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The real challenge for separating leaf pixels from background pixels in thermal images is 
associated with various factors such as the amount of emitted and reflected thermal 
radiation from the targeted plant, absorption of reflected radiation by the humidity of the 
greenhouse, and the outside environment. We proposed TheLNet270v1 (thermal leaf 
network with 270 layers version 1) to recover the leaf canopy from its background in real 
time with higher accuracy than previous systems. The proposed network had an accuracy 
of 91% (mean boundary F1 score or BF score) to distinguish canopy pixels from 
background pixels and then segment the image into two classes: leaf and background. 
We evaluated the classification (segment) performance by using more than 13,766 images 
and obtained 95.75% training and 95.23% validation accuracies without overfitting issues. 
This research aimed to develop a deep learning technique for the automatic segmentation 
of thermal images to continuously monitor the canopy surface temperature inside 
a greenhouse.

Keywords: deep learning, network architecture, classification, segmentation, thermal image

INTRODUCTION

Leaf surface and internal structure changes are due to adverse growth, stomatal resistance, diseases, 
leaf angles, depth of the canopy, and water stress conditions, which alter the absorbance-reflection 
process of solar radiation (Lili et  al., 1991; Kraft et  al., 1996; Raza et  al., 2015). Thermography 
detected this reflected (emitted) long-wave infrared (8–14 μm), then converted it into thermal images, 
and a false-color gradient demonstrated the temperature level of the plant leaves of canopies (Chaerle 
and Van Der Straeten, 2000). Figure  1 shows the working principle of a thermal camera.

Over the last few years, the advancement of fast computing power, low-cost imaging systems 
with image processing software, and deep learning (DL) techniques have allowed for nondestructive 
disease diagnosis and detection of various stress conditions of plants in a timely manner (Liu and 
Wang, 2020). The DL based on a convolution neural network (CNN) is the successor of traditional 
machine learning approaches that can learn features with greater precision and accuracy by activating 
maximum networkability (Christopher et  al., 2018). Bengio (2009) compared CNN-based DL with 
the Neocortex of the human brain, which learns response-based features dynamically from images. 
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CNN-based DL acquires hierarchical features and emphasizes 
nonlinear filters of the depth of the deep network structure for 
learning, and after that solves problem-specific tasks such as image 
classification, semantic segmentation (pixel-based classification), 
object detection, video processing, speech recognition, and natural 
language processing (Simonyan and Zisserman, 2014; Singh et al., 
2018; Liu and Wang, 2020). Khan et  al. (2020) classified deep 
network architectures into seven classes: spatial exploitation, depth, 
multi-path, width, feature-map exploitation, channel boosting, and 
attention-based CNNs. Figure  2 demonstrates the classification 

of various deep network architectures along with the proposed 
TheLNet270v1. Shin et  al. (2016) stated that a filter termed as 
a channel in a CNN can extract different levels of information 
(from fine-grained to coarse-grained) based on their sizes (small 
to large sizes). Simonyan and Zisserman (2015) and Khan et  al. 
(2020) stated that the deep DL architecture has an advantage 
over the shallow depth DL architecture, which can learn complex 
representations at different levels of abstraction and thus increase 
the classification accuracy. According to Szegedy et  al. (2015), 
branching within layers can abstract features with various spatial 

FIGURE 1 | A schematic representation of a thermal camera working principle. 1: surroundings, 2: object, 3: atmosphere, 4: thermal camera, and 5: thermal 
image.

FIGURE 2 | Classification of available and proposed deep network architecture.
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FIGURE 3 | Thermal image acquisition technique.

FIGURE 4 | Schematic diagram of the image dataset preparation.
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scales. Srivastava et  al. (2015), Dong et  al. (2016), Larsson et  al. 
(2016), Mao et  al. (2016), Dauphin et  al. (2017), Huang et  al. 
(2017), Tong et  al. (2017), and Kuen et  al. (2018) proposed 

multi-paths or shortcut connections that connect one layer with 
another layer by skipping some intermediate layers. This allows 
overpassing some information to another layer and reduces the 
vanishing gradient problem, which causes a higher training error.

