 639 inbred lines, Li et  al. (2019) found a KW 
SNP located at 176,210,546  bp, and in our study, a significant 
KW SNP at 176,126,505  bp was found on chromosome 4. In 
this association panel, a KL SNP at 131,861,727  bp on 
chromosome 2 was identified by Li et  al. (2019), and at its 
32  kb downstream, a KW SNP (S2_131894424) with PVE of 
9.08% was found in the BLUE environment using SUPER and 
MLMM. We  also found that 24 SNPs were located in the 
interval regions of meta-QTLs which were integrated in previous 
QTL mapping studies on kernel size traits, ear-related traits, 
and grain yield per plot or plant (Chen et  al., 2017; 
Supplementary Table S3). Among them, eight SNPs for KT 
and KL on chromosome 2 were located in MQTL-10, and 
this region was only associated with kernel size traits (Chen 
et  al., 2017). These SNPs validated by different genetic 
backgrounds may be important for maize kernel size and should 
be  given more attention in genomic selection breeding.

Seventy candidate genes were identified from 42 significant 
SNPs, and 22 GWAS genes showed significantly differential 
expression between genotypes or stages (Table 1; Supplementary  
Tables S8, S9). In particular, five DEGs, namely EREB16,  
RPL7, JRG21, serine/threonine-protein kinase RUNKEL, and 
Zm00001d035222 (cell wall protein IFF6-like), were identified 

from one environment-stable and eight method-stable SNPs. 
EREB16 and MYBR1 showed over two-fold difference between 
stages. Pang et  al. (2019) found that EREB170 and EREB115 
were involved in kernel development in an integrated eQTL 
analysis. Through combined association and linkage mapping, five 
co-located genes annotated as MYBR1 were significantly associated 
with KL and KT (Liu et  al., 2020a). ZmMRP-1, the first transfer 
cell-specific transcriptional activator, contains a MYB-related DNA 
binding domain and plays roles in the regulation of endosperm 
and transfer cell differentiation (Gómez et  al., 2002).

RPL7 was a candidate gene for KW and Zm00001d047262 
encoding RPS8 was identified for KT. They were significantly 
differentially expressed between the two development stages in 
A350. In addition, the corresponding SNP of RPL7 was 
S2_138681134 which was co-detected in two environments and 
considered a stable SNP for KW. Maize Dek44 encodes mitochondrial 
RPL9 and regulates cell growth and kernel development via cyclin/
cyclin-dependent kinase-mediated activities (Qi et  al., 2019). dek 
mutants, a major type of maize kernel mutants, are utilized to 
investigate seed development. Most of the Dek genes encode PPR 
proteins, which are involved in seed development (Zhu et  al., 
2019; Dai et  al., 2020). In the present study, Zm00001d007534 
encoding PPR protein was associated with KW. Liu et  al. (2020a) 
found that Zm00001d025152 encodes the PPR protein and was 
a candidate gene for KT identified by GWAS.

Hormone-related genes JRG21, ERH40, and BRI1 (brassinosteroid 
insensitive 1)-KD (kinase domain) interacting protein 130 were 
candidate genes for KW, and they showed significantly differential 
expression between the two genotypes. Ethylene receptor genes 
CM-ERT1 and Cm-ERS1 play a role in the early development 
of melon fruit (Sato-Nara et al., 1999). BR-deficient or BR-insensitive 
mutants resulted in small seeds, whereas overexpression of BR 
synthetic genes produced large seeds (Zuo and Li, 2014; Li and 
Li, 2015). However, the family members of JRG21, serine/threonine-
protein kinase RUNKEL, and Zm00001d035222 (cell wall protein 
IFF6-like) have not been reported to regulate kernel size 
and development.

In addition, three E3 ubiquitin-protein ligase RHY1A, BRE1-
like 2, and XBAT31 were candidate genes for KT, whereas E3 
ubiquitin-protein ligase UPL4 was detected from a method-
stable SNP (S6_27627826) for KW. Only RHY1A showed 
significantly differential expression between two development 
stages in the two inbred lines. Liu et  al. (2020a) found that 
one gene (Zm00001d004898) encoding E3 ubiquitin-protein 
ligase HRD1A was significantly associated with KL. OsGW2 
encodes a RING-type E3 ubiquitin ligase and negatively regulates 
cell division, resulting in a decrease of grain width and weight 
(Song et  al., 2007). DA2, the homology of OsGW2, encodes 
E3 ubiquitin ligase activity and regulates seed size by restricting 
cell proliferation in the maternal integuments of developing 
seeds (Xia et  al., 2013). E3 ubiquitin-protein ligase RHY1A, 
BRE1-like 2, and XBAT31 are RING-type proteins and may 
have similar function in controlling seed development as OsGW2. 
The KW-associated gene Zm00001d005421, encoding plasma 
membrane intrinsic protein2 (PIP2), was highly expressed in 
AJ525 and showed significantly two-fold differential expression 
compared with A350. In soybean, GmPIP2-9-overexpressing 
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plants had significantly more pod numbers and larger seed 
sizes than wild-type plants (Lu et  al., 2018).

In summary, 42 significant SNPs for KW, KL, and KT were 
identified. In particular, one and eight SNPs were co-detected 
in two environments and by at least two methods, respectively. 
GWAS combined with transcriptome data revealed that RPL7, 
JRG21, serine/threonine-protein kinase RUNKEL, EREB16, and 
Zm00001d035222 (cell wall protein IFF6-like) were important 
candidate genes for kernel size and development.
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