Li et  al. (2019) proposed an edge-conditioned convolution 
neural network for thermal image segmentation with SODA 
(segment objects in day and night) benchmark for evaluating 
the thermal image segmentation performance. They used 

A

B

FIGURE 5 | Pixel classification of the thermal image dataset. (A) Manual 
annotation. (B) Frequency level of the annotated leaf and background pixels 
within total thermal image dataset.

A B C D E

FIGURE 6 | Augmented image dataset. The statistics of the image datasets used for the deep learning (DL) network analysis are shown in Table 2. (A) Reflection; 
(B) Rotation; (C) Scale; (D) Shear; and (E) Translation.

TABLE 1 | Technical specification of the thermal camera (Thermo FLEX F50B-
ONL).

Field of 
view, °

Focus Spectral 
range, μm

Frame 
rate, Hz

Sensitivity, 
°C

Accuracy

70°×70° Focus free 8~14 7.5 0.05°C at 
30°C

±2°C or 
±2% for 
0–40°C 
(other 
conditions: 
±4°C or 
±4%)

TABLE 2 | The number of image datasets used for the DL analysis.

Condition Original 
dataset

Binary 
dataset

Training Validation Test

Total image 
number

13,766 13,766 8,260 2,753 2,753

TABLE 3 | Properties of the augmented datasets for DL analysis.

Augmentation options Training option Visualization

RandXreflection 1 Aug1 Figure 6A
RandYreflection 1
RandRotation [−90 90] Aug2 Figure 6B
RandScale [1 1]
RandXScale [0.8 1.2] Figure 6C
RandYScale [0.8 1.2]
RandXShear [−20 20] Figure 6D
RandYShear [−20 20]
RandXTranslation [−10 20] Figure 6E
RandYTranslation [−10 20]
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manually annotated synthetically generated thermal images 
for training the network, which achieved 61.9% mean 
intersection over union (IoU), a lightly better than network 
trained with DeepLabv3 algorithm. Choi et al. (2016) developed 
a CNN-based thermal Image Enhancement technique for 
improving low-resolution thermal camera recognition tasks. 
The lightweight structure of the shallow convolutional neural 
network requires less CPU memory. In their architecture, 
they cropped a low-resolution thermal image with a uniform 
stride and used a bi-cubic interpolation method to upscale 
it. Chen et  al. (2019) revealed a Fletcher-Reeves algorithm-
based CNN model for hyperspectral image classification with 
80.7% accuracy which outperforms other traditional CNN 
due to the advances in batch computing adaptability and 
convergence speed. Grbovic et  al. (2019) reported a 
thermal-RGB image-based wheat-ears detection system for 
automatic counting wheat wars under outdoor conditions. 
They applied blocks of convolutional layers, each with an 
activated function for counting the wheat ears, which achieved 
75.63 and 68.46% F1 Score for segmenting thermal and RGB 
images. Furthermore, achieved 89.22% accuracy for counting 
the wheat ears. Another study reported by Zhang et al. (2019) 
used a group of neurons termed as a capsule or vector for 
replacing traditional neurons and achieved equivariance by 
successfully encoding spatial information and properties of 
an input image. Bhattarai and Martínez-Ramón (2020) identified 
and classified objects in real time from thermal cameras 
carried by firefighters. The detection accuracy reported by 
authors varied from 70 to 95%, which depends on the depth 
of the convolution network layer.

Fuentes-Pacheco et  al. (2019) developed a CNN with an 
encoder–decoder function which used top-view RGB images of 
fig plants and achieved a mean 93.85% segmentation accuracy 

under variable visual fig leaves the appearance and complex 
background. There are various DL architectures, such as LeNet, 
AlexNet, VGG, GoogleNet, YOLOv, Inception, and SqueezeNet, 
which are widely used for image classification and object detection. 
However, ResNet, U-Net, DeepLabv3, and MobileNet are mostly 
used for semantic segmentation (pixel) – based image (RGB) 
classification (Boulent et al., 2019; Saleem et al., 2019). In agriculture, 
the high or low thermal dynamic changes during sunny–cloudy–
rainy days and nights make it difficult to spatially process bulk 
thermal images, such as separation of leaf/canopy pixels from 
background pixels (Cho et  al., 2017; Salgadoe et  al., 2019). To 
solve this classification challenge, the author proposed a new DL 
architecture with several components [convolutions, grouped 
convolution, transposed convolution, batch normalization, rectified 
linear unit (ReLU), max pooling, depth concatenation, element-
wise addition, 2D crop, softmax, and classification output layer]. 
The aim of this study was to develop a DL architecture and 
demonstrate the learning ability of the DL architecture to separate 
the leaf/leaf canopy from a greenhouse background (ground, 
windows, roof, etc.) in thermal images under various environmental 
conditions (sunny, cloudy, and rainy: day or/and night).

MATERIALS AND METHODS

Thermal Image Acquisition System
The study was conducted in the greenhouse of the Vegetable 
and Flower Research Division, National Agriculture and 
Food Research Organization (NARO) in Tsukuba, Ibaraki, 
Japan. The Japanese cultivar “CF Momotaro York” (Takii 
Seeds Co., Ltd., Kyoto, Japan) of tomato (Solanum lycopersicum) 
grown in a Rockwool system was used for this experiment. 
The image data collection period ran from October 16, 

FIGURE 7 | The basic network architecture of the TheLNet270v1.
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2019 to September 30, 2020. The air temperature and relative 
humidity at 1.2 m above the ground surface ranged between 
8.6 and 37.5°C, 32 and 96% from October 16, 2019 to 
April 16, 2020. The air temperature and relative humidity 
at 1.2  m above the ground surface ranged between 9.6 and 
39.3°C, 34 and 95% from August 7, 2020 to October 28, 
2020. Thermal images with 1040  ×  780 pixel resolution 
(screen) were obtained, as shown in Figure  3, using a 
compact long-wave thermal camera [Thermo FLEX F50B-ONL 
(Nippon Avionics Co., Ltd., Yokohama, Japan)] under various 
environmental conditions at a minimum distance of 0.3  m 
from the top and maximum 2  m from the side of the 
targeted tomato plant.

All images were stored in a 24-bit thermal image format. 
The emissivity range of the thermal camera is 0.1 to 1. In 
this experiment, the emissivity of the tomato leaf was considered 
to be  0.98 (López et  al., 2012). The technical specifications of 
the thermal camera are listed in Table  1.

Image Dataset Preparation
Figure  4 demonstrates the schematic diagram of the image 
dataset preparation for network analysis.

In total, 13,766 thermal images were obtained during this 
experiment. The thermal images were resized into their original 
spatial resolution (240 × 240 pixels), and denoising (manipulation 
of scale and emissivity) was performed by a thermal imaging 
processing software (InfReC Analyzer NS9500STD for F50, 
Nippon Avionics Co., Ltd.) to meet the network input dimension 
(240 × 240 pixels) requirements. Furthermore, Image Segmenter 
(Image Processing and Computer Vision Toolbox, MATLAB 
R2020a) was used to convert the pixels of each thermal image 
into two groups manually: leaf (255) and background (0) as 
shown in Figure  5A. These pixel values were stored in binary 
images. The frequency levels of the leaf and background pixels 
within the total thermal image datasets were 77 and 23%, 
respectively (Figure 5B). In this experiment, 60% of the randomly 
selected images (thermal images and binary images) were used 
for training, 20% for validation, and 20% for test purposes.

The image dataset was augmented to increase the amount 
and type of variation within the training image data to prevent 
overfitting and generalizing the model performance (Figures 6A–E). 
Table  2 shows the number of image datasets used for deep 
learning analysis. First, we  augmented the image data, including 
random reflection in the X and Y directions [(aug1)]. This dataset 
was used for the network performance study. Furthermore, for 
comparative analysis, we also augmented the thermal image dataset 
with the other four options (aug2), as shown in Table  3.

Network Architecture
Figure  7 demonstrates the basic network architecture of the 
TheLNet270v1, which is a combination of the semantic 
segmentation-based network (convolution layers) and 
classification-based network (softmax). The convolution layer 
of the proposed network extracts the higher-level features from 
input images with multiple smaller filter sizes (3 × 3 × 3 × 32). 
The smaller filter size of the convolution layer has a strong 
generalization ability when the same types of objects within 
an image are conglutinated with each other (Zhang et al., 2020). 
This capability effectively improves network learning performance. 
According to Nair and Hinton (2010), the ReLUs activation 
function added non-linearities to the model, converted values 
less than zero to zero for each element of the input, transformed 
the summed weighted input from the node into output, and 
allowed models to learn faster with higher accuracy. The batch 
normalization layer increases the network stability and normalizes 
the output of a previous activation layer by subtracting the 

TABLE 4 | Characteristics of the TheLNet270v1 architecture.

Layers name Total number of layers

Image input 1
Convolution 31
ReLU 83
Batch normalization 71
Max pooling 15
Transposed convolution 49
Addition layer 2
Grouped convolution 4
Depth concatenation 11
Crop2D 1
Softmax 1
Pixel-classification (output) 1

TABLE 5 | Hyperparameter optimization parameter.

Training options: adam Execution environment: parallel

Learn rate schedule: piecewise Validation patience: Inf
Shuffle: every-epoch Epsilon:1e-8
Verbose: false Initial learn rate: 1.0000e-03
Validation frequency:10 Learn rate drop factor: 0.1000
Gradient decay factor: 0.9000 Learn rate drop period: 10
Squared gradient decay factor: 0.9990 Gradient threshold method: l2norm
L2 regularization: 1.0000e-04 Verbose frequency: 50
Gradient threshold: Inf Dispatch in background: 0
Sequence padding value: 0 Reset input normalization: 1
Sequence length: longest Sequence padding direction: right

TABLE 6 | The image datasets for performance study and comparative analysis.

Image data Original image Binary image Total 
image

Comments

Original dataset 13,766 × 1 13,766 × 1 27,532 -

Augmented dataset1 13,766 × 2 13,766 × 2 55,064 Original condition + XYReflection
Augmented dataset2 13,766 × 6 13,766 × 6 82,596 Original condition + XYReflection + Rotation + Scale + XYScale + XYShear + XY 

Translations
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batch mean and dividing by the batch SD (Ioffe and Szegedy, 
2015). Krizhevsky et  al. (2012) introduced grouped convolution 
for training AlexNet with less powerful GPUs with limited 
RAM. It is also termed as convolutions in parallel as this layer 
separates input channels into groups by applying sliding 
convolution filters (vertically and horizontally), computing the 
input and weights, adding a bias, and finally combining the 
convolutions for each group independently (Xavier and Bengio, 
2010; He et  al., 2016a). We  included grouped convolution to 
increase the width of the network without hampering 
computational power. According to Scherer et  al. (2010) and 
Zhang et al. (2020), the max-pooling layer simplifies the network 
complexity by compressing and extracting the main features, 
ensuring feature position and rotation invariance, and rotation 
reduced computing time. A 2D image cropping layer crops 
images at the center to explore contextual features (Blaschke, 
2010). The last convolution layer has two outputs corresponding 
to two classes with a ReLU activation followed by a batch 
normalization layer with 16 filters. The output of the last 
convolution layer is fed into the softmax layer for calculating 
the probability of the output classification layer. Finally, these 
expanded features are passed to the classification layer for 
classification (Krizhevsky et  al., 2012). Therefore, the depth of 
the DL architecture is fixed to 270 layers and accurately optimized 
based on training performance. The characteristics of the 
TheLNet270v1 architecture are shown in Table  4.

Network Parameters
The TheLNet270v1 was trained on a FUJITSU SHIHO 
Supercomputer equipped with TESLA V100-SXM2 32GB and 
CUDA version 10.2, DL, and parallel computing toolbox 
(MATLAB R2020a). The adaptive moment estimation (ADAM) 
algorithm was used to optimize the network weights. The 
transfer learning parameters applied for training the 
TheLNet270v1 were as follows: training option: Adam; validation 
frequency: 10; mini-batch size: 50/70/90/128/156/220/240/260
/290/320; max epoch: 5/12/20/30/40; learn rate schedule: 
piecewise; shuffle: every-epoch; initial learn rate: 0.001; epsilon: 
1e-08. ADAM was used to optimize the network weights. 
Table  5 shows the hyperparameter optimization parameter for 
the TheLNet270v1 training.

Comparative Analysis and Evaluation 
Metrics
Currently, MobileNetv2 is widely used in low-powered mobile 
devices for image recognition or classification tasks because of 
its simple network architecture and lower computational complexity 
(Wong et  al., 2020). He et  al. (2016a) first introduced ResNet 
with cross-layer connectivity in a CNN, which sped up the 
convergence of deep neural networks, solved the vanishing 
gradient problem by actively deploying special skip connections 
and a batch normalization layer and 20 and 8 times deeper 
than AlexNet and VGG. On the other hand, U-Net is mostly 
used in high-powered fixed devices because of its complex 
network architecture. It is widely used for biomedical image 
segmentation and classification purposes (Ronneberger et al., 2015). 

A

B

C

D

E

F

G H

I

J K

FIGURE 8 | Feature maps and visualization of the network. (A) Visualization 
of the first and second layer. (B) Convolution layer at various depths. 
(C) Grouped convolution layer at various depths. (D) Transposed convolution 
layer at various depths. (E) Batch normalization layer at various depths. 
(F) Max pooling layer at various depths. (G) Visualization of the crop2D. 
(H) Visualization of the depth concatenation layer. (I) ReLU layer at various 
depths. (J) Visualization of the softmax layer. (K) Visualization of the output.
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The bottleneck layer between the contracting and expanding 
paths of the U-Net architecture increased the network depth 
and was regularized by dropout to solve the overfitting issue 
during the network learning process (Krizhevsky et  al., 2012; 
He et  al., 2016b). Giusti et  al. (2013) stated that Deeplabv3plus 
employs atrous convolution or dilated convolutions in parallel 
or in cascade to extract dense features at multiple scales with 
better-stored information capability. TheLNet270v1 is designed 
so that it can be  used in both low-powered mobile or high-
powered fixed devices. There are several performance metrics 
such as training/validation/test accuracy (shows the percentage 
of correctly classified pixels), global accuracy (measuring ratio 
of correctly classified pixels to the total number of pixels), mean 
accuracy (measuring the percentage of correctly identified pixels 
for each class), confusion metrics, validation loss, training time, 
IoU/Jaccard index (measuring the amount of overlap per predicted 
class), weighted IoU (measuring the average IoU of each class), 
BF score (Boundary F1 – measuring the quality of the predicted 
boundary with the ground truth boundary), etc. are used for 
quantifying TheLNet270v1 accuracy and network efficiency. 

The same performance metrics were also evaluated on 
Deeplabv3plus (with a pretrained network MobileNetv2 and 
ResNet-50) and U-Net for comparative analysis.

RESULTS AND DISCUSSION

Image datasets are augmented into two categories for network 
training. The augmented dataset1 and augmented dataset2, as 
shown in Table  6, are both used for performance study and 
comparative analysis.

Feature Extraction and Activation for 
Visualization
Features extracted and visualized from the different depths 
of the TheLNet270v1 layers after completing the training 
are shown in Figure  8. Typical looking filters starting from 
the first layer in Figure  8B(I) show the colorful smooth 
pixels of each of the 64 filters, to noisy pixels in Figure 8B(II), 

FIGURE 9 | Monitoring of overfitting.
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and then slightly visible some features in Figure  8B(III). 
The last convolution layer in Figure 8B(IV) finally represents 
the visible pixel class. In Figures  8C(I,II), identical features 
of the grouped convolution layer in shallow depth are shown 
at different positions of an image. Figures  8D–I reveal 
different structures of the feature maps within each filter 
and layer, and visualizations show that the feature map is 
activated on the foreground tomato leaf image, not the 
background objects. Finally, softmax (Figure  8J) gives a 
discrete probability for each class (leaf/leaf canopy and 
background), which is between 0 and 1, and the result is 
visualized in the pixel classification output layer (Figure 8K), 
where 1 (white color) means leaf/leaf canopy and 0 means 
background (black color).

Performance Metrics
Figure  9 shows the accuracy and loss of the training and 
validation datasets used to monitor the network overfitting 

A

B

C

FIGURE 10 | Performance metrics of TheLNet270v1. (A) Performance based on mini-batch size. (B) Performance-based maximum epoch number. (C) Confusion matrix chart.

TABLE 7 | The performance metrics for image datasets.

Accuracy Global 
accuracy, 

%

Mean 
accuracy, 

%

Mean IoU, 
%

Weighted 
IoU, %

Mean 
BFScore, 

%

Train 
metrics

94.85 91.99 86.50 90.33 86.42

Validation 
metrics

94.82 91.69 86.43 90.28 86.34

Test metrics 94.81 91.75 86.20 90.26 86.36
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issue. It is clearly visible that the model performs well on 
both training and validation data sets.

The pixel-level classification of thermal images by 
TheLNet270v1 was investigated. A validation accuracy of 
95.22% was achieved with a minibatch size of 320, max 
epoch of 20, and training time of 94.15  min, shown in 
Figures  10A,B. Under the same conditions, the maximum 
IoU of 74 and 87% for leaf and background was achieved. 
During this time, a minimum validation loss of 12% was 
observed. The confusion matrix is given in terms of percentage 

and absolute number. It can be  seen from the confusion 
chart in Figure  10C that the higher classification accuracies 
of 98.07, 98.06, and 98.07% for leaf and 85.89, 85.80, and 
85.51% for the background achieved with the training, 
validation, and testing datasets (Table  6) and demonstrated 
that the network was well-trained.

Table  7 shows the test results of several other performance 
metrics such as global accuracy, mean accuracy, weighted  
IoU, and BF score. A higher value indicates better network  
performance.

The classification accuracy of each class (leaf and background) 
is described in Table  8.

Figure  11A shows an example of a test image successfully 
segmented into two classes, in which the dark color area 
represents leaf and light color background. Figure  11B shows 
a tiny presence of false positives (magenta color). However, 
the boundary between leaf and background is marked as green 
color (true negatives), which described that further refinement 
is possible if we  retrain the network with more image data 
or images with higher resolutions.

Comparative Metrics
It is evident from Table 9 that the TheLNet270v1 has a maximum 
depth layer of 270 with a lower total number of network 
parameters of 2e  +  11, which is lower than Deeplabv3plus 
(ResNet50) and Deeplabv3plus (MobileNetv2). However, U-Net 
has a minimum of 46 layers with a higher total number of 
network parameters of 6e  +  06 than TheLNet270v1. However, 
the training time for all networks (20 epoch, 220 minibatch 
sizes, and augmented dataset1) slightly differed.

Figure  12, Δ Performance (Eq.  1) demonstrated each 
evaluation metric’s positive and negative values with different 
image datasets. A negative value indicates an increase in the 
network performance, while a positive value is decreasing. The 
longer red arrow in the image indicates the volatile nature of 
the network due to the increase in the image dataset. From 
this, it is clear that Deeplabv3 (MobileNetv2) and TheLNet270v1 
both show stable network performance despite increasing the 
number of images in the augmented dataset, as described in 
Table  6.
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Test results vs. expected ground-truth (labeled) on the 
image-basis test dataset with IoU histogram are shown in 

TABLE 8 | The intersection over union (IoU) and BFScore for each class.

Accuracy

Train metrics Validation metrics Test metrics

Accuracy IoU Mean 
BFScore

Accuracy IoU Mean 
BFScore

Accuracy IoU Mean 
BFScore

Leaf 97.27 93.57 90.99 97.24 93.54 91.03 97.29 93.56 91.10
Background 86.72 79.42 81.78 86.70 79.33 81.60 86.21 78.84 81.56

A

B

FIGURE 11 | Test image vs. expected ground truth. (A) Test image with two 
classes. (B) Test results vs. expected ground-truth (labeled).
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Figures  13A–D [Deeplabv3plus (ResNet50), Deeplabv3plus 
(MobileNetv2), U-Net, and TheLNet270v1], and the mean 
IoU of each class, as described in Table  10. The mean IoU 
of the leaf and background classes is indicated by the top 
bar in the image histogram. Figure  13 and Table  10 show 
that the difference in mean IoU is clearly noticeable for the 
network trained with augmented dataset1 and augmented 
dataset2. No noticeable changes are occurring for networks 
trained with different types of data sets. However, U-Net 
demonstrated IoU improvement with an increasing number 
of image datasets. The results revealed that leaves that counted 
the maximum number of pixels had lower IoU than the 
background with the least number of pixels. Further increasing 
the number of images within the same pattern or adding 

high-resolution images can improve the network performance 
(Zhang et  al., 2018).

Prediction Results
The prediction results of the independent image datasets are 
shown in Figure 14. Figure 14A represents the early morning 
with a sunny condition, Figure  14B represents the midday 
with a sunny–cloudy condition, and Figure  14C represents 
the midnight condition. These three sets of images were 
captured during September 2020 and were used to verify the 
network prediction efficiency. It is visualized that the 
TheLNet270v1 has better prediction ability compared with 
other networks.

TABLE 9 | Comparative statistics of the various network architectures.

Network name Total layers Total neurons Total weights Total biases Total parameters Training time, min

Deeplabv3plus (ResNet50) 206 4.00E + 07 6.00E + 06 4.00E + 04 4.00E + 12 80.51
Deeplabv3plus (MobileNetv2) 186 4.00E + 07 7.00E + 06 4.00E + 04 4.00E + 12 94.29
U-Net 46 8.00E + 07 7.00E + 06 3.00E + 03 6.00E + 06 94.16
TheLNet270v1 270 5.97E + 07 1.63E + 06 3.00E + 03 2.00E + 11 94.15

FIGURE 12 | Δ Performance of the evaluation metrics.

TABLE 10 | The mean IoU for comparative analysis.

Network name
Augmented data1 Augmented data2 Augmented data1 Augmented data2 Visualization

Leaf Background

Deeplabv3plus (ResNet50) 0.74 0.74 0.87 0.85 Figure 13A
Deeplabv3plus (MobileNetv2) 0.72 0.72 0.86 0.85 Figure 13B
U-Net 0.44 0.66 0.52 0.82 Figure 13C
TheLNet270v1 0.73 0.7 0.87 0.84 Figure 13D
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Network Performance Verification With the 
IPPN Plant Phenotyping Image Dataset
As we  described earlier, thermal images of the greenhouse-
grown tomato plants were used for training the TheLNet270v1. 
This network successfully classified leaf/canopy and its 
background with higher accuracy, as shown in Figures  11, 
14. We further investigated TheLNet270v1 performance using 
the IPPN plant phenotyping image dataset (leaf segmentation 
challenge component of the CVPPP workshop: 
CVPPP2017LSC-2017 and CVPPP2017LCC-2017; Minervini 
et  al., 2015), which included pot-cultivated Arabidopsis 

thaliana. First, we  predicted the TheLNet270v1 output  
using image data from CVPPP2017LCC-2017 and 
CVPPP2017LSC-2017, as shown in Figures  15A,C. 
Sub sequently, we  trained the network with the 
CVPPP2017LSC-2017 image dataset (total images: 236, RGB) 
and then predicted again with the same image data  
from CVPPP2017LCC-2017 (Figures  15B,D). It is clearly 
visible that the TheLNet270v1 output, which is almost 
identical to the manually segmented binary image, is shown 
in Figure 15. Table 11 shows the TheLNet270v1 performance  
metrics.

A

B

C

D

FIGURE 13 | Test result vs. expected ground-truth (labeled) with intersection over union (IoU) histogram. (A) Deeplabv3plus (ResNet50). (B) Deeplabv3plus 
(MobileNetv2). (C) U-Net. (D) TheLNet270v1.
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CONCLUSION

This study introduced TheLNet270v1, a highly compact deep 
neural network (for mobile and non-mobile image classification) 
for classifying thermal images captured inside a greenhouse 
and demonstrating a higher classification accuracy. This paper 
also concludes a comparative analysis with other widely cited 
pre-trained networks for pixel-based classification, such as 
Deeplabv3plus (ResNet50), Deeplabv3plus (MobileNetv2), and 
U-Net, and found that TheLNet270v1 achieved a significantly 
better balance between accuracy and network efficiency. In 
our future work, we  will apply the TheLNet270v1 network for 
on-site training, and output will be  used for 24  h to monitor 
the relationships between plant growth and environmental 
conditions of the greenhouse. This network is suitable for the 
image with 240  ×  240 pixels. However, to make it suitable 
for different pixel sizes, we  consider modifying this network 
depending on the different image sizes in our future study.
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